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ABSTRACT

The concept of similarity matrices (SMs) has been widely used for a multitude of music analysis and retrieval
tasks including audio structure analysis or version identification. For such tasks, the improvement of struc-
tural properties of the similarity matrix at an early state of the processing pipeline has turned out to be of
crucial importance. In this paper, we present the SM toolbox, which contains MATLAB implementations for
computing and enhancing similarity matrices in various ways. Furthermore, our toolbox includes a number
of additional tools for parsing, navigation, and visualization synchronized with audio playback. Finally, we
provide the code for a recently proposed audio thumbnailing procedure that demonstrates the applicabil-
ity and importance of enhancement concepts. Providing MATLAB implementations on a website under a
GNU-GPL license and including many illustrative examples, our aim is to foster research and education in
music information retrieval.

1. INTRODUCTION

The fundamental concept of similarity matrices is cen-
tral for the analysis of many kinds of time series. Gen-
erally, one starts with a feature space F containing the
elements of the time series under consideration as well
as a similarity measure s :F ×F → R that allows for
comparing these elements. Then given two time series
X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM), the similar-
ity matrixS ∈ R

N×M is defined by

S (n,m) = s(xn,xm),

where xn,ym ∈ F , n ∈ [1:N] = {1,2, . . . ,N} and m ∈
[1:M]. Typically, the value S (n,m) is high (dark color
in Figure 1) if the two elements xn and ym are similar,
otherwiseS (n,m) is low (light color). Instead of a simi-
larity measure, one often uses a cost or distance measure
which then results in a so-called cost matrix or distance
matrix. Since such matrices can easily be converted into
similarity matrices (e. g. by taking negative values), we
only consider in the following the case of similarity ma-
trices.

Fig. 1: Overview of the similarity matrix computation.

In the case that the sequences X and Y coincide, the re-
sulting matrix is often referred to as self-similarity matrix
(SSM). Such matrices have been used under the name
recurrence plot for the analysis of chaotic systems [4].
Later, Foote [6] introduced self-similarity matrices to the
music domain in order to visualize the time structure of
a given audio recording. Since then similarity matrices
and their relatives have been widely used for various mu-
sic analysis and retrieval tasks including audio structure
analysis [3, 18], structure-based audio retrieval [2], au-
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dio thumbnailing [1, 7, 16], music synchronization [5]
and version or cover song identification [21, 22].

In the music context, the first step for computing a sim-
ilarity matrix is to convert the given audio representa-
tions into suitable feature representations, which empha-
size different musical aspects such as harmony, tempo, or
timbre. The properties of the resulting similarity matrix
crucially depend on the respective feature type as well
as on the underlying similarity measure used to compare
the features. Furthermore, many different smoothing,
thresholding, and other strategies have been proposed
for enhancing certain structural properties of a similar-
ity matrix while suppressing unwanted, noise-like arti-
facts [18]. This leads to a large number of variants of
similarity matrices, which may show quite different be-
haviors in the context of a specific music analysis task.

In this paper, we introduce a toolbox, the SM toolbox,
which is released under a GNU-GPL license at [23]. This
toolbox contains MATLAB implementations for com-
puting and modifying certain properties of similarity ma-
trices, see also Figure 1 for an overview and Figure 2 for
examples. In particular, it contains functions for enhanc-
ing path-like structures that are important in repetition-
based music structure analysis. Furthermore, our toolbox
includes a number of additional tools for parsing, navi-
gation, and visualization synchronized with audio play-
back.

Note that our toolbox is specialized with a focus on sim-
ilarity matrices as they are used in applications such as
structure analysis and thumbnailing. There are a num-
ber of general toolboxes for processing music and au-
dio data. In particular, we want to mention the com-
prehensive MATLAB toolbox provided by Lartillot et
al. [9, 10, 11] called MIRtoolbox. This toolbox offers
a large number of functions for the extraction of audio
features that refer to different musical aspects such as
tonality, rhythm, and structure. The MIRtoolbox also
supplies a basic function (called mirsimatrix) for com-
puting similarity matrices. Our toolbox largely extends
this functionality by providing various enhancement and
visualization strategies.

