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ABSTRACT

Large-scale musical works such as operas may last sev-

eral hours and typically involve a huge number of mu-

sicians. For such compositions, one often finds differ-

ent arrangements and abridged versions (often lasting less

than an hour), which can also be performed by smaller en-

sembles. Abridged versions still convey the flavor of the

musical work containing the most important excerpts and

melodies. In this paper, we consider the task of automati-

cally segmenting an audio recording of a given version into

semantically meaningful parts. Following previous work,

the general strategy is to transfer a reference segmentation

of the original complete work to the given version. Our

main contribution is to show how this can be accomplished

when dealing with strongly abridged versions. To this end,

opposed to previously suggested segment-level matching

procedures, we adapt a frame-level matching approach for

transferring the reference segment information to the un-

known version. Considering the opera “Der Freischütz” as

an example scenario, we discuss how to balance out flex-

ibility and robustness properties of our proposed frame-

level segmentation procedure.

1. INTRODUCTION

Over the years, many musical works have seen a great

number of reproductions, ranging from reprints of the

sheet music to various audio recordings of performances.

For many works this has led to a wealth of co-existing ver-

sions including arrangements, adaptations, cover versions,

and so on. Establishing semantic correspondences between

different versions and representations is an important step

for many applications in Music Information Retrieval. For

example, when comparing a musical score with an audio

version, the goal is to compute an alignment between mea-

sures or notes in the score and points in time in the au-

dio version. This task is motivated by applications such as

score following [1], where the score can be used to navi-

gate through a corresponding audio version and vice versa.

The aligned score information can also be used to param-

eterize an audio processing algorithm such as in score-
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Figure 1. Illustration of the proposed method. Given the

annotated segments on a complete reference version of a

musical work, the task is to transfer the segment informa-

tion to an abridged version.

informed source separation [4, 12]. When working with

two audio versions, alignments are useful for comparing

different performances of the same piece of music [2,3]. In

cover song identification, alignments can be used to com-

pute the similarity between two recordings [11]. Align-

ment techniques can also help to transfer meta data and

segmentation information between recordings. In [7], an

unknown recording is queried against a database of music

recordings to identify a corresponding version of the same

musical work. After a successful identification, alignment

techniques are used to transfer the segmentation given in

the database to the unknown recording.

A similar problem was addressed in previous work,

where the goal was to transfer a labeled segmentation of

a reference version onto an unknown version of the same

musical work [10]. The task was approached by a segment-

level matching procedure, where one main assumption was

that a given reference segment either appears more or less

in the same form in the unknown version or is omitted com-

pletely.

In abridged versions of an opera, however, this assump-

tion is often not valid. Such versions strongly deviate from

the original by omitting a large portion of the musical ma-

terial. For example, given a segment in a reference ver-

sion, one may no longer find the start or ending sections of

this segment in an unknown version, but only an intermedi-

ate section. Hence, alignment techniques that account for

structural differences are needed. In [5], a music synchro-

nization procedure accounting for structural differences in

recordings of the same piece of music is realized with an

adaption of the Needleman-Wunsch algorithm. The algo-

rithm penalizes the skipping of frames in the alignment

by adding an additional cost value for each skipped frame.



Thus, the cost for skipping a sequence of frames is depen-

dent on the length of the sequence. In abridged versions,

however, omission may occur on an arbitrary scale, rang-

ing from several musical measures up to entire scenes of

an opera. In such a scenario, a skipping of long sequences

should not be more penalized as a skipping of short se-

quences. In this work, we will therefore use a different

alignment strategy.

In this paper, we address the problem of transferring a

labeled reference segmentation onto an unknown version

in the case of abridged versions, see Figure 1. As our main

contribution, we show how to approach this task with a

frame-level matching procedure, where correspondences

between frames of a reference version and frames of an

unknown version are established. The labeled segment in-

formation of the reference version is then transferred to the

unknown version only for frames for which a correspon-

dence has been established. Such a frame-level procedure

is more flexible than a segment-level procedure. However,

on the downside, it is less robust. As a further contribution,

we show how to stabilize the robustness of the frame-level

matching approach while preserving most of its flexibility.

