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ABSTRACT

Electronic Music (EM) is a popular family of genres which
has increasingly received attention as a research subject
in the field of MIR. A fundamental structural unit in EM
are loops—audio fragments whose length can span several
seconds. The devices commonly used to produce EM, such
as sequencers and digital audio workstations, impose a mu-
sical structure in which loops are repeatedly triggered and
overlaid. This particular structure allows new perspectives
on well-known MIR tasks. In this paper we first review a
prototypical production technique for EM from which we
derive a simplified model. We then use our model to illus-
trate approaches for the following task: given a set of loops
that were used to produce a track, decompose the track by
finding the points in time at which each loop was activated.
To this end, we repurpose established MIR techniques such
as fingerprinting and non-negative matrix factor deconvo-
lution.

1. INTRODUCTION

With the advent of affordable electronic music production
technology, various loop-based genres emerged: techno,
house, drum’n’bass and some forms of hip hop; this family
of genres is subsumed under the umbrella term Electronic
Music (EM). EM has garnered mainstream attention within
the past two decades and has recently become a popular
subject in MIR: standard tasks have been applied to EM
(structure analysis [17]); new tasks have been developed
(breakbeat analysis and resequencing [7, 8]); and special-
ized datasets have been compiled [9].

A central characteristic of EM that has not been exten-
sively considered is its sequencer-centric composition. As
noted by Collins [4], loops are an essential element of EM:
loops are short audio fragments that are “generally associ-
ated with a single instrumental sound” [3]. Figure 1 illus-
trates a simplified EM track structure similar to that en-
couraged by digital audio workstations (DAWs) such as
Ableton Live [1]. The track starts with the activation of
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Figure 1. A condensed EM track built with three loop
layers: drums (D), melody (M) and bass (B). Each block
denotes the activation of the corresponding pattern during
the time it spans.

a drum loop (blue, bottom row). After one cycle, a melody
loop (yellow, middle row) is added, while the drum loop
continues to play. A third layer—the bass (red, top row)—
is activated in the third cycle. Over the course of the track,
these loops are activated and deactivated. An important
observation is that all appearances of a loop are identical;
a property that can be modeled and exploited in MIR tasks.
In particular, we consider the task of decomposing an EM
track: given the set of loops that were used to produce a
track and the final, downmixed version of the track itself,
we wish to retrieve the set of timepoints at which each loop
was activated.

This work offers three main contributions. First, we re-
view the production process of EM and how it leads to the
prototypical structure outlined previously (Section 2). Sec-
ond, we propose a simplified formal model that captures
these structural characteristics (Section 3). Third, we use
our model to approach the EM decomposition task from
two angles: first, we interpret it within a standard retrieval
scenario by using fingerprinting and diagonal matching
(Section 4). Our second approach is based on non-negative
matrix factor deconvolution (NMFD), a technique com-
monly used for audio source separation (Section 5). We
summarize our findings and discuss open issues in Sec-
tion 6.

2. STRUCTURE AND PRODUCTION PROCESS

Unlike other genres, EM is often produced by starting with
a single distinct musical pattern [19] (also called loop)
and then adding and subtracting further musical material
to shape the tension and listener’s expectation. An EM
track is built by combining layers (with potentially differ-
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ent lengths) in looping cyclical time—where the overall
form corresponds to the multitrack layout of sequencers
and digital audio workstations (DAWs) [4]. Figure 1 pro-
vides a simple example of such a track (total duration 56 s),
consisting of three layers or loops: drums (D), bass (B) and
melody (M), each with a duration of 8 s. We will be using
this track as a running example to clarify the points made
throughout this paper.

A common characteristic of EM tracks is their relative
sparseness or low timbral complexity during the intro and
outro—in other words, a single loop is active. This prac-
tice is rooted in two facts: Firstly, EM tracks are conceived
not as isolated units, but rather as part of a seamless mix
(performed by a DJ), where two or more tracks are over-
laid together. Thus, in what could be termed DJ-friendly
tracks [4], a single, clearly percussive element at the be-
ginning and end facilitates the task of beat matching [3]
and helps avoid unpleasantly dense transitions. We have
constructed our running example following this principle:
in Figure 1, the only active layer during the intro and outro
is the drum loop (bottom row, blue).

