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ABSTRACT

Our goal is to improve the perceptual quality of transient signal
components extracted in the context of music source separation.
Many state-of-the-art techniques are based on applying a suitable
decomposition to the magnitude of the Short-Time Fourier Trans-
form (STFT) of the mixture signal. The phase information re-
quired for the reconstruction of individual component signals is
usually taken from the mixture, resulting in a complex-valued,
modified STFT (MSTFT). There are different methods for recon-
structing a time-domain signal whose STFT approximates the tar-
get MSTFT. Due to phase inconsistencies, these reconstructed sig-
nals are likely to contain artifacts such as pre-echos preceding tran-
sient components. In this paper, we propose a simple, yet effective
extension of the iterative signal reconstruction procedure by Grif-
fin and Lim to remedy this problem. In a first experiment, under
laboratory conditions, we show that our method considerably at-
tenuates pre-echos while still showing similar convergence proper-
ties as the original approach. A second, more realistic experiment
involving score-informed audio decomposition shows that the pro-
posed method still yields improvements, although to a lesser ex-
tent, under non-idealized conditions.

1. INTRODUCTION

Music source separation aims at decomposing a polyphonic, multi-
timbral music recording into component signals such as singing
voice, instrumental melodies, percussive instruments, or individ-
ual note events occurring in a mixture signal [1]. Besides being an
important step in many music analysis and retrieval tasks, music
source separation is also a fundamental prerequisite for applica-
tions such as music restoration, upmixing, and remixing. For these
purposes, high fidelity in terms of perceptual quality of the sepa-
rated components is desirable. The majority of existing separation
techniques work on a time-frequency (TF) representation of the
mixture signal, often the Short-Time Fourier Transform (STFT).
The target component signals are usually reconstructed using a
suitable inverse transform, which in turn can introduce audible ar-
tifacts such as musical noise, smeared transients or pre-echos, as
exemplified in Figure 1(c).
In order to better preserve transient signal components, we pro-
pose in this paper a simple, yet effective extension to the signal
reconstruction procedure by Griffin and Lim [2]. The original
method iteratively estimates the phase information necessary for
time-domain reconstruction from a magnitude STFT (STFTM) by
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going back and forth between the STFT and the time-domain, only
updating the phase information, while keeping the STFTM fixed.
Our proposed extension manipulates the intermediate time-domain
reconstructions in order to attenuate the pre-echos that potentially
precede the transients.
We conduct two kinds of evaluations in an audio decomposition
scenario, where our objective is to extract isolated drum sounds
from polyphonic drum recordings. To this end, we use a publicly
available test set that is enriched with all necessary side informa-
tion, such as the true “oracle” component signals and their pre-
cise transient positions. In the first experiment, under laboratory
conditions, we make use of all side-information in order to fo-
cus on evaluating the benefit of our proposed method for transient
preservation in signal reconstruction. Under these idealized con-
ditions, we can show that our proposed method considerably at-
tenuates pre-echos while still exhibiting similar convergence prop-
erties as the original method. In the second experiment, we em-
ploy a state-of-the-art decomposition technique [3, 4] with score-
informed constraints [1] to estimate the component signal’s STFTM
from the mixture. Under these more realistic conditions, our pro-
posed method still yields improvements yet to a lesser extent than
in the idealized scenario.
The remainder of this paper is organized as follows: Section 2 pro-
vides a brief overview of related work before Section 3 introduces
our new method. Section 4 details and discusses the experimen-
tal evaluation under laboratory conditions. Section 5 describes a
more realistic application and evaluation of our proposed method
in conjunction with score-informed audio decomposition. Finally,
in Section 6 we conclude and indicate directions for future work.

2. RELATED WORK

Three research fields are important for our work: First, a number
of publications on signal reconstruction and transient preservation
are related and relevant for our proposed restoration method. Sec-
ond, papers on score-informed audio decomposition (i.e., source
separation) provide the basis for deploying our method in a real-
world application.