The remainder of this paper is structured as follows:

In Section 2, we discuss the relevance of abridged mu-

sic recordings and explain why they are problematic in a

standard music alignment scenario. In Section 3, we re-

view the segment-level matching approach from previous

work (Section 3.2), and then introduce the proposed frame-

level segmentation pipeline (Section 3.3). Subsequently,

we present some results of a qualitative (Section 4.2) and a

quantitative (Section 4.3) evaluation and conclude the pa-

per with a short summary (Section 5).

2. MOTIVATION

For many musical works, there exists a large number of

different versions such as cover songs or different perfor-

mances in classical music. These versions can vary greatly

in different aspects such as the instrumentation or the struc-

ture. Large-scale musical works such as operas usually

need a huge number of musicians to be performed. For

these works, one often finds arrangements for smaller en-

sembles or piano reductions. Furthermore, performances

of these works are usually very long. Weber’s opera “Der

Freischütz”, for example, has an average duration of about

two hours. Taking it to an extreme, Wagner’s epos “Der

Ring der Nibelungen”, consists of four operas having an

overall duration of about 15 hours. For such large-scale

musical works, one often finds abridged versions. These

versions usually present the most important material of

a musical work in a strongly shortened and structurally

modified form. Typically, these structural modifications

include omissions of repetitions and other “non-essential”

musical passages. Abridged versions were very common

in the early recording days due to space constraints of the

sound carriers. The opera “Der Freischütz” would have

filled 18 discs on a shellac record. More recently, abridged

versions or excerpts of a musical work can often be found

as bonus tracks on CD records. In a standard alignment
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Figure 2. Illustration of the proposed frame-level segmen-

tation pipeline. A reference recording with a reference la-

bel function ϕr is aligned with an unknown version. The

alignment L is used to transfer ϕr to the unknown version

yielding ϕe.

scenario, abridged versions are particularly problematic as

they omit material on different scales, ranging from the

omission of several musical measures up to entire parts.

3. METHODS

In this section, we show how one can accomplish the task

of transferring a given segmentation of a reference version,

say X , onto an unknown version, say Y . The general idea

is to use alignment techniques to find corresponding parts

between X and Y , and then to transfer on those parts the

given segmentation from X to Y .

After introducing some basic notations on alignments

and segmentations (Section 3.1), we review the segment-

level matching approach from our previous work (Section

3.2). Subsequently, we introduce our frame-level segmen-

tation approach based on partial matching (Section 3.3).

3.1 Basic Notations

3.1.1 Alignments, Paths, and Matches

Let [1 : N ] := {1, 2, . . . , N} be an index set represent-

ing the time line of a discrete signal or feature sequence

X = (x1, x2, . . . , xN ). Similarly, let [1 : M ] be the time

line of a second sequence Y = (y1, . . . , yM ). An align-
ment between two time lines [1 : N ] and [1 : M ] is mod-

eled as a set L = (p1, . . . , pL) ⊆ [1 : N ] × [1 : M ].
An element p� = (n�,m�) ∈ L is called a cell and en-

codes a correspondence between index n� ∈ [1 : N ] of

the first time line and index m� ∈ [1 : M ] of the second

one. In the following, we assume L to be in lexicographic

order. L is called a match if (p�+1 − p�) ∈ N × N for

� ∈ [1 : L − 1]. Note that this condition implies strict

monotonicity and excludes the possibility to align an index

of the first time line with many indices of the other and vice

versa. An alignment can also be constrained by requiring

(p�+1 − p�) ∈ Σ for a given set Σ of admissible step sizes.

A typical choice for this set is Σ = {(1, 1), (1, 0), (0, 1)},

which allows to align an index of one time line to many

indices of another, and vice versa. Sometimes other sets

such as Σ = {(1, 1), (1, 2), (2, 1)} are used to align se-

quences which are assumed to be structurally and tempo-

rally mostly consistent. If L fulfills a given step size con-

dition, P = L is called a path. Note that alignments that

fulfill Σ1 and Σ2 are both paths, but only an alignment ful-

filling Σ2 is also a match.



3.1.2 Segments and Segmentation

We formally define a segment to be a set α = [s : t] ⊆
[1 : N ] specified by its start index s and its end index t. Let

|α| := t−s+1 denote the length of α. We define a (partial)

segmentation of size K to be a set A := {α1, α2, . . . , αK}
of pairwise disjoint segments: αk ∩ αj = ∅ for k, j ∈
[1 : K], k �= j.

