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ABSTRACT

Music information retrieval has started to become more

and more important in the humanities by providing tools

for computer-assisted processing and analysis of music

data. However, when applied to real-world scenarios,

even established techniques, which are often developed

and tested under lab conditions, reach their limits. In this

paper, we illustrate some of these challenges by presenting

a study on automated audio segmentation in the context

of the interdisciplinary project “Freischütz Digital”. One

basic task arising in this project is to automatically seg-

ment different recordings of the opera “Der Freischütz”

according to a reference segmentation specified by a do-

main expert (musicologist). As it turns out, the task is more

complex as one may think at first glance due to significant

acoustic and structural variations across the various record-

ings. As our main contribution, we reveal and discuss these

variations by systematically adapting segmentation proce-

dures based on synchronization and matching techniques.

1. INTRODUCTION

In recent years, the availability of digital music material

has increased drastically including data of various formats

and modalities such as textual, symbolic, acoustic and vi-

sual representations. In the case of an opera there typically

exist digitized versions of the libretto, different editions

of the musical score, as well as a large number of perfor-

mances given as audio and video recordings, which in its

totality constitute the body of sources of a musical work.

The goal of the ongoing project “Freischütz Digital” 1 is to

develop and apply automated methods to support musicol-

ogists in editing, analyzing and comparing the various mu-

sical sources. The opera “Der Freischütz” by Carl Maria

von Weber is a work of central musical importance offer-

ing a rich body of sources. Working out and understanding

the variations and inconsistencies within and across the dif-

ferent sources constitutes a major challenge tackled in this

project. Another more general objective is to apply and

1 http://freischuetz-digital.de/
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to adjust computer-based methods to real-world scenarios

and to the needs of domain experts.

One particular problem arising in this case study con-

cerns the automated segmentation of all available audio

recordings of the opera. The opera “Der Freischütz” is

a number opera in the style of a Singspiel, starting with

an overture followed by 16 numbers (arias, duets, trios,

instrumental pieces, etc.) which are interspersed by spo-

ken text (dialogues). In our scenario, the musicologists are

interested in a specific segmentation of the opera, which

we refer to as the reference segmentation. The audio seg-

mentation task is aimed at automatically transferring this

reference segmentation onto all available recordings of the

opera, see Figure 1 for illustration.

A related scenario is described in [6], where the goal is

to identify unknown audio recordings. By applying auto-

mated matching procedures, the unknown recordings are

compared to well-annotated audio material in a database.

Upon identification, the matching result also allows for

segmenting the unknown recording. However, this seg-

mentation is more a byproduct, which is not evaluated in

detail. In our scenario, the focus lies on the segmentation

and, in a certain sense, we follow a reversed approach as

we start from known material that we match to a database

which we assume to contain representatives of the same

musical work.

The contributions of this paper are twofold. First, we

apply and adjust existing synchronization and matching

procedures to realize an automated reference-based seg-

mentation procedure. The second and even more important

goal of this paper is to highlight the various challenges aris-

ing in the context of this seemingly easy segmentation sce-

nario. In fact, the various audio recordings reveal signif-

icant acoustic and structural deviations. Considering dig-

itized material from old sound carriers (shellac, LP, tape

recordings etc.), one often has to deal with artifacts. Struc-

turally, there are omissions or changes of numbers, rep-

etitions, verses and dialogues. By systematically adjust-

ing the segmentation procedure to reveal these variations,

we not only successively improve the segmentation qual-

ity, but also gain insights into and a better understanding

of the audio material.

The remainder of this paper is organized as follows. In

Section 2, we describe the various types of sources that nat-

urally exist in the opera scenario and describe the dataset

in more detail. In Section 3, we review some basic music

synchronization and audio matching procedures. Then, in
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Figure 1. Segmentation result for 23 different audio recordings of “Der
Freischütz” according to a reference segmentation specified by musicol-
ogists. The reference segmentation includes 38 musical sections (Over-
ture: yellow, Act I: green, Act II: red, Act III: blue) as well as 16 spoken
dialogue sections (gray).

Section 4, we introduce various segmentation procedures

and present a musically informed evaluation of the various

results. In Section 5, we conclude the paper and give an

outlook to future work. Related work is discussed in the

respective sections.