The remainder of this paper is organized as follows. In
Section 2, we give a short summary on the various en-
hancement strategies and discuss the role of the most im-
portant parameters that can be used to modify the matri-
ces’ characteristics. Then, in Section 3, we describe the
functions of the toolbox. Note that we do not claim that

our toolbox is comprehensive in any way. Instead, we fo-
cus on some specific techniques that are general enough
to illustrate the importance of structural enhancements.
Furthermore, as an example application, we have also in-
cluded code for a recently proposed audio thumbnailing
procedure [16], see Section 4. Finally, in Section 5, we
conclude this paper with some general remarks on the
suitability of the various enhancement steps depending
on the specific application context.

2. MATRIX ENHANCEMENT

In this section, we give an overview of the various en-
hancement strategies contained in the SM toolbox. Even
though all enhancement strategies are implemented for
general similarity matrices, we consider in the follow-
ing only the case of self-similarity matrices for the sake
of simplicity. As illustration, Figure 2 shows various
variants of self-similarity matrices for an audio record-
ing consisting of four parts A1A2BA3. In this example,
A2 is a modulation of A1 transposed by one semitone up-
wards, whereas A3 is a repetition of A1, however played
much faster.

2.1. Feature Representation

In the first step, the waveform-based audio recordings are
transformed into suitable feature representations, which
capture specific acoustic and musical properties. As de-
tailed in [18], the suitability of a feature type largely
depends on the respective application. For example,
MFCC-based and related spectral-based features may
be suitable to capture aspects such as instrumentation
and timbre. Other features based on onset and novelty
curves or tempograms are used to capture beat, tempo,
and rhythmic information. Finally, chroma-based audio
features, which relate to harmonic and melodic proper-
ties, have turned out to be a powerful tool for many mu-
sic analysis and retrieval tasks. Each 12-dimensional
chroma vector describes a signal’s local energy distri-
bution over an analysis window (frame) across the 12
pitch classes of the equal tempered scale (ignoring oc-
tave information). Hence, the resulting feature space
is F = R

12. As an example, we use in the following
a chroma variant referred to as CENS features1, which

1A MATLAB implementation of CENS features is part of the
Chroma Toolbox, which is freely available at http://www.mpi-inf.
mpg.de/resources/MIR/chromatoolbox/
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come along with two parameters: a length parameter
w ∈N controlling the size of the analysis window (frame
length) and a downsampling parameter d controlling the
feature rate, see [15] for details.

2.2. Similarity Measure

As mentioned in the introduction, one requires a no-
tion of similarity (or dissimilarity, distance, cost) for
a quantitative comparison of two elements x,y ∈ F .
In the case of F = R

D being a Euclidean space of
dimension D, typical measures are based on the �p-
norm defined by ||x||p =

(
∑Di=1 |x(i)|p

)1/p for a vector
x = (x(1),x(2), . . . ,x(D))T. Then, for example, a sim-
ilarity measure s may be obtained by setting s(x,y) =
a− ||x− y||bp for constants a ∈ R and b ∈ N. In the fol-
lowing, we only consider the case p= 2 and assume that
x and y are normalized with respect to this norm. Then,
using a= 2 and b= 2, the measure s boils down to the in-
ner product 〈x|y〉 (up to a factor of two), which measures
the cosine of the angle between x and y.

2.3. Smoothing

One important property of similarity matrices is the ap-
pearance of paths of high similarity that are parallel to
the main diagonal [18, 20]. Each such path encodes the
similarity of two segments that are obtained by project-
ing the path onto the horizontal and vertical axes, respec-
tively. The identification and extraction of such paths is
the main step in many music analysis applications. How-
ever, due to musical and acoustic variations, the path
structure is often very noisy and hard to extract.