3.1.3 Labeling

Let [0 : K] be a set of labels. The label 0 plays a spe-

cial role and is used to label everything that has not been

labeled otherwise. A label function ϕ maps each index

n ∈ [1 : N ] to a label k ∈ [0 : K]:

ϕ : [1 : N ] → [0 : K].

The pair ([1 : N ], ϕ) is called a labeled time line. Let

n ∈ [1 : N ] be an index, α = [s : t] be a segment, and

k ∈ [0 : K] be a label. Then the pair (n, k) is called

a labeled index and the pair (α, k) a labeled segment. A

labeled segment (α, k) induces a labeling of all indices

n ∈ α. Let A := {α1, α2, . . . , αK} be a segmentation

of [1 : N ] and [0 : K] be the label set. Then the set

{(αk, k) | k ∈ [1 : K]} is called a labeled segmentation
of [1 : N ]. From a labeled segmentation one obtains a la-

bel function on [1 : N ] by setting ϕ(n) := k for n ∈ αk

and ϕ(n) := 0 for n ∈ [1 : N ] \⋃k∈[1:K] αk. Vice versa,

given a label function ϕ, one obtains a labeled segmenta-

tion in the following way. We call consecutive indices with

the same label a run. A segmentation of [1 : N ] is then de-

rived by considering runs of maximal length. We call this

segmentation the segmentation induced by ϕ.

3.2 Segment-Level Matching Approach

The general approach in [10] is to apply segment-level

matching techniques based on dynamic time warping

(DTW) to transfer a labeled reference segmentation to an

unknown version. Given a labeled segmentation A of

X , each αk ∈ A is used as query to compute a ranked

list of matching candidates in Y . The matching candi-

dates are derived by applying a subsequence variant of

the DTW algorithm using the step size conditions Σ =
{(1, 1), (1, 2), (2, 1)}, see [8, Chapter 5]. The result of the

subsequence DTW procedure is a matching score and an

alignment path P = (p1, . . . , pL) with p� = (n�,m�). P
encodes an alignment of the segment αk := [n1 : nL] ⊆
[1 : N ] and the corresponding segment [m1 : mL] ⊆
[1 : M ] in Y . To derive a final segmentation, one seg-

ment from each matching candidate list is chosen such that

the sum of the alignment scores of all chosen segments is

maximized by simultaneously fulfilling the following con-

straints. First, the chosen segments have to respect the tem-

poral order of the reference segmentation and second, no

overlapping segments are allowed in the final segmenta-

tion. Furthermore, the procedure is adapted to be robust

to tuning differences of individual segments, see [10] for

further details.
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Figure 3. Excerpt of similarity matrices of the reference

Kle1973 and Kna1939 before (top) and after enhance-

ment (bottom), shown without match (left) and with match

(right).

3.3 Frame-Level Segmentation Approach

The basic procedure of our proposed frame-level segmen-

tation is sketched in Figure 2. First, we use a partial match-
ing algorithm (Section 3.3.1) to compute an alignment L.

Using L and the reference label function ϕr obtained from

the reference annotation A of X , an induced label function
ϕe to estimate the labels on Y is derived (Section 3.3.2).

Finally, we apply a mode filter (Section 3.3.3) and a filling

up strategy (Section 3.3.4) to derive the final segmentation

result.

3.3.1 Partial Matching

Now we describe a procedure for computing a partial

matching between two sequences as introduced in [8]. To

compare the two feature sequences X and Y , we com-

pute a similarity matrix S(n,m) := s(xn, ym), where s
is a suitable similarity measure. The goal of the partial

matching procedure is to find a score-maximizing match

through the matrix S. To this end, we define the accu-
mulated score matrix D by D(n,m) := max{D(n −
1,m), D(n,m − 1), D(n − 1,m − 1) + S(n,m)} with

D(0, 0) := D(n, 0) := D(0,m) := 0 for 1 ≤ n ≤ N
and 1 ≤ m ≤ M . The score maximizing match can then

be derived by backtracking through D, see [8, Chapter 5].

Note that only diagonal steps contribute to the accumulated

score in D. The partial matching algorithm is more flexi-

ble in aligning two sequences than the subsequence DTW

approach, as it allows for skipping frames at any point in

the alignment. However, this increased flexibility comes

at the cost of loosing robustness. To improve the robust-

ness, we apply path-enhancement (smoothing) on S, and

suppress other noise-like structures by thresholding tech-

niques [9, 11]. In this way, the algorithm is less likely to

align small scattered fragments. Figure 3 shows an excerpt

of a similarity matrix before and after path-enhancement

together with the computed matches.