2.1. Signal Reconstruction

The problem of signal reconstruction, also known as magnitude
spectrogram inversion or phase estimation is a well researched
topic. In their classic paper [2], Griffin and Lim proposed the
so-called LSEE-MSTFTM algorithm (denoted as GL throughout
this paper) for iterative, blind signal reconstruction from modified
STFT magnitude (MSTFTM) spectrograms. In [5], Le Roux et al.
developed a different view on this method by describing it using
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Figure 1: Illustration of the transient restoration. (a): Target component signal, an exponentially decaying sinusoid preceded by silence. (b):
Reconstruction using zero phase. Due to destructive interference, the overall amplitude seemingly decreased to silence. (c): Reconstruction
after 200 GL iterations, exhibiting pronounced transient smearing. (d): Reconstruction after 200 iterations of the proposed transient
restoration method. The left hand legend applies to all plots, n0 denotes the transient position.

a TF consistency criterion. By keeping the necessary operations
entirely in the TF domain, several simplifications and approxima-
tions could be introduced that lower the computational load com-
pared to the original procedure. Since the phase estimates ob-
tained using GL can only converge to local optima, several pub-
lications were concerned with finding a good initial estimate for
the phase information [6, 7]. Sturmel and Daudet [8] provided an
in-depth review of signal reconstruction methods and pointed out
unsolved problems. An extension of GL with respect to conver-
gence speed was proposed in [9]. Other authors tried to formulate
the phase estimation problem as a convex optimization scheme and
arrived at promising results hampered by high computational com-
plexity [10]. Another work [11] was concerned with applying the
spectrogram consistency framework to signal reconstruction from
wavelet-based magnitude spectrograms.

2.2. Transient Preservation

The problem of transient preservation has been extensively ad-
dressed in the field of perceptual audio coding, where pre-echo
artifacts can occur ahead of transient signal components. Pre-
echos are caused by the use of relatively long analysis and syn-
thesis windows in conjunction with coding-related modification of
TF bins such as quantization of spectral magnitudes according to
a psycho-acoustic model. It can be considered as state-of-the-art
to use block-switching to account for transient events [12]. An
interesting approach was proposed in [13], where spectral coeffi-
cients are encoded by linear prediction along the frequency axis,
automatically reducing pre-echos. Other authors proposed to de-
compose the signal into transient and residual components and use
optimized coding parameters for each stream [14]. In [15], the
authors proposed a scheme that unifies iterative signal reconstruc-
tion (see Section 2.2) and block-switching in the context of audio
coding. Transient preservation has also been investigated in the
context of time-scale modification methods based on the phase-
vocoder [16]. In addition to an optimized treatment of the transient
components, several authors follow the principle of phase-locking
or re-initialization of phase in transient frames [17, 18].

2.3. Score-informed Audio Decomposition

The majority of music source separation techniques operate on
a TF representation of the mixture signal. It is common prac-
tice to compute the mixture signal’s STFT and apply suitable de-
composition techniques (e.g., Non-Negative Matrix Factorization
(NMF)) to the corresponding magnitude spectrogram. This yields
an MSTFTM, ideally representing the isolated target signal com-

ponent. The corresponding time-domain signal is usually derived
by using the original phase information and applying signal recon-
struction methods.
When striving for good perceptual quality of the separated tar-
get signals, many authors propose to impose score-informed con-
straints on the decomposition [19, 20, 1]. This has the advan-
tage that the separation can be guided and constrained by infor-
mation on the approximate location of component signals in time
(onset, offset) and frequency (pitch, timbre). A few studies deal
with source separation of strongly transient signals such as drums
[21, 22]. Usage of the Non-Negative Matrix Factor Deconvolu-
tion (NMFD) for drum sound separation was first proposed in [3].
Later works applied it to drum sound detection using sparseness
constraints [4] as well as regularisation in [23]. Others authors
focus on the separation of harmonic vs. percussive components
[24, 25, 26]. The importance of phase information for source sep-
aration quality is discussed in [27].