To some extent, such noise can be reduced simply by us-
ing longer analysis windows in the feature computation
step and adjusting the feature rate. To further enhance the
path structure, one general strategy is to apply some kind
of smoothing filter along the direction of the main diag-
onal, resulting in an emphasis of diagonal information in
S and a denoising of other structures, see [1, 17, 19, 22]
and Figure 2b. Such a filtering process is closely related
to the concept of time-delay embedding, which has been
widely used for the analysis of dynamical systems [13].
A simple filtering along the main diagonal only works
well if there are no relative tempo differences between
the segments to be compared. However, this assumption
is often violated for music, where a part may be repeated
with a faster or slower tempo. To deal with such tempo

difference, a multiple filtering approach has been sug-
gested in [17], where a similarity matrix is filtered along
various directions that lie in a neighborhood of the direc-
tion defined by the main diagonal. Each such direction
corresponds to a tempo difference and results in a sep-
arate filtered similarity matrix. The final similarity ma-
trix is obtained by taking the cell-wise maximum over
all these matrices. In this way, the path structure is also
enhanced in the presence of local tempo variations as il-
lustrated in Figure 2c.

In our implementation, we have simulated the multiple
filtering approach by an efficient procedure that is based
on a combination of feature and matrix resampling steps
and simple diagonal smoothing. All operations can be
expressed by full matrix operations, which are efficiently
realized in MATLAB. Two main parameters are pro-
vided for controlling the smoothing quality: a smoothing
length parameter � and discrete set Θ of relative tempo
differences, see Section 3 for more explanations.

The implemented smoothing filter is realized to smooth
in the forward direction, which results in a fading out
of the paths in particular when using a large length
parameter. To avoid this fading out, one can use a
forward-backward option, which applies the filter also
in backward direction. The final similarity matrix is
then obtained by taking the cell-wise maximum over
the forward-smoothed and backward-smoothed matrices,
see Figure 2d.

2.4. Transposition Invariance

It is often the case that certain musical parts are re-
peated in a transposed form as the part A2 in our exam-
ple. Such transpositions can be simulated by cyclically
shifting chroma vectors [7]. In [14] this idea was used to
construct transposition-invariant similarity matrices. To
this end, one chroma feature sequence is left unaltered
whereas the other chroma feature sequence is cyclically
shifted along the chroma dimension in the twelve pos-
sible ways. Then, for each shifted version, a similarity
matrix is computed, and the final similarity matrix is ob-
tained by taking the cell-wise maximum over the twelve
matrices. In this way, the repetitive structure is revealed
even in the presence of key transpositions (Figure 2e).
Furthermore, storing the maximizing shift index for each
cell results in another matrix referred to as transposi-
tion index matrix, which displays the harmonic relations
within the music recording (Figure 2f). For example, this
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Fig. 2: Variants of similarity matrices for the same audio recording. The figures are generated using the code shown in Table 2. (a)
Original SSM using CENS features of 2 Hz resolution. (b) SSM after applying diagonal smoothing. (c) SSM after applying tempo-
invariant smoothing. (d) SSM after appyling forward-backward smoothing. (e) Transposition-invariant SSM. (f) Transposition
index matrix. (g) SSM after thresholding and binarization. (h) SSM after thresholding, scaling, and applying a penalty parameter.
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matrix reveals that the A2-segment is indeed transposed
by one semitone upwards relative to the A1-segment.

In our implementation, we have provided a parameter
Γ for specifying the chroma indices to be considered
in the cyclic shifts. For example, Γ = [0] leads to the
original similarity matrix, whereas Γ = [0 : 11] leads to
the transposition-invariant version. At this point, we
want to note that introducing transposition-invariance by
cell-wise maximization over several matrices may in-
crease the noise-level in the resulting similarity matrix.
Therefore, the transposition-invariant matrix should be
computed on the basis of smoothed matrices, since the
smoothing typically goes along with a suppression of un-
wanted noise.