3.3.2 Induced Label Function

Given a labeled time line ([1 : N ], ϕr) and an alignment

L, we derive a label function ϕe on [1 : M ] by setting:

ϕe(m) :=

{
ϕr(n) if (n,m) ∈ L
0 else,

for m ∈ [1 : M ]. See Figure 4 for an illustration.

3.3.3 Local Mode Filtering

The framewise transfer of the labels may lead to very

short and scattered runs. Therefore, to obtain longer

runs and a more homogeneous labeling, especially at

segment boundaries, we introduce a kind of smoothing

step by applying a mode filter. The mode of a se-

quence S = (s1, s2, . . . , sN ) is the most frequently ap-

pearing value and is formally defined by mode(S) :=
argmaxs∈S |{n ∈ [1 : N ] : sn = s}| . A local mode filter
of length L = 2q + 1 with q ∈ N replaces each element

sn ∈ S , n ∈ [1 : N ], in a sequence by the mode of its

neighborhood (sn−q, . . . , sn+q):

modefiltq (S) (n) := mode(sn−q, . . . , sn+q).

Note that the mode may not be unique. In this case, we ap-

ply the following strategy in the mode filter. If the element

sn is one of the modes, sn is left unmodified by the filter.

Otherwise, one of the modes is chosen arbitrarily.

In our scenario, we apply the local mode filter on a la-

beled time line ([1 : N ], ϕe) by inputting the sequence

ϕe([1 : N ]) := (ϕe(1), ϕe(2), . . . , ϕe(N))) into the fil-

ter, see Figure 4 for an illustration. The reason to use the

mode opposed to the median to filter segment labels, is that

labels are nominal data and therefore have no ordering (in-

teger labels were only chosen for the sake of simplicity).

3.3.4 From Frames to Segments (Filling Up)

In the last step, we derive a segmentation from the label

function ϕe. As indicated in Section 3.1.3, we could sim-

ply detect maximal runs and consider them as segments.

However, even after applying the mode filter, there may

still be runs sharing the same label that are interrupted by

non-labeled parts (labeled zero). In our scenario, we as-

sume that all segments have a distinct label and occur in

the same succession as in the reference. Therefore, in the

case of a sequence of equally labeled runs that are inter-

rupted by non-labeled parts, we can assume that the runs

belong to the same segment. Formally, we assign an in-

dex in between two indices with the same label (excluding

the zero label) to belong to the same segment as these in-

dices. To construct the final segments, we iterate over each

k ∈ [1 : K] and construct the segments αk = [sk : ek],
such that sk = min{m ∈ [1 : M ] : ϕ(m) = k}, and

ek = max{m ∈ [1 : M ] : ϕ(m) = k}, see Figure 4 for an

example.

4. EVALUATION

In this section, we compare the previous segment-level

matching procedure with our novel frame-level segmenta-
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Figure 4. Example of frame-level segmentation. The ar-

rows indicate the match between the reference version and

the unknown version. (a): Reference label function. (b):
Induced label function. (c): Mode filtered version of (b)

with length L = 3. (d): Filling up on (c). (e): Ground

truth label function.

tion approach based on experiments using abridged ver-

sions of the opera “Der Freischütz”. First we give an

overview of our test set and the evaluation metric (Sec-

tion 4.1). Subsequently, we discuss the results of the

segment-level approach and the frame-level procedure on

the abridged versions (Section 4.2). Finally, we present

an experiment where we systematically derive synthetic

abridged versions from a complete version of the opera

(Section 4.3).

4.1 Tests Set and Evaluation Measure

In the following experiments, we use the recording of Car-

los Kleiber performed in 1973 with a duration of 7763
seconds as reference version. The labeled reference seg-

mentation consists of 38 musical segments, see Figure 5.

Furthermore, we consider five abridged versions that were

recorded between 1933 and 1994. The segments of the

opera that are performed in these versions are indicated by

Figure 5. Note that the gray parts in the figure correspond

to dialogue sections in the opera. In the following exper-

iments, the dialogue sections are considered in the same

way as non-labeled (non-musical) parts such as applause,

noise or silence. In the partial matching algorithm, they are

excluded from the reference version (by setting the simi-

larity score in these regions to minus infinity), and in the

segment-level matching procedure, the dialogue parts are

not used as queries.