2. MUSICAL BACKGROUND

Music in itself is complex and manifested in many differ-

ent formats and modalities [5, 9]. For example, for “Der

Freischütz” by Carl-Maria von Weber, there are textual

representations in form of the libretto (text of the opera),

symbolic representations (musical score), acoustic repre-

sentations (audio recordings) and visual representations

(video recordings). In the following, “Der Freischütz” –

an important representative of the German romantic opera

[11] – serves as a challenging case study. The opera is

structured in three acts which are further subdivided into

an overture and 16 following numbers interspersed by spo-

ken text passages (dialogues). The numbers cover a wide

range of musical material (arias, duets, trios, instrumental

pieces, etc.). Some of the melodic and harmonic mate-

rial of the numbers is already introduced in the overture.

Also, some of the numbers contain repetitions of musical

parts or verses of songs. In the acoustic domain, these are

not always part of the performance, as a the conductor or

producer may take the artistic freedom to deviate substan-

tially from what is specified in the musical score. Besides

differences in the number of played repetitions, further de-

viations include omissions of other parts or entire numbers

as well as variations in the spoken text and the length of

the dialogues. Apart from such structural deviations, au-

dio recordings of the opera usually differ in overall length,

sound quality, language and many other aspects. For exam-

ple, our dataset includes historic recordings that are often

prone to noise, artifacts, or tuning problems resulting from

the digitization process. Furthermore, the recordings show

a high variability in their duration, which can be explained

by significant tempo differences and also by omissions of

material, see Table 1 and Table 2 for details. Also, there

are versions which were adapted into French, Italian and

Russian language.

Our raw audio data mostly originates from CD record-
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Figure 2. Illustration of the reference-based segmentation procedure.

ings, which were initially segmented in CD tracks, see

Table 1. These track segmentations are not consistent,

varying between 17 and 41 tracks per recording. In some

recordings, each number of the opera was put into a sep-

arate track, whereas in others the numbers were divided

into music and dialogue tracks, and sometimes the remain-

ing music tracks were even subdivided. In order to com-

pare semantically corresponding parts in different versions

of the opera, a consistent segmentation is needed. In the

context of the “Freischütz Digital” project, such a segmen-

tation is a fundamental requirement for further analysis and

processing steps such as the computation of linking struc-

tures across different musical sources, including sheet mu-

sic and audio material.

In our scenario, a reference segmentation of the musical

score into musically meaningful sections was specified by

a domain expert (musicologist), who divided the opera into

38 musical segments and 16 dialogue segments. Accord-

ing to this reference segmentation, we manually created

an annotation for each of the 23 audio recordings in our

database, resulting in over 1000 audio segment, see Fig-

ure 1 for an overview. The objective of this paper is to re-

cover this annotation using automated methods and to get

a better understanding of the variations and inconsistencies

in the audio material.

3. SYNCHRONIZATION AND MATCHING

TECHNIQUES

As discussed before, the basic task is to segment an un-

known audio recording (assuming no pre-segmentation)

according to a given reference segmentation. In the follow-

ing, we assume that this reference segmentation is spec-

ified on the basis of a reference audio recording. Then

the objective of the segmentation task is to transfer the

segmentation from the reference version to the unknown

recording. In this section, we introduce some mathemat-

ical notions to model our segmentation problem and then

review some standard audio synchronization and matching

techniques that are applied in the subsequent section.

Let X := (x1, x2, . . . , xN ) be a suitable feature rep-

resentation of a given audio recording (the feature type is

specified later). Then, a segment α is a subset α = [s : t] ⊆



[1 :N ] := {1, 2. . . . , N} with s ≤ t. Let |α| := t − s + 1
denote the length of α. Furthermore, we define a (partial)

segmentation of X to be a sequence (α1, . . . , αI) of pair-

wise disjoint segments, i. e. αi ∩ αj = ∅ for i, j ∈ [1 : I],
i 6= j. Note that in this definition we do not assume that

[1 : N ] is completely covered by the segmentation.

In our scenario we assume that we have a refer-

ence sequence X with a reference segmentation A =
(α1, . . . , αI). Furthermore, let Y := (y1, y2, . . . , yM )
be a feature representation of an unknown audio record-

ing. In the case that X and Y are structurally similar on

a global scale, the transfer of the reference segmentation

of X onto Y can be done by using standard synchroniza-

tion or alignment techniques [1,3,7]. Here, music synchro-

nization denotes a procedure which, for a given position in

one representation of a piece of music, determines the cor-

responding position within another representation. When

synchronizing two audio recordings, the first step consists

in transforming the recordings into feature representations,

typically chroma-based audio features. 2 Based on these

feature representations and a suitable cost measure, one ap-

plies dynamic time warping (DTW) to compute a cost min-

imizing warping path which realizes the linking between

X and Y , see [7, Chapter 4].