2.5. Thresholding

In many music analysis applications, similarity matrices
are further processed by suppressing all values that fall
below a given threshold. On the one hand, such a step
often leads to a substantial reduction of the noise while
leaving only the most significant structures. On the other
hand, weaker but still relevant information may be lost.
Actually, the thresholding strategy may have a significant
impact on the final results and has to be carefully chosen
in the context of the considered application.

In its simplest form, one can apply a global thresholding
strategy. In our implementation, providing a threshold
parameter τ > 0, all values S (n,m) of a given similar-
ity matrix S below τ are set to zero. Also binarization
of the similarity matrix can be applied by setting all val-
ues above the threshold to one and all others to zero, see
Figure 2g. Instead of binarization, one may perform a
scaling where the range [τ : μ ] is linearly scaled to [0 : 1]
in the case that μ =maxn,m{S (n,m)}> τ , otherwise all
entries are set to zero. Sometimes it may be beneficial to
introduce an additional penalty parameter δ ≤ 0 and set-
ting all original values below the threshold to the value
δ . The global threshold τ can be chosen also in a relative
fashion using the parameter ρ by keeping ρ ·100% of the
cells having the highest value, see (Figure 2h). Finally,
as described in [22], thresholding can also be performed
using a more local strategy by thresholding in a column-
and row-wise fashion. To this end, for each cell (n,m)
the value S (n,m) is kept if it is among the ρ · 100% of
the largest cells in row n and at the same time among the
ρ ·100% of the largest cells in column m, all other values
are set to zero.

3. TOOLBOX

The matrix enhancement components as described in
Section 2 form the core of our SM toolbox, which is
freely available at the website [23] under a GNU-GPL
license. Table 1 gives an overview of the main MAT-
LAB functions along with the most important parame-
ters. Note that there are many more parameters and ad-
ditional functions not discussed in this paper.

To demonstrate how our toolbox can be applied, we now
discuss the code example shown in Table 2, which is also
contained in the toolbox as function demoSMtoolbox.m.
Our example starts in lines 1–8 with computing a suitable
chroma-based feature representation for the given audio
recording. The used functions are part of the Chroma
Toolbox [15]. Note that these features only serve as
an example and any other feature representation may be
used equally well in the following steps. The call to the
function wav_to_audio, which is a simple wrapper around
MATLAB’s wavread.m, converts the input WAV file into
a mono version at a sampling rate of 22050 Hz. Next,
Pitch and CENS features are computed, where the struct
paramPitch and the struct paramCENS are used to pass op-
tional parameters to the feature extraction function. If
some parameters or the whole struct are not set manu-
ally, then meaningful default settings are used. This is a
general principle, which applies for the chroma toolbox
as well as for the SM toolbox. In the current settings, the
resulting CENS features have a feature resolution of 2Hz,
see [15] for details.

In lines 10–49, the various self-similarity matrices as
shown in Figure 2 are computed, where different param-
eter settings that are encoded by the struct paramSM are
used. First, in line 10 a self-similarity matrix S is com-
puted by comparing f_CENS with itself. Note that one
may also input two different feature sequences result-
ing in a more general similarity matrix. Furthermore,
note that no parameters are specified in the function call
features_to_SM. As a result, the function-internal de-
fault settings are used, where a simple inner product is
used as similarity measure and no matrix enhancement
is applied. The matrix is visualized by the function
visualizeSM (line 12) using a colormap that is specified
by the parameter paramVis.colormapPreset (line 11), see
Figure 2a.

Next, various enhancement strategies are activated by
setting the corresponding parameter values. In line 14,
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Filename Main parameters Description
wav_to_audio.m – Import of WAV files and conversion to expected

audio format.
audio_to_pitch_via_FB.m winLenSTMSP Extraction of pitch features from audio data.
pitch_to_CENS.m winLenSmooth =̂ w, downsampSmooth =̂ d Derivation of CENS features from Pitch features.
features_to_SM smoothLenSM =̂ �, forwardBackward Smoothing of SM.