Throughout all experiments, we use CENS features

which are a variant of chroma features. They are com-

puted with a feature rate of 1 Hz (derived from 10 Hz pitch

features with a smoothing length of 41 frames and a down-

sampling factor of 10), see [8]. Each feature vector covers

roughly 4.1 seconds of the original audio.

In our subsequent experiments, the following segment-

level matching (M4) and frame-level segmentation (F1–

F4) approaches are evaluated:

(M4) – Previously introduced segment-level matching, see

Section 3.2 and [10] for details.

(F1) – Frame-level segmentation using a similarity matrix

computed with the cosine similarity s defined by s(x, y) =
〈x, y〉 for features x and y, see Section 3.3.

(F2) – Frame-level segmentation using a similarity matrix

with enhanced path structures using the SM Toolbox [9].

For the computation of the similarity matrix, we used for-

ward/backward smoothing with a smoothing length of 20



1M 4M 1D 6D 18M 27M 38M

Sch1994

Ros1956

Mor1939

Kri1933

Kna1939

Kle1973

Figure 5. Visualization of relative lengths of the abridged

versions compared to the reference version Kle1973.

The gray segments indicate dialogues whereas the colored

segments are musical parts.

frames (corresponding to 20 seconds) with relative tempi

between 0.5−2, sampled in 15 steps. Afterwards, a thresh-

olding technique that retained only 5% of the highest val-

ues in the similarity matrix and a scaling of the remaining

values to [0, 1] is applied. For details, we refer to [9] and

Section 3.3.

(F3) – The same as in F2 with a subsequent mode filtering

using a filter length L = 21 frames, see Section 3.3.3 for

details.

(F4) – The segmentation derived from F3 as described in

Section 3.3.4.

4.1.1 Frame Accuracy

To evaluate the performance of the different segmentation

approaches, we calculate the frame accuracy, which is de-

fined as the ratio of correctly labeled frames and the total

number of frames in a version. Given a ground truth label

function ϕa and an induced label function ϕe, the frame

accuracy Af is computed as following:

Af :=

∑
k∈[0:K]

∣∣ϕa
−1(k) ∩ ϕe

−1(k)
∣∣∑

k∈[0:K] |ϕa
−1(k)|

We visualize the accuracy by means of an agreement se-
quence Δ(ϕa, ϕe) which we define as Δ(ϕa, ϕe) (m) :=
1 (white) if ϕa(m) = ϕe(m) and Δ(ϕa, ϕe) (m) := 0
(black) otherwise. The sequences Δ(ϕa, ϕe) visually cor-

relates well with the values of the frame accuracy Af , see

Table 1 and the Figure 6. Note that in structural segmenta-

tion tasks, it is common to use different metrics such as the

pairwise precision, recall, and f-measure [6]. These met-

rics disregard the absolute labeling of a frame sequence by

relating equally labeled pairs of frames in an estimate to

equally labeled frames in a ground truth sequence. How-

ever, in our scenario, we want to consider frames that are

differently labeled in the ground truth and the induced la-

bel function as wrong. As the pairwise f-measure showed

the same tendencies as the frame accuracy (which can be

easily visualized), we decided to only present the frame

accuracy values.

4.2 Qualitative Evaluation

In this section, we qualitatively discuss the results of our

approach in more detail by considering the evaluation of

the version Kna1939. For each of the five approaches,

the results are visualized in a separate row of Figure 6,

(M4)
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Figure 6. Segmentation results on Kna1939 showing the

ground truth label function ϕa, the induced label function

ϕe, and the agreement sequence Δ := Δ(ϕa, ϕe). White

encodes an agreement and black a disagreement between

ϕa and ϕe. (M4),(F1),(F2),(F3),(F4): See Section 4.1.

showing the ground truth ϕa, the induced label function

ϕe and the agreement sequence Δ(ϕa, ϕe).

