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ABSTRACT

Tempo estimation is a fundamental problem in music information
retrieval. Most approaches attempt to solve two problems: first find-
ing a dominant pulse and second correcting the metrical level of this
pulse. The latter has also been dubbed fixing the octave error. We
propose an algorithm for tempo estimation that addresses both prob-
lems mostly independently. While using a standard pulse detection
technique, for octave error correction, we exploit a simple relation-
ship between a single global feature, average spectral novelty, and
listener perception of musical tempo. The proposed method is ex-
tremely simple. Nevertheless, it outperforms most existing tempo
estimation methods and is on par with the best-performing ones.
It thus exemplifies that a global feature-based approach can signifi-
cantly improve tempo estimation.

Index Terms— music information retrieval, tempo induction,
rhythm analysis, audio signal processing

1. INTRODUCTION

Describing its speed, tempo is one of the relevant descriptors for
a piece of music. It can be defined as the number of times a lis-
tener “taps” a beat with his or her foot per time interval. As unit
of measurement for tempo serves beats per minute (BPM). Auto-
matic tempo estimation/induction is commonly used to estimate the
general tempo of a musical piece. Unlike beat tracking, tempo esti-
mation does not attempt to determine the exact location of individual
beats. Tempo can be used for a wide variety of applications including
music retrieval, score alignment, playlist generation, and DJ tech-
niques like beatmixing. Because of its usefulness, the automatic ex-
traction of tempo is a traditional task in Music Information Retrieval
(MIR) and has received a lot of attention over the years [1, 2, 3].
Besides fluctuating tempi and other issues [4], one big problem in
tempo estimation is the so-called octave error, i.e., results are frac-
tions or multiples of the perceived tempo. Current algorithms are
very accurate when ignoring the octave error, but accuracy decreases
significantly when requiring the correct octave [5]. Therefore choos-
ing the right octave or metrical level has been the subject of recent re-
search and is the main focus of this paper. In [6] Hockman and Fuji-
naga provide a short overview of different approaches. Among them:
limiting valid outputs to a single metrical level, picking a tempo clos-
est to the mean of the expected distribution, using a hidden Markov
model to model the temporal evolution of metrical sequences, and
associating timbral characteristics to discrete BPM values. Hock-
man and Fujinaga themselves suggest classifying audio signals into
the perceived tempo classes slow and fast using machine learning
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and a bag of global features. In their experiments they use Last.fm
tags and YouTube playlists as ground truth, and achieve a remarkable
accuracy for the popular genres Country, Jazz, Rap, R&B, and Rock.
Ballroom genres and classical music were unfortunately not part of
this study. Still, they show that algorithms can reliably classify an
audio track as either slow or fast. The same is true for listen-
ers [7]. Contrary to this, determining one exact tempo in BPM either
via listeners or algorithms remains difficult—may even be impossi-
ble. The concept of tempo ambiguity [8] states that for some tracks
listeners claim two different tempi, usually multiples of each other.
In this context, Levy [7] points out that besides musical correctness,
usefulness of an estimate should be taken into account: Even though
a track has a tempo of 140 BPM as determined by expert listeners,
it may be perceived as slow by many casual listeners. For them an
estimate of 70 BPM may indeed be more useful. Consequently, one
might argue that global, perceptual features of music—like slow vs.
fast—should receive more attention when determining the “correct”
tempo.

While Hockman and Fujinaga do not incorporate their classi-
fier into a tempo estimation system, Peeters and Flocon-Cholet [9]
successfully built such a system using a few selected features and
GMM-Regression. Using the same features, it estimates both a per-
ceptual tempo and a perceptual tempo class in one step. Contrary
to this approach, Gkiokas et al. [10] use tempo classification to pick
one of multiple possible solutions. Their classifier uses a support
vector machine (SVM) trained with the same periodicity vectors
that are also used to find tempo candidates. While Gkiokas et al.
use a rather complex periodicity detection, employing constant Q-
transforms and harmonic/percussive separation, Tzanetakis and Per-
cival [5] chose to simplify state-of-the-art tempo estimation as much
as possible, relying on an onset detection function, its autocorrela-
tion, and its cross correlation with an idealized pulse train. Octave
correction is achieved with a very simple heuristic.