(tempoRelMin, tempoRelMax, tempoNum) =̂ Θ Application of tempo invariance.
circShift =̂ Γ Application of transposition invariance.

threshSM threshTechnique, threshValue =̂ τ or =̂ ρ Application of different thresholding techniques.
penality =̂ δ , applyBinarize, applyScale Application of binarization or scaling.

visualizeSM colormapPreset, print, figureName, imageRange Visualiation of similarity matrix.
visualizeTransIndex colormapPreset, print, figureName Visualization of transposition index matrix.
makePlotPlayable featureRate, fs Synchronized playback of audio file along with a

plotted figure.
SSM_to_scapePlotFitness stepSize, stepWeight Computation of fitness scape plot from self-

similarity matrix.
scapePlotFitness_to_thumbnail lowerBound Computation of thumbnail segment from fitness

scape plot.
thumbnailSSM_to_pathFamily Computation of induced segment family from

thumbnail.
visualizeScapePlot featureRate, print, figureName Visualization of fitness scape plot.
visualizePathFamilySSM featureRate, showSegInduced, showThumbnail Visualization of similarity matrix and path family.
visualizeSegFamily print, figureName Visualization of segment family.

Table 1: Overview of the main MATLAB functions contained in SM toolbox [23] and the most important parameters. The first
three functions for feature extraction are contained in the Chroma Toolbox [15].

the smoothing length parameter � is set to 20 (given in
feature samples), which corresponds to 10 s of the orig-
inal audio when using a feature rate of 2Hz, see Fig-
ure 2b. In lines 18–20, the discrete set Θ used for tempo-
invariant smoothing is defined by three different param-
eters: tempoRelMin specifies the minimal relative tempo
difference contained in Θ, tempoRelMax the maximal rela-
tive tempo difference contained in Θ, and tempoNum the
actual number of elements of Θ (using a logarithmic
sampling between tempoRelMin and tempoRelMax for the
intermediate values). The resulting matrix is again visu-
alized by line 22, see Figure 2c. In line 24, the forward-
backward smoothing is activated, see Figure 2d. Then,
in line 28, the transposition-invariance using all twelve
possible cyclic chroma shifts is activated. In line 25,
the self-similarity matrix S as well as the transposition
index matrix I are returned and visualized in the next
two lines, see Figure 2e/f. Finally, the similarity matrix
is further processed by applying the thresholding func-
tion threshSM. Various thresholding strategies specified
by the parameter threshTechnique are available. In lines
33–36, a simple global thresholding (threshTechnique=1)
using an absolute threshold τ = 0.75 (threshValue=0.75)
and binarization (applyBinarize=1) is applied, see Fig-

Fig. 3: Tool for visualization synchronized with audio play-
back.

ure 2g. Similarly, in lines 39–44, relative thresholding
(threshTechnique=2) with ρ = 0.15 (threshValue=0.15) as
well as with scaling and penalty is applied, see Fig-
ure 2h. Note that depending on the thresholding tech-
nique, the parameter threshValue is interpreted either as
absolute threshold or as relative threshold. Finally, note
that further parameters can be specified for the visualiza-
tion function including a print option to save the gener-
ated figure as .eps file, see lines 45–49.
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1 clear;close all;

2 filename=’Test_AABA.wav’;

3 f_audio=wav_to_audio(’’,’data_music/’,filename);

4 paramPitch.winLenSTMSP=4410;

5 f_pitch=audio_to_pitch_via_FB(f_audio,paramPitch);

6 paramCENS.winLenSmooth=11;

7 paramCENS.downsampSmooth=5;

8 f_CENS=pitch_to_CENS(f_pitch,paramCENS);

9
10 S=features_to_SM(f_CENS,f_CENS);

11 paramVis.colormapPreset=2;

12 visualizeSM(S,paramVis);

13
14 paramSM.smoothLenSM=20;

15 S=features_to_SM(f_CENS,f_CENS,paramSM);

16 visualize_SM(S,paramVis);