The second reason for having a single-layer intro is that
this section presents the track’s main elements, making the
listener aware of the sounds [3]. Once the listener has be-
come familiar with the main musical idea expressed in the
intro, more layers are progressively brought in to increase
the tension (also known as a buildup), culminating in what
Butler [3] designates as the track’s core: the “thicker mid-
dle sections” where all loop layers are simultaneously ac-
tive. This is reflected in Figure 1, where the melody is
brought in at 8 s and the bass at 16 s, overlapping with un-
interrupted drums. After the core has been reached, the
majority of layers are muted or removed—once again, to
create musical anticipation—in a section usually known
as break or breakdown (see the region between 24–32 s in
Figure 1, where only the melody is active). To release the
musical tension, previous loops are reintroduced after the
breakdown, (seconds 32–40, Figure 1) only to be gradually
removed again, arriving at the outro. In the following sec-
tions we will develop a model that captures these structural
characteristics and provides a foundation for analyzing EM
tracks.

3. SIMPLIFIED MODEL FOR EM

In Section 2 we illustrated the typical form of loop-based
electronic music. With this in mind, our goal is to analyze
an EM track’s structure. More specifically, our method
takes as input the set of loops or patterns that were used
to produce a track, as well as the final, downmixed version
of the track itself. From these, we wish to retrieve the set
of timepoints at which each loop was activated within the
track. We begin by formalizing the necessary input ele-
ments.

Let V ∈ RK×M be the feature representation of an
EM track, where K ∈ N is the feature dimensional-
ity and M ∈ N represents the number of elements or
frames along the time axis. We assume that the track
was constructed from a set of R patterns P r ∈ RK×T r

,

Figure 2. (Left): Tensor P with three patterns (drums,
bass, melody). (Right): Activation matrix H with three
rows; the colored cells denote an activation of the corre-
sponding pattern.

r ∈ [0 : R− 1] := {0, . . . , R−1}. The parameter T r ∈ N
is the number of feature frames or observations for pattern
P r. In practice, the patterns can have different lengths—
however, without loss of generality, we define their lengths
to be the same T := T 0 = . . . = TR−1, which could
be achieved by adequately zero-padding shorter patterns
until they reach the length of the longest. Based on this as-
sumption, the patterns can be grouped into a pattern tensor
P ∈ RK×R×T . In the case of our running example, seen
in Figure 1, T =̂ 8 s and the number of patterns is R = 3.
Consequently, the subdimension of the tensor which refers
to a specific pattern with index r is P r := P (·, r, ·) (i. e.,
the feature matrix for either (D), (M), or (B) in our ex-
ample); whereas Pt := P (·, ·, t) refers to frame index t
simultaneously in all patterns.

In order to construct the feature representation V from
the pattern tensor P , we require an activation matrix H ∈
BR×M with B := {0, 1}, such that

V =̂

T−1∑

t=0

Pt ·
t→
H , (1)

where
t→
(·) denotes a frame shift operator [18]. Figure 2 de-

picts P andH as constructed for our running example. The
model assumes that the sum of pattern signals and their
respective transformations to a feature representation are
linear, which may not always be the case. The additive
assumption of Eq. 1 implies that no time-varying and/or
non-linear effects were added to the mixture (such as com-
pression, distiortion, or filtering), which are often present
in real-world EM. Aside from this, we specify a number of
further constraints below.

The devices used to produce early EM imposed a se-
ries of technical constraints which we formalize here. Al-
though many of these constraints were subsequently elim-
inated in more modern equipment and DAWs, they have
been ingrained into the music’s aesthetic and remain in use
up to the present day.

Non-overlap constraint: A pattern is never superim-
posed with itself, i. e., the distance between two activations
of any given pattern is always equal to or greater than the
pattern’s length. Patterns are loaded into a device’s mem-
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Figure 3. (a): Log-frequency spectrogram for entire track.
(b): Matching curves computed using cosine similarity for
drums, melody, and bass (bottom to top). The dashed line
represents the curve’s global mean; the dash-dotted line
is the GT mean (see Section 4.4 for definition of gain).
Colored triangles indicate GT loop activation positions.

ory and triggered by a sequencer—usually without further
activation signals before it has played through to the end.
If a pattern P r is activated at time m ∈ [0 : M − 1], then
Hr(m) 6= 0⇒ Hr(m+ 1) = . . . = Hr(m+T − 1) = 0.
Length constraint: As noted by [4], multiple layers in EM
are complementary, creating aggregate effects and capable
of being independently inserted and removed. For this rea-
son, we make the simplifying assumption that T := T 0 =
T 1 = . . . = TR−1, i. e., that all patterns have the same
length.
T-grid constraint: Motivated by the use of centralized
MIDI clocks and the fixed amount of musical time avail-
able on prevalent devices such as drum machines (which
typically allow programming one musical measure at a
time, in 16 steps), we enforce a timing grid which restricts
the possible activation points in H . In Figure 1, patterns
are always introduced and removed at multiples of 8 s.
Amplitude constraint: We assume that a pattern is always
activated with the same intensity throughout a track, and
therefore each row r in the activation matrix H fulfills
Hr := H(r, ·) ∈ B1×M .