This synchronization-based transfer works as long as

X and Y globally coincide. However, problems arise

in the presence of significant structural differences. Fur-

thermore, in case X and Y are long (as is the case for

complete recordings of entire operas), running time and

memory issues arise when performing DTW. Even though

(multiscale, forward estimation) acceleration techniques

exist [1,10], such techniques are not suited when structural

differences occur. As an alternative, one may apply more

locally oriented audio matching techniques, where the in-

dividual segments αi of the reference segmentation (used

as “queries”) are matched to subsegments of the unknown

sequence Y (resulting in “matches” or “hits”), see [4]. In

other words, the cost-intensive global DTW alignment is

replaced by several smaller local alignments (realized by a

subsequence variant of DTW), see also Figure 2 for illus-

tration. Another positive effect is that using local matches

allows for a better handling of missing segments and struc-

tural differences. On the downside, by querying the ref-

erence segments individually, one may loose temporal co-

herence, while the chance of obtaining local mismatches is

increased (in particular for short segments).

In the subsequent section, we systematically apply,

modify and combine both techniques – global synchroniza-

tion and local matching – for performing our segmentation

task. Here, besides the actual segmentation, our main goal

is to obtain a better understanding of various kinds of vari-

ations and inconsistencies in the audio material.

4. AUDIO SEGMENTATION

In this section, after introducing our evaluation measure to

assess the accuracy of segmentation results (Section 4.1),

2 In our experiments, we use chroma-based CENS features of 2 Hz

resolution as supplied by the chroma toolbox [8].

we discuss various strategies to tackle the segmentation

task based on global synchronization (Section 4.2) and lo-

cal matching procedures (Section 4.3 – 4.6). Furthermore,

we discuss the benefits and limitations of the respective

procedures while revealing the musical and acoustic varia-

tions and inconsistencies in the audio material.

4.1 Evaluation Measure

First of all, we need a measure that allows us to compare

two given segments α and β. To this end, we define the

relative overlap measure between α and β to be the value

µ(α, β) :=
|α ∩ β|

|α ∪ β|
∈ [0, 1],

which indicates the ratio of the absolute overlap and the

length of the union segment. Note that µ(α, β) = 1 if and

only if α = β, and µ(α, β) = 0 if α ∩ β = ∅.

As before, let us assume that the reference version is

represented by the sequence X := (x1, x2, . . . , xN ) and

the reference segmentation by A := (α1, . . . , αI). Fur-

thermore, let Y := (y1, y2, . . . , yM ) be the unknown ver-

sion to be segmented. For the purpose of evaluation,

we assume that there is also a ground truth segmentation

B := (β1, . . . , βI) for Y , where each βi musically cor-

responds to the αi. The goal is to automatically derive

the segmentation of Y . Let P denote such a segmenta-

tion procedure, which automatically transfers each refer-

ence segment αi to a computed segment P(αi) ⊆ [1 : M ].
Then, the relative overlap measure µ(βi,P(αi)) indicates

the segmentation quality of the procedure P.

Because of the mentioned structural variations, the ver-

sion Y does not necessarily contain a segment that musi-

cally corresponds to a reference segment αi. In this case,

the ground truth segment is set to βi = ∅. Furthermore,

the procedure P does not have to output a computed seg-

ment, which is modeled by setting P(αi) = ∅. In the case

that both the segment P(αi) and βi are empty, we define

µ(βi,P(αi)) = 1 (a non-existing segment has been iden-

tified as such). Note that if only one of the segments is

empty, µ(βi,P(αi)) = 0.

4.2 Global Approach (S1, S2)

In the following matching procedures and evaluation,

we only consider the musical sections (indicated by the

non-gray segments in Figure 1) while leaving the dia-

logue sections (the gray segments in Figure 1) uncon-

sidered. Exemplarily, we use a reference segmentation

A = (α1, α2, . . . , α38) based on the recording conducted

by Carlos Kleiber in 1973 (Kle1973), which is a perfor-

mance that closely follows the musical score. Quantitative

results for all procedures to be discussed are presented in

Table 1 (relative overlap averaged over versions) and Ta-

ble 2 (relative overlap averaged over segments).