For Kna1939, the segment-level matching approach

M4 does not work well. Only 28% of the frames are la-

beled correctly. The red segment, for example, at around

1500 seconds is not matched despite the fact that it has

roughly the same overall duration as the corresponding

segment in the reference version, see Figure 5. Under

closer inspection, it becomes clear that it is performed

slower than the corresponding segment in the reference

version, and that some material was omitted at the start,

in the middle and the end of the segment. The frame-level

matching approach F1 leads to an improvement, having a

frame accuracy of Af = 0.520. However, there are still

many frames wrongly matched. For example, the overture

of the opera is missing in Kna1939, but frames from the

overture (yellow) of the reference are matched into a seg-

ment from the first act (green), see Figure 6. Considering

that the opera consists of many scenes with harmonically

related material and that the partial matching allows for

skipping frames at any point in the alignment, it sometimes

occurs that not the semantically corresponding frames are

aligned, but harmonically similar ones. This problem is

better addressed in approach F2, leading to an improved

frame accuracy of 0.788. The enhancement of path struc-

tures in the similarity matrix in this approach leads to an

increased robustness of the partial matching. Now, all high

similarity values are better concentrated in path structures

of the similarity matrix.

As a result, the algorithm is more likely to follow se-

quences of harmonically similar frames, see also Figure 3.

However, to follow paths that are not perfectly diagonal,

the partial matching algorithm needs to skip frames in the

alignment, which leads to a more scattered label function.

This is approached by F3 which applies a mode filter on

the label function from F2, resulting in an improved frame



dur.(s) M4 F1 F2 F3 F4
Kna1939 1965 0.283 0.520 0.788 0.927 0.934
Kri1933 1417 0.390 0.753 0.777 0.846 0.870
Mor1939 1991 0.512 0.521 0.748 0.841 0.919
Ros1956 2012 0.887 0.749 0.817 0.850 0.908
Sch1994 2789 0.742 0.895 0.936 0.986 0.989

mean 2035 0.563 0.687 0.813 0.890 0.924

Table 1. Frame accuracy values on abridged versions. M4:

Segment-level matching, F1: Frame-level segmentation,

F2: Frame-level segmentation with path-enhanced similar-

ity matrix, F3: Mode filtering with L = 21 seconds on F2.

F4: Derived Segmentation on F4.

accuracy of 0.927. In F4, the remaining gaps in the label

function of F3 are filled up, which leads to a frame accu-

racy of 0.934.

4.3 Quantitative Evaluation

In this section, we discuss the results of Table 1. Note that

all abridged versions have less than 50% of the duration

of the reference version (7763 seconds). From the mean

frame accuracy values for all approaches, we can conclude

that the segment-level matching (0.563) is not well suited

for dealing with abridged versions, whereas the different

strategies in the frame-level approaches F1 (0.687) – F4

(0.924) lead to a subsequent improvement of the frame ac-

curacy. Using the segment-level approach, the frame ac-

curacies for the versions Ros1956 (0.887) and Sch1994
(0.742) stand out compared to the other versions. The seg-

ments that are performed in these versions are not short-

ened and therefore largely coincide with the segments of

the reference version. This explains why the segment-level

matching still performs reasonably well on these versions.

In Figure 7, we show the frame accuracy results for

the approaches M4 and F4 obtained from an experiment

on a set of systematically constructed abridged versions.

The frame accuracy values at 100% correspond to a subset

of 10 segments (out of 38) that were taken from a com-

plete recording of the opera “Der Freischütz” recorded by

Keilberth in 1958. From this subset, we successively re-

moved 10% of the frames from each segment by remov-

ing 5% of the frames at the start, and 5% of the frames

at the end sections of the segments. In the last abridged

version, only 10% of each segment remains. This exper-

iment further supports the conclusions that the segment-

level approach is not appropriate for dealing with abridged

versions, whereas the frame-level segmentation approach

stays robust and flexible even in the case of strong abridg-

ments.

5. CONCLUSIONS

In this paper, we approached the problem of transferring

the segmentation of a complete reference recording onto an

abridged version of the same musical work. We compared

the proposed frame-level segmentation approach based on

partial matching with a segment-level matching strategy.

In experiments with abridged recordings, we have shown

that our frame-level approach is robust and flexible when
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Figure 7. Performance of segment-level approach (M4)

versus frame-level approach (F4) on constructed abridged

versions. See Section 4.3

enhancing the path structure of the used similarity matrix

and applying a mode filter on the labeled frame sequence

before deriving the final segmentation.
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