3. TRANSIENT RESTORATION

In the following, we first fix our notation and signal model and
describe the employed signal reconstruction method. Afterward,
we introduce our novel extension for transient preservation in the
GL method and provide an illustrative example.

3.1. Notation and Signal Model

We consider the real-valued, discrete time-domain signal x : Z→
R to be a linear mixture x :=

∑C
c=1 xc of C ∈ N component sig-

nals xc corresponding to individual instruments. As shown in Fig-
ure 2(a), each component signal contains at least one transient au-
dio event produced by the corresponding instrument (in our case,
by striking a drum). Furthermore, we assume that we have a sym-
bolic transcription available that specifies the onset time (i.e., tran-
sient position) and instrument type for each of the audio events.
From that transcription, we derive the total number of onset events
S as well as the number of unique instrumentsC. Our aim is to ex-
tract individual component signals xc from the mixture x as shown
in Figure 2. For evaluation purposes (see Section 4), we assume to
have the oracle component signals xc available.
We decompose x in the TF-domain, to this end we employ STFT
as follows. LetX (m, k) be a complex-valued TF coefficient at the
mth time frame and kth spectral bin. The coefficient is computed
by

X (m, k) :=

N−1∑
n=0

x(n+mH)w(n) exp(−2πikn/N), (1)
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Figure 2: Illustration of our signal model. (a): Mixture signal x is the sum of C = 3 component signals xc, each containing sequences of
synthetic drum sounds sampled from a Roland TR 808 drum machine (x1: kick drum, x2: snare drum, x3: hi-hat). (b): TF representation
of the mixture’s magnitude spectrogram V and C = 3 component magnitude spectrograms Vc. For better visibility, the frequency axis and
the magnitudes are on a logarithmic scale.

where w : [0 : N − 1] → R is a suitable window function of
blocksize N ∈ N, and H ∈ N is the hop size parameter. The
number of frequency bins is K = N/2 and the number of spectral
frames M ∈ [1 : M ] is determined by the available signal sam-
ples. For simplicity, we also write X = STFT(x). Following [5],
we call X a consistent STFT since it is a set of complex numbers
which has been obtained from the real time-domain signal x via
(1). In contrast, an inconsistent STFT is a set of complex num-
bers that was not obtained from a real time-domain signal. From
X , the magnitude spectrogramA and the phase spectrogram ϕ are
derived as

A(m, k) := |X (m, k)| , (2)
ϕ(m, k) := ∠X (m, k), (3)

with ϕ(m, k) ∈ [0, 2π).
Let V := AT ∈ RK×M≥0 be a non-negative matrix holding a trans-
posed version of the mixture’s magnitude spectrogram A. Our
objective is to decompose V into component magnitude spectro-
grams Vc that correspond to the distinct instruments as shown in
Figure 2(b). For the moment, we assume that some oracle esti-
mator extracts the desired Ac := VT

c . One possible approach
to estimate the component magnitudes using a state-of-the-art de-
composition technique will be described in Section 5. In order to
reconstruct a specific component signal xc, we set Xc := Ac �
exp(iϕc), where Ac = VT

c and ϕc is an estimate of the compo-
nent phase spectrogram. It is common practice to use the mixture
phase information ϕ as an estimate for ϕc and to invert the result-
ing MSTFT via the LSEE-MSTFT reconstruction method from
[2]. The method first applies the inverse Discrete Fourier Trans-
form (DFT) to each spectral frame in Xc, yielding a set of inter-
mediate time signals ym, with m ∈ [0 : M − 1], defined by

ym(n) :=
1

N

N−1∑
k=0

Xc(m, k) exp(2πikn/N), (4)

for n ∈ [0 : N − 1] and ym(n) := 0 for n ∈ Z \ [0 : N − 1].
Second, the least squares error reconstruction is achieved by

xc(n) :=

∑
m∈Z ym(n−mH)w(n−mH)∑

m∈Z w(n−mH)2
, (5)

n ∈ Z, where the analysis window w is re-used as synthesis
window. Please note that LSEE-MSTFT should not be confused
with LSEE-MSTFTM (called GL in this work) that extends the
signal reconstruction with iterative phase estimation (cf. Algo-
rithm 3.2). In the following, for the sake of brevity, we will use
xc = iSTFT(Xc) as short form for the application of (4) and (5).