4. FINGERPRINT-BASED EM DECOMPOSITION

In the running example, multiple patterns are overlaid in
different configurations to form the track. If we know a
priori which patterns are included and wish to find their
respective activation positions, we need a technique capa-
ble of identifying an audio query within a database where
further musical material is superimposed. We first exam-
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Figure 4. (a): Log-frequency spectral peak map for the
entire track (black dots) and for each query (red dots en-
closed in red, from left to right: drums, melody, and bass).
(b): Matching curves computed with the Jaccard index and
each pattern as a query for drums, melody, and bass (bot-
tom to top).

ine log-frequency spectrograms and diagonal matching as
a baseline approach, and continue with audio fingerprint-
ing techniques based on spectral peaks in combination with
various similarity measures. In Section 5 we discuss an al-
ternative approach based on NMFD. The running example
is constructed with one audio file for each pattern and a
generic EM track arrangement seen in Figure 1. The com-
plete track is generated in the time domain by summing
the individual patterns that are active at a given point in
time. All audio files have been downmixed to mono with a
sampling rate Fs = 22050 Hz.

4.1 Diagonal Matching

We implement the diagonal matching procedure outlined
in [13, pp. 376–378] to measure the similarity between
each query pattern P r and the track feature matrix V .
In simple terms, to test if and where the query P r =
(P r

0 , . . . , P
r
T−1) is contained in V = (V0, . . . , VM−1), we

shift the sequence P r over the sequence V and locally
compare P r with suitable subsequences of V . In general,
let F be the feature space (for example, F = RK in the
case of log-frequency spectrograms). A similarity mea-
sure s : F × F → R ∩ [0, 1] between two feature frames
will yield a value of 1 if the query is identical to a certain
region of the database, and 0 if there is no resemblance at
all.

504 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



4.2 Baseline Procedure

For each individual pattern, as well as the entire track, we
compute an STFT X with the following parameters: block
size N = 4096, hop size H = N/2 and a Hann win-
dow. From these, magnitude spectrograms (abbreviated as
MS) are computed and mapped to a logarithmically spaced
frequency axis with a lower cutoff frequency of 32 Hz, an
upper cutoff frequency of 8000 Hz and spectral selectiv-
ity of 36 bins per octave (abbreviated LS). Under these
STFT settings, the 36-bin spectral selectivity does not hold
in the two lowest octaves; however, their spectral peak
contribution is negligible. Preliminary experiments have
shown that this musically meaningful feature representa-
tion is beneficial for the matching procedure both in terms
of efficiency and accuracy. We begin with a baseline ex-
periment (Figure 3), using LS and cosine similarity:

Cosine : scos(u, v) := 1− 〈u|v〉
||u|| · ||v|| , u, v ∈ RK \ {0}.

(2)
Notice that the clearest peak is produced by the melody ac-
tivation at 24 s (Figure 3b, middle row), which occurs with-
out any other patterns being overlaid. The three remain-
ing activation points for the melody have a very low gain
relative to their neighboring values. The matching curve
for the drums (Figure 3b, bottom row) displays a coarse
downwards trend starting at 0 s and reaching a global min-
imum at 24 s (the point at which the drum pattern is not ac-
tivated in our example); this trend is reversed as the drums
are added again at 32 s. The internal repetitivity (or self-
similarity) of the drum pattern causes the periodic peaks
seen throughout the matching curve. Overall, it is evi-
dent from all three curves that the combination of LS with
cosine similarity is insufficient to capture the activations
when multiple patterns are superimposed—motivating our
next experimental configuration which uses spectral peak
maps.

4.3 Fingerprinting with Peak Maps

Although our scenario is slightly different to that of audio
fingerprinting and identification, both require a feature rep-
resentation which captures an individual pattern’s charac-
teristics despite the superposition of further sound sources.
To this end, we use spectral peak maps as described in [13].
Conceptually, we are following an early approach for loop
retrieval inside hip hop recordings which was presented
in [20] and later refined in [2]. Their method is based on a
modification of the fingerprinting procedure originally de-
scribed in [21].