In the two procedures S1 and S2, we apply a global

synchronization approach. For S1, we employ DTW us-

ing the step size condition Σ1 = {(1, 1), (1, 2), (2, 1)},

see [7, Chapter 4]. This strategy is usually very robust

as long as there are no significant deviations in structure



and tempo between the two versions compared. How-

ever, the procedure S1 is not able to compensate well for

structural variations leading to an average relative overlap

of 0.852, see Table 1 When using the step size condition

Σ2 = {(1, 1), (1, 0), (0, 1)} (calling this procedure S2),

performance improves significantly, yielding the average

relative overlap of 0.930, see Table 1. For example, in the

version Saw1972, the dialogues are comparatively short,

see also the gray rectangles in Figure 1. Such a situation

causes S1 to fail, resulting in an overlap of 0.615 com-

pared to 0.896 for S2, see Table 1. For both procedures,

the alignment accuracy for α38 is very low with 0.714 (S1)

and 0.724 (S2), see Table 2. This is due to audio material

not belonging to the actual opera that is appended at the

end (CD bonus tracks) in some versions. In this case, the

global synchronization procedures do not allow to skip the

final tracks. Despite the promising results of S2, this ap-

proach has several limitations. First, it is inefficient consid-

ering runtime and memory requirements, especially when

increasing the feature resolution, see also Section 3. Sec-

ondly, it is not well suited to accommodate for structural

changes in a controlled manner. And thirdly, the procedure

does not give deeper insights into the musical and acoustic

properties of the underlying audio material.

Our goal in the following sections is to develop a more

flexible segmentation strategy that achieves a quality com-

parable to S2 while yielding better insight into the ver-

sions’ properties.

4.3 Local Approach (M1)

The remaining approaches discussed below rely on a lo-

cal matching procedure based on a subsequence variant

of DTW using the step size condition Σ1. Here, for each

αi ∈ A (used as a query) applied to a given unknown ver-

sion, we compute a ranked list of matching candidates. For

the segmentation procedure M1, we only consider the top

match in the list, see also Figure 2 for illustration of the

general matching strategy.

In Figure 3a, the relative overlap values for M1 com-

puted on all recordings in our dataset are presented in a

gray-scale matrix visualization, where the rows indicate

the audio versions and the columns indicate the segments.

Black corresponds to µ = 0 (no overlap) and white to

µ = 1 (perfect overlap). Row-wise, the segmentation

accuracy of a specific version becomes obvious, whereas

column-wise, segments which are problematic across ver-

sions can easily be spotted. An example for a problematic

version is Elm1944, which generally seems to perform

poorly, showing many black entries in Figure 3a and hav-

ing a low average relative overlap of 0.705, see Table 1.

A closer look at the audio material revealed that there are

some issues concerning the tuning of this version, probably

resulting from the digitization process. Furthermore, there

are segments which show a poor segmentation accuracy

across versions, see for example the black entries for α14 to

α16 in Figure 3a. It turns out that these three segments cor-

respond to the three verses of a song (No. 4) in the opera.

The reason why this song has been divided into individual

segments is that there are dialogues between the verses (re-

call that a requirement of the reference segmentation was

to separate music and dialogue sections). The verses all

share the same melodic and harmonic material and are thus

easily confused with each other in the matching procedure.

Another interesting problem appears for α32, where M1
nearly fails for every version, resulting in an overall seg-

mentation accuracy of 0.157, see Table 2 and Figure 3a.

Actually, α32 (having a duration of only 12.4 seconds) is

a short snippet of a chorus section for which many repeti-

tions exist in the surrounding segments α31 (song with sev-

eral verses and chorus sections) and α33 (chorus) which are

interspersed by dialogues. Thus it is very likely that α32 is

matched into the harmonically similar parts within α31 or

α33. For the version Kle1955, segment α38 seems to be

problematic, see Figure 3a. Actually, α38 contains musical

material which is already used in the overture of the opera

(covered by α3). A closer look into the matching results

for Kle1955 revealed that α38 matched indeed into the

musically very similar section in the overture.