3.2. Proposed Algorithm

Since we construct the MSTFT Xc in the TF domain, we have to
consider that it may be an inconsistent STFT, i.e., there may not
exist a real time-domain signal xc fulfilling Xc = STFT(xc).
Intuitively speaking, the complex relationship between magnitude
and phase is likely corrupted as soon as the magnitude in certain
TF bins is modified. In practice, this inconsistency can lead to
transient smearing and pre-echos in xc, especially for large N .
To remedy this problem, we propose to iteratively minimize the
inconsistency of Xc by the following extension (denoted as TR)
of the GL procedure [2]. For the moment, let’s assume that Xc
contains precisely one transient onset event, whose exact loca-
tion in time n0 is known. Now, we introduce the iteration index
` = 0, 1, 2, . . . L ∈ N. Given Ac and some initial phase esti-
mate (ϕc)

(0), we introduce the initial STFT estimate of the target
component signal (Xc)(0) := Ac � exp(i(ϕc)

(0)) and repeat for
` = 0, 1, 2, . . . L the following steps

Transient Restoration (TR) Algorithm:

1. (xc)
(`+1) := iSTFT

(
(Xc)(`)

)
via (4) and (5)

2. Enforce (xc)
(`+1)(n) := 0 for n ∈ Z, n < n0

3. (ϕc)
(`+1) := ∠STFT

(
(xc)

(`+1)
)

via (1) and (3)

4. (Xc)(`+1) := Ac � exp
(
i(ϕc)

(`+1)
)

The crucial point of our proposed extension is the intermediate step
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Figure 3: Different hi-hat component signals of our example drum loop. The transient position n0 is given by the solid blue line, the excerpt
boundaries by the dashed blue lines. (a): Mixture signal (top) vs. oracle hi-hat signal (bottom). (b): Hi-hat signal in Case 2, reconstruction
after L = 200 iterations of GL (top) vs. TR (bottom). (c): Hi-hat signal in Case 4, reconstruction after L = 200 iterations of GL (top) vs.
TR (bottom). Since the NMFD decomposition works very well for our example drum loop, there is almost no noticeable visual difference
between (b) and (c).

2. which enforces transient constraints in the GL procedure. Figure
1 illustrates our proposed method with the target component signal
in red, overlaid with the envelope of its analytic signal in Figure
1(a). The example signal exhibits transient behavior around n0

(blue line) when the waveform transitions from silence to an expo-
nentially decaying sinusoid. Figure 1(b) shows the time-domain
reconstruction obtained from the iSTFT with (ϕc)

(0) = 0 (i.e.,
zero phase for all TF bins). Through destructive interference of
overlapping frames, the transient is completely destroyed, the am-
plitude of the sinusoid is strongly decreased and the envelope looks
nearly flat. Figure 1(c) shows the reconstruction with pronounced
transient smearing after L = 200 GL iterations. Figure 1(d) shows
that the restored transient after L = 200 iterations of the proposed
method is much closer to the original signal. In real-world record-
ings, there usually exist multiple transient onsets event throughout
the signal. In this case, one may apply the proposed method to
signal excerpts localized between consecutive transients (resp. on-
sets) as shown in Figure 3.

4. EVALUATION UNDER LABORATORY CONDITIONS

For evaluation, we compared the conventional GL reconstruction
with our proposed TR method under two different initialization
strategies for (Xc)(0). In the following, we describe the used data
set, the test item generation, and our evaluation metrics.