But none of the mentioned systems uses simple global features
for octave correction. Not quite an exception to this observation, but
representing a step in a similar direction, Schuller et al. [11] exploit
the fact that ballroom tempi are very genre-specific, by first perform-
ing a genre classification and then using its result to determine tempo
and tempo octave. Because most of the ballroom genres are very
much defined by a narrow BPM range, it is not clear, whether this
approach could also work for genres with broader BPM ranges like
Pop.

In this paper we combine a standard method for pulse detection
with a simple method for tempo octave estimation based on a single
global feature. Although we emphasize simplicity, we show that this
combination can lead to convincing results. In Section 2, we start
with deriving a global feature for rough tempo estimation, then, in
Section 3, we describe the algorithm and how it estimates a dominant
pulse, a tempo octave, and ultimately a BPM value. Section 4 eval-
uates the algorithm comparing it with other methods using a large
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Fig. 1. Spectral novelty SN82 of excerpts of Norah Jones’ slow
“Come Away With Me”, and of Blink-182’s fast “The Rock Show”.
The mean is shown as horizontal line.

dataset. Finally, in Section 5, we present our conclusions.
The code was implemented using the Java-based open source

audio feature extraction framework jipes.1 In the interest of repro-
ducibility, we are making a binary version of the algorithm available
at http://bit.ly/H3ZonA.

2. FEATURE SELECTION

Inspired by [6] we collected a number of global song features via
the consumer application beaTunes.2 For each song we retrieved
Last.fm’s most popular tags and selected those songs associated with
the tag slow or fast, but not both. For the genres Rock, Pop, Jazz,
Alternative, Industrial, Heavy Metal, Soul, and Dance the dataset
contained 8517 songs, 1296 (15.2%) of which labeled as fast. Be-
cause of the obvious imbalance between slow and fast songs also ob-
served in [7], we grouped the data by genre, each group with an equal
number of songs labeled as slow or fast. We did so by randomly
removing songs of the overrepresented tempo class. Using the com-
mon global features (e.g. described in [12]) mean RMS, standard
deviation of RMS, mean spectral centroid, mean relative spectral
entropy, peak spectral fluctuation, mean spectral novelty, and mean
spectral spread we classified the songs into slow and fast using
one feature at a time. From these features, the mean spectral novelty
(SNM) turned out to be the most successful one. Obviously, the se-
lection of SNM is neither the result of an exhaustive search nor can
classification based on one feature at a time be expected to be the
best choice. Nevertheless, even a single, imperfect feature can suf-
fice to show the merits of using global features for octave correction,
which is the subject of this investigation.

SNML is calculated by first converting the signal to mono with
a sample rate of 11025 Hz. Then we compute the spectra X(t)
with t ∈ [0 : T ] := {0, 1, 2, . . . , T} of 93 ms windows with 1/2
overlap, by applying a Hamming window and then performing an
STFT. From X we build a self-similarity matrix S, using the cosine
of the angle between two power spectral vectors Y (t) = |X(t)|2 as
similarity score. The novelty score SNL is calculated with a square
Gaussian checkerboard kernel CL with length L = 64, see [13].
Considering the given sample rate and window overlap, this is equiv-
alent to a 2.97 s kernel. We choose to normalize the score SNL

by dividing by the sum of the absolute values of all kernel ele-
ments (Eq. 1). To obtain the mean SNML we average SNL(t) for
t ∈ [L/2 : T − L/2].

1http://www.tagtraum.com/jipes
2http://www.beatunes.com/

Genre Songs Correct SNM64 Threshold
Rock 1706 87.86% 0.034
Pop 262 88.17% 0.036
Jazz 330 86.06% 0.040
Alternative 72 81.94% 0.034
Industrial 68 80.88% 0.023
Heavy Metal 54 83.33% 0.032
Soul 36 77.78% 0.032
Dance 36 83.33% 0.027
All 2564 85.02% 0.036

Table 1: Classification results for different genres using SNM64 and
a threshold that was calculated using a decision tree. The labels
slow and fast obtained from Last.fm served as ground truth.
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Fig. 2. Strength of linear relationship between SNML and ground
truth BPM of songs in GTZAN measured with correlation coefficient
r depending on kernel length L. A maximum of r = 0.44 is reached
at L = 82.