In conclusion, procedure M1 is more efficient 3 , see

also Section 3, while its main drawback is the loss of ro-

bustness due to confusion of local matches.

4.4 Tuning Issues (M2)

In real world scenarios, the tuning of a music performance

often slightly deviates from the standard tuning, where a

chamber tone of 440 Hz serves as reference frequency.

This usually influences pitch related audio features such as

chroma features. To compensate for different tunings, one

typically integrates a tuning estimation procedure in the

feature extraction process [2]. In the previous approaches,

we already used tuned chroma features. But since an un-

kown version of the opera also contains a lot of non-music

material (dialogues, applause, etc.), which is also consid-

ered in the tuning estimation, the resulting estimate may be

incorrect.

With procedure M2, we evaluate the influence of the

tuning estimation on the matching procedure. This prob-

lem can either be addressed on the side of the unknown

version or on the query side. In our approach, we use

the same chroma sequence for the unknown version as in

M1, and simulate the tuning deviations on the query side

by computing the chroma sequence for the query with re-

spect to six different reference frequencies (in the range of

a semitone). Doing this for each query αi, we then use the

chroma sequence yielding the minimum cost in the match-

ing.

For Elm1944, the local tuning adjustment indeed leads

to a substantial improvement from 0.705 (M1) to 0.777
(M2), see Table 1. Also, there are improvements for cer-

tain segments, e.g., α38 with 0.921 (M1) compared to

0.968 (M2), see Table 2. In this example, the improvement

3 On a 64bit machine, the average memory requirement for a global
DTW run on one piece of our dataset is 1.7 GB (2 Hz feature resolu-
tion) and 42.6 GB (10 Hz), computed from the length of the reference
version and the average version length. Upper bounds for the local match-
ing approaches (derived from the maximum query length and the average
version length) are 114 MB (2 Hz) and 2.9 GB (10 Hz).



Version #O dur. S1 S2 M1 M2 M3 M4

Ack1951 19 6904.81 0.596 0.811 0.808 0.851 0.850 0.853

Boe1972 30 7771.77 0.784 0.931 0.889 0.865 0.962 0.962

Bru1957 24 7439.33 0.906 0.933 0.927 0.905 0.923 0.966

Dav1990 30 8197.88 0.972 0.984 0.926 0.926 0.950 0.961

Elm1944 19 7081.52 0.698 0.827 0.705 0.777 0.806 0.865

Fur1954 34 9121.69 0.923 0.936 0.866 0.861 0.938 0.949

Gui1957 18 6911.30 0.908 0.937 0.801 0.851 0.860 0.886

Har1995 17 8044.99 0.974 0.981 0.944 0.943 0.965 0.973

Hau1985 17 8245.23 0.955 0.957 0.935 0.933 0.932 0.943

Heg1969 25 7436.75 0.896 0.958 0.913 0.895 0.943 0.946

Jan1994 30 7843.21 0.881 0.987 0.916 0.917 0.964 0.976

Joc1960 26 7178.21 0.922 0.948 0.887 0.911 0.968 0.967

Kei1958 32 8043.00 0.886 0.965 0.904 0.902 0.976 0.975

Kle1973 29 7763.00 1.000 0.996 0.989 0.990 0.990 0.990

Kle1955 41 7459.35 0.776 0.873 0.849 0.876 0.980 0.980

Kub1979 23 8044.65 0.959 0.985 0.927 0.929 0.953 0.974

Leo1972 19 7726.17 0.861 0.926 0.905 0.900 0.875 0.896

Mat1967 17 8309.35 0.984 0.983 0.874 0.876 0.948 0.965

Mue1950 35 7559.97 0.814 0.881 0.825 0.824 0.885 0.895

Orl1946 32 7368.58 0.559 0.807 0.853 0.854 0.852 0.883

Pen1998 26 7768.00 0.866 0.904 0.890 0.891 0.968 0.977

Saw1972 29 6871.02 0.615 0.896 0.893 0.894 0.968 0.974

Wei2001 38 7220.13 0.859 0.974 0.915 0.916 0.965 0.975

∅ 26 7665.65 0.852 0.930 0.884 0.891 0.931 0.945

Table 1. Relative overlap values averaged over segments for different
versions and different procedures. The first column indicates the version,
the second (#O) the number of segments on the original sound carrier,
and the third column (dur.) the overall duration in seconds of the record-
ing. S1, S2, M1, M2 M3, and M4 denote the respective segmentation
procedures.
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Figure 3. Matrix visualization of relative overlap values, where the ver-
sions correspond to rows and the segments to columns. (a): P = M1.
(b): P = M4.

mainly comes from the version Kle1955, where α38 is

now matched onto the correct position.