17
18 paramSM.tempoRelMin=0.5;

19 paramSM.tempoRelMax=2;

20 paramSM.tempoNum=7;

21 S=features_to_SM(f_CENS,f_CENS,paramSM);

22 visualizeSM(S,paramVis);

23
24 paramSM.forwardBackward=1;

25 S=features_to_SM(f_CENS,f_CENS,paramSM);

26 visualizeSM(S,paramVis);

27
28 paramSM.circShift=[0:11];

29 [S,I]=features_to_SM(f_CENS,f_CENS,paramSM);

30 visualizeSM(S,paramVis);

31 visualizeTransIndex(I);

32
33 paramThres.threshTechnique=1;

34 paramThres.threshValue=0.75;

35 paramThres.applyBinarize=1;

36 S_thres=threshSM(S,paramThres);

37 visualizeSM(S_thres,paramVis);

38
39 paramThres.threshTechnique=2;

40 paramThres.threshValue=0.15;

41 paramThres.applyBinarize=0;

42 paramThres.applyScale=1;

43 paramThres.penalty=-2;

44 S_final=threshSM(S,paramThres);

45 paramVis.imageRange=[-2,1];

46 paramVis.colormapPreset=3;

47 paramVis.print=1;

48 paramVis.figureName=’SM_final’;

49 handleFigure=visualizeSM(S_final,paramVis);

50
51 parameterMPP.fs=22050;

52 parameterMPP.featureRate=2;

53 makePlotPlayable(f_audio,handleFigure,parameterMPP);

Table 2: Code example generating matrices shown in Figure 2.

As another feature of our toolbox, we provide a func-
tion makePlotPlayable that allows a user to playback the
original audio file synchronized to any kind of feature
or matrix representation derived from this audio file, see

Figure 3 for a schematic illustration of this functionality.
As an example, lines 51−53 show how to call this func-
tion, where the audio signal and the handle of the figure
(as returned by the function visualizeSM in line 49) need
to be specified. Furthermore, parameters for the sam-
pling rate of the audio signal and the feature rate used
in the representation of the figure are specified. During
playback of the audio, the function indicates in the fig-
ure the corresponding position by a moving vertical line.
Vice versa, by left clicking on any position of the fig-
ure’s time line allows for jumping to the corresponding
position in the audio signal (whereas a right click stops
the playback). This simple functionality is of great help
for analyzing and better understanding the properties of
a feature representation in a musically informed way.

4. THUMBNAILING APPLICATION

As an illustrative application, our toolbox also contains
the MATLAB code for a recently proposed audio thumb-
nailing procedure [16]. For this task, the goal is to find
the most representative and repetitive segment of a given
audio recording. Based on a suitable self-similarity ma-
trix, the procedure in [16] computes for each audio seg-
ment a fitness value that expresses how well the given
segment explains other related segments (also called in-
duced segments) in the audio recording. These relations
are expressed by a so-called path family over the given
segment. The thumbnail is then defined as the fitness-
maximizing segment. Furthermore, a triangular scape
plot representation is computed, which shows the fitness
of all segments and yields a compact high-level view of
the structural properties of the entire audio recording.

Table 1 shows the main functions implementing this
procedure. Starting with a self-similarity matrix (as
computed in line 44 of Table 2), the function SSM_

to_scapePlotFitness is used to derive the fitness scape
plot. Here, various step size and weighting parame-
ters can be used to adjust the procedure. As a re-
sult, one obtains a fitness scape plot which can be vi-
sualized by visualizeScapePlot, see Figure 4a. Further-
more, using the fitness scape plot as input, the function
scapePlotFitness_to_thumbnail outputs the thumbnail.
Then, together with the SSM, the function thumbnailSSM_

to_pathFamily computes the corresponding path family
and the induced segment family, which can be visualized
by the function visualizePathFamilySSM, see Figure 4b.
Finally, the function visualizeSegFamily can be used for
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Fig. 4: Thumbnailing application. (a) Fitness scape plot and
ground-truth segmentation. (b) SSM with thumbnail (shown
on horizontal axis), path family (cyan), induced segment family
(shown on vertical axis) and ground-truth segmentation.

visualizing any segment family, e. g., the ground-truth
segmentation as shown in Figure 4c.
Besides these main functions for the thumbnailing ap-
plication, the SM toolbox contains a number of required
sub-functions as well as optimized C++ code for com-
puting path families compiled as a mex-file (which can
be called from MATLAB). Furthermore, the toolbox
contains additional demo files for more complex audio
recordings.