4.1. Dataset

In principle, we follow the evaluation approach from [27]. In
all our experiments, we use the publicly available “IDMT-SMT-
Drums” dataset1. In the “WaveDrum02” subset, there are 60 drum
loops, each given as perfectly isolated single track recordings (i.e.,
oracle component signals) of the three instruments kick drum, snare
drum, and hi-hat. All 3×60 recordings are in uncompressed PCM
WAV format with 44.1 kHz sampling rate, 16 Bit, mono. Mixing
all three single tracks together, we obtain 60 mixture signals. Ad-
ditionally, the onset times and thus the approximate n0 of all onsets
are available per individual instrument. Using this information, we
constructed a test set of 4421 drum onset events by taking excerpts
from the mixtures, each located between consecutive onsets of the
target instrument. In doing so, we zero pad N samples ahead of

1http://www.idmt.fraunhofer.de/en/business_
units/smt/drums.html

each excerpt. The rationale is to deliberately prepend a section of
silence in front of the local transient position. Inside that section,
decay influence of preceding note onsets can be ruled out and po-
tentially occurring pre-echos can be measured. In turn, this leads
to a virtual shift of the local transient location to n0 + N (which
we denote again as n0 for notational convenience). In Figure 3,
the adjusted excerpt boundaries are visualized by the dashed blue
lines and the virtually shifted n0 by the blue line. Since the drum
loops are realistic rhythms, the excerpts exhibit varying degree of
superposition with the remaining drum instruments played simul-
taneously. In Figure 3(a), the mixture (top) exhibits pronounced
influence of the kick drum compared to the isolated hi-hat signal
(bottom). For comparison, the two top plots in Figure 2(a) show
a longer excerpt of the mixture x and the hi-hat component x3 of
our example signal. In the bottom plot in Figure 3(a), one can see
the kick drum x1 in isolation. It is sampled from a Roland TR 808
drum computer and resembles a decaying sinusoid.

Test case Initial phase estimate Fixed magnitude estimate
Case 1 (ϕc)

(0) := ϕMix Ac := AOracle
c

Case 2 (ϕc)
(0) := 0 Ac := AOracle

c

Table 1: Configuration of the test cases in the experiment under
laboratory conditions.

4.2. Evaluation Setting

For each mixture excerpt, we compute the STFT via (1) with
H = 512 and N = 2048 and denote it as XMix. Since all test
items have 44.1 kHz sampling rate, the frequency resolution is
approx. 21.5 Hz and the temporal resolution is approx. 11.6 ms.
We use a symmetric Hann window of size N for w. As a refer-
ence target, we take the same excerpt boundaries, apply the same
zero-padding, but this time from the single track of each individual
drum instrument, denoting the resulting STFT as XOracle

c . Sub-
sequently, we define two different cases for the initialization of
(Xc)(0) as detailed in Table 1. Using these settings, we expect the
inconsistency of the resulting (Xc)(0) to be lower in case 1 com-
pared to case 2. Knowing that there exists a consistent XOracle

c ,
we go through L = 200 iterations of both GL and our proposed
TR method as described in Sec. 3.2.
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Figure 4: (a): Evolution of the normalized consistency measure vs. the number of iterations. (b): Evolution of the pre-echo energy vs. the
number of iterations. The curves show the average over all test excerpts.

4.3. Quality Measures

We introduce G
(

(Xc)(`)
)

:= STFT
(

iSTFT
(

(Xc)(`)
))

to de-
note successive application of the iSTFT and STFT (core of the
GL algorithm) on (Xc)(`). Following [28], we compute at each
iteration ` the normalized consistency measure (NCM) as

C
(

(Xc)(`),XOracle
c

)
:= 10 log10

∥∥∥G
(

(Xc)(`)
)
−XOracle

c

∥∥∥2
‖XOracle

c ‖2
,

(6)
for both test cases (see Table 1). As a more dedicated measure for
the transient restoration, we compute the pre-echo energy as

E
(

(xc)
(`)
)

:=

n0∑
n=n0−N

∣∣∣(xc)(`)(n)
∣∣∣2 , (7)

from the section between the excerpt start and the transient lo-
cation in the intermediate, time-domain component signal recon-
structions (xc)

(`) := iSTFT
(

(Xc)(`)
)

for both test cases (see
Table 1).