SNL(t) =

L/2−1∑
m=−L/2

L/2−1∑
n=−L/2

CL(m,n) · S(t+m, t+ n)

L/2−1∑
m=−L/2

L/2−1∑
n=−L/2

|CL(m,n)|
(1)

To illustrate SNML, Fig. 1 shows spectral novelty values computed
with a 3.81 s long kernel for a slow and a fast song. It seems sur-
prising that SNML tends to be larger for slower songs than for faster
songs. We conjecture that this is the case, because faster songs tend
to have more spectral fluctuations than slower songs. With regard
to the chosen parameter settings, these fluctuations appear more like
noise and less significant compared to the fewer but relatively clear
novelty peaks occurring in slower songs. This may explain why
SNML is larger in the latter case.

With an overall correct slow/fast classification rate of 85% (Ta-
ble 1), SNM64 can obviously help estimating the perceived tempo
of music. But since our dataset did only contain few values for gen-
res other than Rock, Pop, and Jazz, the validity of this statement
is clearly limited to those genres. Also, a perceived slow tempo
does not guarantee a certain BPM range. For example, a Viennese
Waltz may be perceived as slow, but its tempo is typically 174 to
180 BPM. Furthermore, the kernel length L = 64 was chosen be-
fore the relationship to the perceived tempo class was discovered.

Therefore we investigated the relationship between SNM and
the ground truth of the tempo annotated GTZAN genres dataset [14].
GTZAN consists of 1000 songs, 100 from each genre. As a simple
measure of relationship we computed Pearson’s correlation coeffi-
cient r between ground truth BPM and SNML for the kernel lengths



Genre r MAE RMSE
Blues 0.22 22.56 27.50
Classical 0.16 22.13 27.92
Country 0.42 17.18 21.46
Disco 0.30 12.33 17.35
Hiphop 0.34 7.51 11.00
Jazz 0.60 15.35 19.44
Metal 0.29 20.95 24.44
Pop 0.61 12.37 15.32
Reggae 0.22 13.41 17.48
Rock 0.23 20.54 24.25
All 0.44 17.50 21.86

Table 2: Genre-specific correlation r between GTZAN ground truth
BPM and SNM82 along with mean absolute errors (MAE) and root
mean squared errors (RMSE) in BPM for genre-specific linear re-
gressions.

32 to 128 and found the maximum of r = 0.44 at L = 82, cov-
ering 3.81 s (Fig. 2). The low correlation coefficient indicates that
this is not a strong linear relationship—at least not for the whole
collection. In fact, the results in Table 2 suggest, that the relation-
ship between SNM and BPM is genre-dependent. With r = 0.61
and r = 0.60 it is very promising for Pop and Jazz, and less so for
Blues, Classical, or Reggae with r = 0.22, r = 0.16, and r = 0.22,
respectively. But considering that we just want to estimate the tempo
octave rather than the precise BPM, mean absolute errors (MAE) of
less than 23 BPM and root mean squared errors (RMSE) of less
than 28 BPM for genre-specific linear regressions (Table 2), make a
linear model suitable enough for our purposes.

3. ALGORITHM

We are dividing the problem of tempo estimation into three sepa-
rate tasks: 1) computing a dominant pulse while largely ignoring
the tempo octave, 2) determining a rough estimate of the perceived
tempo and thus the tempo octave, and 3) combining the two results
in a meaningful way.

3.1. Estimating the Dominant Pulse

To estimate the dominant pulse, we follow the general idea of
standard approaches measuring changes in the power spectrum Y ,
see [15, 16]. The power for each bin k at time t is given by Y (t, k),
its positive logarithmic power Yln(t, k) := ln (1000 · Y (t, k) + 1),
and its frequency by F (k). We define the onset strength function
(or novelty curve) O(t) as the sum of the bandwise differences be-
tween the logarithmic powers Yln(t, k) and Yln(t − 1, k) for those
k where the frequency F (k) ∈ [30, 720] Hz and Y (t, k) is greater
than αY (t− 1, k) [17]:

I(t, k) =

 1, if Y (t, k) > αY (t− 1, k)
and F (k) ∈ [30, 720],

0, otherwise,
(2)

O(t) =
∑
k

(
Yln(t, k)− Yln(t− 1, k)

)
· I(t, k).