4.5 Global Constraints (M3)

As mentioned in Section 4.3, the local matching procedure

can easily confuse musically similar parts. Also, the com-

puted segments obtained by individual matches may not be

disjoint. In the procedure M3, we impose additional global

constraints on the overall segmentation to cope with these

two problems.

αi No. occ. dur. S1 S2 M1 M2 M3 M4

1 0 23 216.5 0.995 0.994 0.968 0.975 0.975 0.975

2 0 23 283.3 0.996 0.995 0.977 0.976 0.976 0.976

3 0 23 081.4 0.962 0.972 0.881 0.918 0.918 0.918

4 1 23 069.9 0.888 0.927 0.900 0.937 0.937 0.937

5 1 22 070.9 0.808 0.938 0.753 0.747 0.747 0.930

6 1 23 138.4 0.826 0.986 0.969 0.970 0.952 0.952

7 2 23 122.9 0.854 0.983 0.930 0.932 0.932 0.932

8 2 23 152.4 0.959 0.992 0.977 0.977 0.977 0.977

9 2 23 139.8 0.987 0.987 0.986 0.988 0.970 0.977

10 3 22 073.1 0.930 0.945 0.775 0.772 0.772 0.842

11 3 23 230.3 0.989 0.992 0.985 0.985 0.985 0.985

12 3 23 074.6 0.990 0.993 0.964 0.967 0.967 0.967

13 3 23 092.1 0.939 0.982 0.979 0.976 0.976 0.976

14 4 23 034.6 0.749 0.876 0.617 0.735 0.904 0.904

15 4 23 029.3 0.635 0.798 0.496 0.524 0.838 0.838

16 4 20 026.4 0.550 0.692 0.519 0.479 0.789 0.789

17 5 23 186.0 0.979 0.985 0.930 0.930 0.930 0.930

18 6 23 287.8 0.984 0.994 0.987 0.989 0.989 0.989

19 7 23 223.9 0.963 0.972 0.992 0.992 0.992 0.992

20 8 23 499.4 0.989 0.997 0.995 0.994 0.994 0.994

21 9 23 258.6 0.979 0.992 0.945 0.988 0.988 0.988

22 9 23 137.6 0.971 0.978 0.985 0.980 0.980 0.980

23 10 22 337.3 0.944 0.951 0.944 0.943 0.987 0.987

24 10 23 301.9 0.977 0.986 0.989 0.988 0.981 0.981

25 10 23 243.8 0.910 0.986 0.933 0.932 0.924 0.924

26 10 23 059.7 0.740 0.889 0.908 0.847 0.883 0.883

27 11 19 104.5 0.631 0.725 0.807 0.807 0.938 0.938

28 12 23 356.9 0.882 0.988 0.982 0.982 0.982 0.982

29 13 22 161.5 0.794 0.940 0.943 0.943 0.986 0.986

30 13 22 208.8 0.814 0.951 0.945 0.944 0.984 0.987

31 14 23 168.4 0.729 0.923 0.796 0.790 0.796 0.917

32 14 19 012.4 0.439 0.643 0.157 0.198 0.698 0.735

33 14 22 057.7 0.714 0.846 0.864 0.869 0.827 0.913

34 15 23 147.2 0.745 0.946 0.938 0.937 0.980 0.980

35 16 23 303.6 0.827 0.996 0.990 0.989 0.989 0.989

36 16 23 503.2 0.812 0.965 0.994 0.994 0.994 0.994

37 16 23 241.2 0.781 0.894 0.987 0.987 0.987 0.987

38 16 23 068.2 0.714 0.724 0.921 0.968 0.968 0.968

∅ 22.5 176.47 0.852 0.930 0.884 0.891 0.931 0.945

Table 2. Relative overlap values averaged over versions for different
segments and different procedures. The first column (αi) indicates the
reference segment, the second column (No.) the musical number within
the opera, the third column (occ.) the number of occurrences of αi in
the 23 versions of the dataset, and the fourth column (dur.) refers to the
duration in seconds of αi. S1, S2, M1, M2 M3, and M4 denote the
respective segmentation procedures.