4.4. Results and Discussion

Figure 4 shows the evolution of both quality measures from (6) and
(7) with respect to `. Diagram 4(a) indicates that, on average, the
proposed TR method performs equally well as GL in terms of in-
consistency reduction. In both test cases, the curves for TR (solid
line) and GL (dashed line) are almost indistinguishable, which in-
dicates that our new approach shows similar convergence proper-
ties as the original method. As expected, the blue curves (Case 1)
start at much lower initial inconsistency than the red curves (Case
2), which is clearly due to the initialization with the mixture phase
ϕMix. Diagram 4(b) shows the benefit of TR for pre-echo reduc-
tion. In both test cases, the pre-echo energy for TR (solid lines)
is around 15 dB lower and shows a steeper decrease during the
first few iterations compared to GL (dashed line). Again, the more
consistent initial (Xc)(0) of Case 1 (blue lines) exhibit a consid-
erable head start in terms of pre-echo reduction compared to Case
2 (red lines). From these results, we infer that it is sufficient to
apply only a few iterations (e.g., L < 20) of the proposed method
in cases where reasonable initial phase and magnitude estimates
are available. However, we need to apply more iterations (e.g.,
L < 200) in case we have a good magnitude estimate in conjunc-
tion with a weak phase estimate and vice versa. In the following,
we will assess if our preliminary findings obtained under labora-
tory conditions hold true in a more realistic scenario.

5. APPLICATION TO NMF-BASED AUDIO
DECOMPOSITION

In this section, we describe how to apply our proposed transient
restoration method in a score-informed audio decomposition sce-
nario. As in Section 4, our objective is again the extraction of
isolated drum sounds from polyphonic drum recordings with en-
hanced transient preservation. In contrast to the idealized labora-
tory conditions we used before, we now estimate the magnitude
spectrograms of the component signals from the mixture. To this
end, we employ NMFD [3, 4, 23] as decomposition technique. We
briefly describe our strategy to enforce score-informed constraints
on NMFD. Finally, we repeat the experiments described Section 4
under these more realistic conditions and discuss our observations.

5.1. Spectrogram Decomposition via NMFD

In this section, we briefly review the NMFD method that we em-
ploy for decomposing the TF-representation of x. As indicated
in Section 2.3, a wide variety of alternative separation approaches
exists. Previous works [3, 4, 23] successfully applied NMFD, a
convolutive version of NMF, for drum sound detection and sep-
aration. Intuitively speaking, the underlying, convolutive model
assumes that all audio events in one of the component signals can
be explained by a prototype event that acts as an impulse response
to some onset-related activation (e.g., striking a particular drum).
In Figure 2(b), one can see this kind of behavior in the hi-hat com-
ponent V3. There, all instances of the 8 onset events look more or
less like copies of each other that could be explained by inserting
a prototype event at each onset position.
NMF can be used to compute a factorization V ≈ W · H, where
the columns of W ∈ RK×C≥0 represent spectral basis functions
(also called templates) and the rows of H ∈ RC×M≥0 contain time-
varying gains (also called activations). NMFD extends this model
to the convolutive case by using two-dimensional templates so that
each of the C spectral bases can be interpreted as a magnitude
spectrogram snippet consisting of T � M spectral frames. To
this end, the convolutive spectrogram approximation V ≈ Λ is
modeled as