The factor α = 1.76 was introduced to disregard small increases
in loudness and thus to reduce noise in the onset strength signal. Just
like the frequency range, its value was found experimentally.

O(t) is transformed using a DFT with length 8192. At the given
sample rate, this length ensures a resolution of 0.156 BPM. The

peaks of the resulting beat spectrumB represent the strength of BPM
values in the signal [18]. But they do not take into account harmon-
ics, i.e., the fact that a 30 BPM peak usually implies a 60 BPM
peak [19, 20]. Therefore we derive an enhanced beat spectrum BE ,
which boosts frequencies that are supported by certain harmonics:

BE(k) =

2∑
i=0

|B(k · 2i)| (3)

Similar to computing a spectral sum [21] or an enhanced beat
histogram [5], BE incorporates harmonics by simply adding to each
bin the magnitudes of the bins corresponding to two times and to four
times of its own frequency.3 Because most popular Western music
is in 4/4-time, and most octave errors are by factor of two [2], we
purposefully leave out the third harmonic. This allows BE to better
match a wrong, but strong tempo octave. To calculate the estimated
dominant pulse T , we determine the highest value of BE and finally
convert its associated frequency to BPM:

T = F (argmax
k

BE(k)) · 60 (4)

3.2. Estimating the Tempo Octave

Since we have found a somewhat linear relationship between SNM
and BPM, all we have to do to estimate the rough tempo TO, is
to find the kernel length L that leads to SNML values that cor-
relate well with a training ground truth and then perform a linear
regression. Because the time complexity of computing SNML is
quadratic, we prefer smaller L. We found that the value determined
for GTZAN, L = 82, represents a good tradeoff between correla-
tion and runtime behavior. To compute the linear regression with
WEKA [22], we use the combined five datasets [7, 9, 3, 23, 14] also
used in [5], but a ground truth improved by Percival. The resulting
regression for the rough perceived tempo estimate TO is given by:

TO = −851.144 · SNM82 + 137.623 (5)

3.3. Combining Tempo and Tempo Octave

As mentioned above, most octave errors are by factor of two [2].
Therefore, to compute the final tempo Tfinal, we divide/multiply T
with/by two until it is closest to TO. In other words, Tfinal = 2i · T
with i ∈ Z such that 0.75 · TO < 2i · T < 1.5 · TO.

4. EVALUATION

The proposed method schr1 was compared with the best perform-
ing algorithms [24, 25, 26, 27] 4,5 discussed in [5] and a baseline
method schr0 using the same five datasets, with the aforemen-
tioned improved ground truth.6 The baseline schr0 consists of just
the pulse estimation part described above, but without the SNM82-
based octave correction. As measures of accuracy we employed
Accuracy1, the percentage of estimates that are within 4% of the
ground truth tempo, and Accuracy2, the percentage of estimates that
are within 4% of a multiple of 1/3, 1/2, 2, 3 times the ground truth

3The actual implementation differs slightly to take the discrete nature of
the DFT into account.

4zplane [aufTAKT] V3, http://www.beat-tracking.com/
5Dev build v3.2, http://developer.echonest.com/
6Therefore the results are not identical to [5].



Dataset Songs schr1 schr0 marsyas gkiokas zplane echonest ibt qm vamp
ACM MIRUM 1410 76.1 70.3- 71.6- 72.6- 70.2- 73.8 63.0- 63.9-
ISMIR04 Songs 465 73.1 61.9- 58.5- 56.8- 56.1- 57.0- 46.7- 42.8-
Ballroom 698 66.3 65.5 63.3 62.9- 66.5 56.6- 63.8 65.3
Hainsworth 222 70.7 68.9 66.7 64.4 69.8 66.7 72.5 72.5
GTZAN Genres 1000 77.0 69.2- 74.6 71.1- 68.5- 67.8- 60.4- 57.9-
Dataset Average 759 72.7 67.2 66.9 65.6 66.2 64.4 61.3 60.5
Combined Datasets 3795 73.9 68.0- 69.0- 68.0- 67.3- 66.6- 61.0- 60.5-