5. DISCUSSION

As noted before, many variants of similarity matrices
based on different features, similarity measures, and en-
hancements have been suggested in the MIR literature

for analyzing, comparing, structuring, and retrieving au-
dio material. At this point, we want to emphasize that
there is no single variant that works best in all situations
and the requirements of the used similarity matrix very
much depends on the specific application in mind. For
example, for many tasks related to cover song identifi-
cation [21] or audio structure analysis [3, 7, 18] audio-
based chroma features at a feature resolution of roughly
2 Hz have turned out to be a meaningful choice. Obvi-
ously, such resolutions are much too coarse when consid-
ering tasks such as high-resolution music synchroniza-
tion [5]. When considering segmentation and classifica-
tion tasks based on, e. g., timbre rather than harmony, one
needs to use different features such as MFCCs [6]. Also
the smoothing variant very much depends on the appli-
cation. As noted in [18], similarity matrices typically
contain path-like structures (accounting for repetition-
based properties) and block-like structures (accounting
for homogeneity-based properties). The smoothing vari-
ants discussed in this paper enhance path-like structures,
but destroy block-like structures. This is not always
wanted. For example, when performing homogeneity-
based structure analysis [8, 12], one requires different
smoothing techniques that enhance the block structure.
Generally speaking, smoothing decreases the noise level
in similarity matrices, thus introducing additional robust-
ness to the overall procedure. On the downside, valuable
structural information may be smoothed out and lost for
the subsequent analysis. Another quite obvious but im-
portant remark is that one should only apply enhance-
ment strategies if they are actually needed. For example,
when performing structure analysis for music with con-
stant tempo (which is often the case for popular music) a
simple diagonal smoothing may do the job and tempo-
invariance is not needed. Actually, applying tempo-
invariance in this situation may even introduce unwanted
artifacts. Similarly, if one does not expect any modula-
tions, transposition-invariance should not be used. The
reason is that achieving invariance also comes at some
cost. For example, computing tempo- and transposition-
invariant similarity matrices as done in this toolbox, the
noise of the individual matrices may penetrate to the final
matrix obtained by maximization, which may increase
the overall noise level. Thus, such strategies need to be
applied with care and also the order in which enhance-
ment strategies are applied may have a significant impact
on the final results.

As a general goal of this paper and our toolbox, we want
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to raise the awareness of such issues. Also, providing
cleaned-up example code, we hope that our toolbox may
inspire future research in music information retrieval and
may serve as illustrative material in education.

Acknowledgments: This work has been supported by
the German Research Foundation (DFG CL 64/8-1,
DFG MU 2682/5-1). The International Audio Labora-
tories Erlangen are a joint institution of the Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU) and
the Fraunhofer-Institut für Integrierte Schaltungen IIS.

6. REFERENCES

[1] M. A. Bartsch and G. H. Wakefield. Audio thumb-
nailing of popular music using chroma-based rep-
resentations. IEEE Transactions on Multimedia,
7(1):96–104, 2005.

[2] J. P. Bello. Measuring structural similarity in mu-
sic. IEEE Transactions on Audio, Speech, and
Language Processing, 19(7):2013–2025, Septem-
ber 2011.

[3] R. B. Dannenberg and M. Goto. Music structure
analysis from acoustic signals. In D. Havelock,
S. Kuwano, and M. Vorländer, editors, Handbook
of Signal Processing in Acoustics, volume 1, pages
305–331. Springer, New York, NY, USA, 2008.