Λ :=

T−1∑
τ=0

Wτ ·
τ→
H , (8)

where
τ→
(·) denotes a frame shift operator. As before, each col-

umn in Wτ ∈ RK×C≥0 represents the spectral basis of a particular
component, but this time we have T different versions of the com-
ponent available. If we take lateral slices along selected columns
of Wτ , we can obtain C prototype magnitude spectrograms as de-
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Figure 5: NMFD templates and activations computed for the example drum recording from Figure 2. The magnitude spectrogram V is
shown in the lower right plot. The three leftmost plots are the spectrogram templates in Wτ that have been extracted via NMFD. Their
corresponding activations in H are shown as black curves in the three top plots. The gray curves show the score-informed initialization
(H)(0).

picted on the left hand side of Figure 5. NMFD typically starts
with a suitable initialization of matrices (Wτ )(0) and (H)(0). Sub-
sequently, these matrices are iteratively updated to minimize a suit-
able distance measure between the convolutive approximation Λ
and V. In this work, we use the update rules detailed in [3], which
we omit for brevity.

5.2. Score-Informed NMFD

Proper initialization of (Wτ )(0) and (H)(0) is an effective means
to constrain the degrees of freedom in the NMFD iterations and
enforce convergence to a desired, musically meaningful solution.
One possibility is to impose score-informed constraints derived
from a time-aligned, symbolic transcription [1]. To this end, the
individual rows of (H)(0) are initialized as follows: Each frame
corresponding to an onset of the respective drum instrument is ini-
tialized with an impulse of unit amplitude, all remaining frames
with a small constant. Afterward, we apply a nonlinear exponen-
tial moving average filter to model the typical short decay of a
drum event. The outcome of this initialization is shown in the top
three plots of Figure 5 (gray curves).
In [19], best separation results were obtained by score-informed
initialization of both the templates and the activations. For sepa-
ration of pitched instruments (e.g., piano), prototypical overtone
series can be constructed in (Wτ )(0). For drums, it is more diffi-
cult to model prototype spectral bases. Thus, it has been proposed
to initialize the bases with averaged or factorized spectrograms of
isolated drum sounds [21, 22, 4]. In this paper, we use a sim-
ple alternative that first computes a conventional NMF whose ac-
tivations H and templates W are initialized by the score-informed
(H)(0) and setting (W)(0) := 1.
With these settings, the resulting factorization templates are usu-
ally a pretty decent approximation of the average spectrum of each
involved drum instrument. Simply replicating these spectra for all
τ ∈ [0 : T − 1] serves as a good initialization for the template
spectrograms. After some NMFD iterations, each template spec-
trogram typically corresponds to the prototype spectrogram of the

corresponding drum instruments and each activation function cor-
responds to the deconvolved activation of all occurrences of that
particular drum instrument throughout the recording. A typical
decomposition result is shown in Figure 5, where one can see that
the extracted templates (three leftmost plots) indeed resemble pro-
totype versions of the onset events in V (lower right plot). Fur-
thermore, the location of the impulses in the extracted H (three
topmost plots) are very close to the maxima of the score-informed
initialization.
In the following, we describe how to further process the NMFD re-
sults in order to extract the desired components. Let H ∈ RC×M≥0

be the activation matrix learned by NMFD. Then, we define for
each c ∈ [1 : C] the matrix Hc ∈ RC×M≥0 by setting all elements
to zero except for the cth row that contains the desired activations
previously found via NMFD. We approximate the cth component

magnitude spectrogram by Λc :=
∑T−1
τ=0 Wτ ·

τ→
Hc .

Since the NMFD model yields only a low-rank approximation of
V, spectral nuances may not be captured well. In order to remedy
this problem, it is common practice to calculate soft masks that can
be interpreted as a weighting matrix reflecting the contribution of
Λc to the mixture V. The mask corresponding to the desired com-
ponent can be computed as Mc := Λc �

(
ε+

∑C
c=1 Λc

)
, where

� denotes element-wise division and ε is a small positive constant
to avoid division by zero. We obtain the masking-based estimate of
the component magnitude spectrogram as Vc := V�Mc, with �
denoting element-wise multiplication. This procedure is referred
to as α-Wiener filtering in [29].