When using αi as query, we now consider the entire

ranked list of matches (instead of only using the top match

as in M1 and M2). From each list we choose the best can-

didate so that the following global constraints are satisfied:

i) Disjointness condition: P(αi) ∩ P(αj) = ∅

ii) Temporal monotonicity: αi ≺ αj ⇒ P(αi) ≺ P(αj).

Here, we define the partial order ≺ on the set of segments

by α1 = [s1 : t1] ≺ α2 = [s2 : t2] :⇔ t1 < s2. An op-

timal selection of matches from the ranked lists satisfying

these global constraints can be computed using dynamic

programming (similar to DTW). Howevever, note that in

this case the dynamic programming is performed on the

coarse segment level and not on the much finer frame level

as in the case of global synchronization.

Applying this strategy does indeed improve the overall

matching accuracy, on a version level as well as for indi-

vidual segments, see Table 1 and Table 2. For example,

for the segments α14/α15/α16, the results improve from

0.735/0.524/0.479 for M2 to 0.904/0.838/0.789 for M3.

Also, the results for α32 improve from 0.198 (M2) to 0.698
(M3).

Another interesting example is the relative overlap of

0.938 for α27. This segment is actually missing in four



recordings of the opera. Using global constraints, the

nonexistence of these segments was correctly identified by

procedure P = M3 resulting in P(α27) = ∅. However, the

corresponding segment in Leo1972 was misclassified as

nonexistent by M3. A closer inspection revealed that the

assumption modeled in the constraint that segments always

appear in the same order as in the reference version was

violated in this audio version. Here, the musical section

covered by α27 was placed after α30 and used as an intro-

duction before α31. Thus, although strategy M3 stabilizes

the overall matching, flexibility concerning the temporal

order of segments is lost.

4.6 Structural Issues (M4)

Another problem occurs for the segments α5, α10 and

α31, having the relative overlap values of 0.747, 0.772,

and 0.796 for M3, respectively. According to the musical

score, all these sections include repetitions of some music

material. The segment α5 for example should, according

to the musical score, follow the structure IA1A2B1B2O,

where I is an introductory and O an “outro” part. How-

ever, not all the repetitions are always performed. For ex-

ample, the alternative structures IA1B1O, IA1A2B1O, or

IA1B1B2O for α5 all appear in recordings of our dataset

(similar variations occur for α10 and α31). Such structural

deviations can generally not be compensated well in the

local matching procedure. Also, for further processing and

analysis steps, such as the synchronization between corre-

sponding segments in different recordings, it is important

to know the exact structure of a given segment.

For M4, we investigate how structural correspondence

of the query with an unknown version influences the seg-

mentation quality. We manually annotated the musical

structures occurring for α5, α10 and α31 in the different

audio versions of the opera. This information is then used

in the matching to generate a query which structurally cor-

responds to the unknown version. The actual matching al-

gorithm is the same as in M3. From the quantitative results

in Table 2, we can conclude that the structural variations

were indeed the cause of the poor performance for these

segments: α5 improves from 0.747 (M3) to 0.930 (M4),

α10 from 0.772 (M3) to 0.842 (M4) and α31 from 0.796
(M3) to 0.917 (M4), see also Figure 3b.

5. CONCLUSIONS

In this paper, we presented a case study on segmenting

given audio versions of an opera into musically mean-

ingful sections that have been specified by a domain ex-

pert. Adapting existing synchronization and matching

techniques, we discussed various challenges that occur

when dealing with real-world scenarios due to the variabil-

ity of acoustic and musical aspects. Rather than presenting

technical details, our main motivation was to show how au-

tomated methods may be useful for systematically reveal-

ing and understanding the inconsistencies and variations

hidden in the audio material. Furthermore, we showed

how a procedure based on a combination of local match-

ing and global constraints yields a more flexible and effi-

cient alternative to a global black-box synchronization ap-

proach. Besides yielding slightly better results, this alter-

native procedure also provides a more explicit control to

handle the various musical aspects and yields deeper in-

sights into the properties of the audio material. For the

future, we plan to expand our segmentation approach by

explicitly including the dialogue sections into the analysis.

Furthermore, the segmentation results will serve as basis

for a finer grained analysis and multimodal processing in-

cluding informed source separation.
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