[4] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle.
Recurrence plots of dynamical systems. Euro-
physics Letters, 4(9):973–977, 1987.

[5] S. Ewert, M. Müller, and P. Grosche. High res-
olution audio synchronization using chroma onset
features. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), pages 1869–1872, Taipei, Tai-
wan, 2009.

[6] J. Foote. Visualizing music and audio using self-
similarity. In Proceedings of the ACM International
Conference on Multimedia, pages 77–80, Orlando,
FL, USA, 1999.

[7] M. Goto. A chorus section detection method for
musical audio signals and its application to a mu-
sic listening station. IEEE Transactions on Au-
dio, Speech and Language Processing, 14(5):1783–
1794, 2006.

[8] F. Kaiser and T. Sikora. Music structure discov-
ery in popular music using non-negative matrix fac-

torization. In Proceedings of the International So-
ciety for Music Information Retrieval Conference
(ISMIR), pages 429–434, Utrecht, The Netherlands,
2010.

[9] O. Lartillot. MIRtoolbox 1.5, User’s Manual.
https://www.jyu.fi/hum/laitokset/musiikki/

en/research/coe/materials/mirtoolbox/

MIRtoolbox1.5Guide/, Retrieved 10.09.2013,
2013.

[10] O. Lartillot and P. Toiviainen. A matlab toolbox for
musical feature extraction from audio. In Proceed-
ings of the 10th International Conference on Digi-
tal Audio Effects (DAFx), Bordeaux, France, 2007.

[11] O. Lartillot and P. Toiviainen. MIR in Matlab
(II): A toolbox for musical feature extraction from
audio. In Proceedings of the International Con-
ference on Music Information Retrieval (ISMIR),
pages 127–130, Vienna, Austria, 2007.

[12] M. Levy and M. Sandler. Structural segmentation
of musical audio by constrained clustering. IEEE
Transactions on Audio, Speech and Language Pro-
cessing, 16(2):318–326, 2008.

[13] N. Marwan, M. C. Romano, M. Thiel, and
J. Kurths. Recurrence plots for the analysis of com-
plex systems. Physics Reports, 438(5-6):237–329,
2007.

[14] M. Müller and M. Clausen. Transposition-invariant
self-similarity matrices. In Proceedings of the
8th International Conference on Music Information
Retrieval (ISMIR), pages 47–50, Vienna, Austria,
2007.

[15] M. Müller and S. Ewert. Chroma Toolbox: MAT-
LAB implementations for extracting variants of
chroma-based audio features. In Proceedings of
the International Society for Music Information Re-
trieval Conference (ISMIR), pages 215–220, Mi-
ami, FL, USA, 2011.

[16] M. Müller, N. Jiang, and P. Grosche. A robust
fitness measure for capturing repetitions in music
recordings with applications to audio thumbnailing.
IEEE Transactions on Audio, Speech & Language
Processing, 21(3):531–543, 2013.

[17] M. Müller and F. Kurth. Enhancing similarity ma-
trices for music audio analysis. In Proceedings of
the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 437–440,

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
Page 9 of 10



Müller et al. SM Toolbox

Toulouse, France, 2006.
[18] J. Paulus, M. Müller, and A. P. Klapuri. Audio-

based music structure analysis. In Proceedings of
the 11th International Conference on Music Infor-
mation Retrieval (ISMIR), pages 625–636, Utrecht,
The Netherlands, 2010.

[19] G. Peeters. Sequence representation of music
structure using higher-order similarity matrix and
maximum-likelihood approach. In Proceedings of
the International Conference on Music Information
Retrieval (ISMIR), pages 35–40, Vienna, Austria,
2007.

[20] G. Peeters, A. L. Burthe, and X. Rodet. Toward
automatic music audio summary generation from
signal analysis. In Proceedings of the Interna-
tional Conference on Music Information Retrieval
(ISMIR), Paris, France, 2002.
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