Test case Initial phase estimate Fixed magnitude estimate
Case 3 (ϕc)

(0) := ϕMix Ac := VT
c

Case 4 (ϕc)
(0) := 0 Ac := VT

c

Table 2: Configuration of the test cases in the second experiment
involving score-informed audio decomposition.
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Figure 6: (a): Evolution of the normalized consistency measure vs. the number of iterations. (b): Evolution of the pre-echo energy vs. the
number of iterations. The curves show the average over all test excerpts, the axis limits are the same as in Figure 4.

5.3. Evaluation Results

We now basically repeat the experiment from Section 4, keeping
the STFT parameters and excerpt boundaries as described in Sec-
tion 4.2. The component magnitude spectrograms are estimated
from the mixture using L = 30 NMFD iterations and spectrogram
templates with a duration of T = 8 frames (approx. 100 ms).
Consequently, we introduce two new test cases as detailed in Ta-
ble 2.
In Figure 6(a), we again observe that the inconsistency reduction
obtained using TR reconstruction (solid lines) is indistinguishable
from the GL method (dashed lines). The improvements are less
significant compared to the numbers that can be obtained when
using oracle magnitude estimates (compare Figure 4(a)). On aver-
age, the reconstructions in Case 3 (initialized with ϕMix) seem to
quickly get stuck in a local optimum. Presumably, this is due to
imperfect NMFD decomposition of the onset related spectrogram
frames, where all instruments exhibit a more or less flat magnitude
distribution and thus show increased spectral overlap.
In Figure 6(b), we first see that pre-echo reduction with NMFD-
based magnitude estimates Ac := VT

c and zero phase (Case 4)
works slightly worse than in Case 2 (compare Figure 4(b)). This
supports our earlier findings, that weak initial phase estimates ben-
efit the most from applying many iterations of the proposed method.
GL reconstruction using ϕMix (Case 3) slightly increases the pre-
echno energy over the iterations. In contrast, applying the TR
reconstruction decreases the pre-echo energy by roughly −3 dB,
which amounts to approx. 15 % of the improvement achievable
under idealized conditions (Case 1).
In Figure 3, different reconstructions of a selected hi-hat onset
from our example drum loop is shown in detail. Regardless of the
used magnitude estimate (oracle in (b) or NMFD-based in (c)), the
proposed TR reconstruction (bottom) clearly exhibits reduced pre-
echos in comparison to the conventional GL reconstruction (top).
We provide example component signals from this drum loop and
a few test items online2. By informal listening (preferably using
headphones), one can clearly spot differences in the onset clar-
ity that can be achieved with different combinations of MSTFT
initializations and reconstruction methods. Even in cases, where
imperfect magnitude decomposition leads to undesired cross-talk
artifacts in the single component signals, our proposed TR method
better preserves transient characteristics than the conventional GL
reconstruction. Furthermore, usage of the mixture phase for MSTFT
initialization seems to be a good choice since one can often notice
subtle differences in the reconstruction of the drum events’ decay

2Audio examples: http://www.audiolabs-erlangen.de/
resources/MIR/2015-DAFx-TransientRestoration/

phase in comparison to the oracle signals. However, timbre dif-
ferences caused by imperfect magnitude decomposition are much
more pronounced.

6. CONCLUSIONS

We proposed a simple, yet effective extension to Griffin and Lim’s
iterative LSEE-MSTFTM procedure (GL) for improved restora-
tion of transient signal components in music source separation.
The method requires additional side information about the loca-
tion of the transients, which we assume as given in an informed
source separation scenario. Two experiments with the publicly
available “IDMT-SMT-Drums” data set showed that our method is
beneficial for reducing pre-echos both under laboratory conditions
as well as for component signals obtained using a state-of-the-art
source separation technique. Future work will be directed towards
automatic estimation of the required transient positions and appli-
cation of this technique for polyphonic music recordings involving
more than just drums and percussion.
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