(a) Accuracy1

Dataset Songs schr1 schr0 marsyas gkiokas zplane echonest ibt qm vamp
ACM MIRUM 1410 96.0 96.5 96.0 97.8+ 93.8- 92.8- 92.8- 92.3-
ISMIR04 Songs 465 91.8 92.0 83.2- 90.8 82.4- 78.5- 76.8- 77.9-
Ballroom 698 96.3 97.6 91.6- 97.7 94.4 86.1- 89.8- 87.8-
Hainsworth 222 86.9 84.7 82.0 84.7 82.4 85.6 82.0 83.8
GTZAN Genres 1000 92.6 92.6 90.8 92.9 88.6- 86.7- 86.2- 85.8-
Dataset Average 759 92.7 92.7 88.7 92.8 88.3 85.9 85.5 85.5
Combined Datasets 3795 94.1 94.4 91.4- 94.9 90.5- 87.8- 87.9- 87.5-

(b) Accuracy2

Table 3: Tempo results for (a) Accuracy1 and (b) Accuracy2 in percent. The + and − signs indicate a statistically significant difference
between an algorithm and schr1. Bold numbers mark the best-performing algorithm(s) for a dataset. “Dataset Average” is the mean of the
algorithms’ results for each dataset. “Combined Datasets” is the accuracy over all datasets. schr0 is schr1 without octave correction.

tempo. We tested for statistical significance with McNemar’s test
and a significance value of p < 0.01, see [2]. Table 3 shows the
results computed with data kindly made available by Tzanetakis and
Percival. For Accuracy1, schr1 performs either as well or better,
often significantly, than all other algorithms. In particular, Accu-
racy1 for the combined datasets is with 73.9% significantly higher.
For Accuracy2, schr1 reaches values similar to the best perform-
ing algorithm gkiokas. With an Accuracy2 of 94.1% for the com-
bined datasets, schr1 performs significantly better than all other
algorithms except the much more complex gkiokas and the base-
line method schr0.

In Table 4, we have analyzed the errors of the various algorithms
with regard to Accuracy1. For example, marsyas [5] scores lower
than schr1 since there are slightly more tempo confusions by a
factor of two (9.6% compared to 8.5%) and also for factors/quotients
beyond three (8.6% compared to 5.9% in other). Furthermore,
gkiokas [24] has a relatively large percentage (14.6%) for tempo
confusions by factor of two—something they addressed for ballroom
genres in [10]. Summarizing, while schr1 has the fewest octave
errors of any of the tested systems, tempo confusions by factor or
fraction of two remain the biggest challenge for the best performing
systems.

5. CONCLUSIONS

We have presented a very simple and effective tempo estimation al-
gorithm that combines standard pulse detection with a continuous
tempo octave estimation using the single global feature SNM82.
Broad experimental evaluation shows that our method performs as
well or significantly better than other state-of-the-art algorithms for a
large, mixed-genre dataset. This indicates that perceptual global fea-
tures can play an important role in tempo octave estimation. In the
future, we plan to evaluate other global features to improve genre-
specific tempo octave estimation.

Algorithm ×1/2 ×2 ×1/3 ×3 other
schr1 11.7 8.5 0.0 0.1 5.9
schr0 10.8 14.6 0.4 0.7 5.6
marsyas 11.7 9.6 0.7 0.5 8.6
gkiokas 10.4 14.6 1.3 0.5 5.1
zplane 8.9 13.9 0.0 0.4 9.5
echonest 8.2 12.2 0.6 0.3 12.2
ibt 6.8 19.6 0.0 0.6 12.1
qm vamp 4.7 21.4 0.0 0.8 12.5

Table 4: Percentages of the reported results for the combined
datasets that are equal to a certain integer multiple or fraction of
the ground truth (4% tolerance). Base data for third party algorithms
obtained courtesy of Tzanetakis and Percival.
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