For each time-frequency bin in the respective LS, a rect-
angular analysis window is constructed. The maximum
value within each window is kept (with the value 1 on the
output) and all neighbors are set to 0 on the output. In
Figure 4a we show the spectral peak map for the entire
track (black dots) and the query peak map for each query
pattern (red dots in red rectangles). These log-frequency
peak maps populate a pattern tensor P ∈ BK×R×T , where
K = 286. Thus P r corresponds to the peak map for the

Gain Pearson
µ σ µ σ

MS/cos 1.72 0.31 0.13 0.05
LS/cos 1.57 0.29 0.11 0.05

PLS/cos 19.46 10.45 0.52 0.18
PLS/inc 21.69 11.90 0.51 0.19
PLS/Jac 19.54 9.76 0.53 0.18

Table 1. Results for diagonal matching experiments
with magnitude spectrograms (MS), log-frequency spec-
trograms (LS), and log-frequency peak maps (PLS) us-
ing the cosine, inclusion and Jaccard similarity measures.
Each column shows the mean and variance for peak gain
and Pearson correlation.

rth pattern, while V corresponds to the entire track.
In addition to the cosine measure defined in Eq. 2, we

test different similarity measures s:

Jaccard : sJac(u, v) := 1− ||u ∧ v||
||u ∨ v|| , u, v ∈ BK , (3)

Inclusion : sinc(u, v) := 1− ||u ∧ v||
||u|| , u, v ∈ BK , (4)

where we set 0
0 := 1. The inclusion metric aims to quantify

the extent to which the query is contained or included in the
database and has a similar definition to the Jaccard index.

4.4 Evaluation

We use two measures to quantify how well the matching
curves capture the pattern activations. For the first mea-
sure, termed gain, we compute the average of the activa-
tion values at the ground truth (GT) activation points: in
Figures 3b and 4b, these locations are marked by colored
triangles, corresponding to each loop in the running exam-
ple; their mean value is shown as a dash-dotted line. We
also compute the mean value for the entire curve (dashed
line) and use the ratio between these two means in order to
assess the quality of the matching curve. Ideally, the curve
assumes large values at the GT activation points and small
values elsewhere, resulting in a larger gain. As a second
measure we take the Pearson correlation between a com-
puted matching curve and its corresponding row Hr in the
GT activation matrix, where the activation points have a
value of 1, and 0 elsewhere. Again, a high Pearson corre-
lation reflects high matching curve quality.

We generated a set of patterns used to build proto-
typical EM tracks. To foster reproducible research, we
produced them ourselves, avoiding potential copyright
issues—they are available under a Creative Commons
Attribution-ShareAlike 4.0 International license and can
be obtained at the companion website 1 . We chose seven
prominent EM subgenres such as big beat, garage and
drum’n’bass (in a tempo range between 120–160 BPM).
For each subgenre, we generated four patterns in the cate-
gories of drums, bass, melody and additional effects.

1 https://www.audiolabs-erlangen.de/resources/
MIR/2016-ISMIR-EMLoop
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Figure 5. Activation curves learned by NMFD applied to
the magnitude spectrogram of the running example. The
dashed lines represent the mean value for the complete
curve, but are very close to the x-axis.

As stated by Wang [21], spectral peak maps are robust
to superposition of multiple sources; a fact which becomes
clear when comparing Figures 3b and 4b. In Figure 4b,
the peak gain has greatly increased compared to the base-
line approach with LS. In Table 1 we list the mean peak
gain and Pearson correlation for all seven tracks, along
with standard deviations for each value. The first two rows,
MS/cos and LS/cos, correspond to the baseline approach—
the last three rows summarize the experiments with spec-
tral peak maps. Note that spectral peak maps have approx-
imately ten times the peak gain of MS/LS, whereas the
Pearson correlation increases by a factor of four. Figures 3
and 4 illustrate the results in Table 1 at an intuitive level.
With MS, the spectral content shared among different types
of patterns impedes distinct peaks from emerging. By dis-
carding this irrelevant information, LS better represent the
characteristics of each pattern. From the perspective of
peak quality, only the self-similarity of the drum pattern
continues to pose a challenge.

5. NMFD-BASED EM DECOMPOSITION

By design, our model for EM is very close to the formula-
tion of NMFD; in this section we explore the performance
of NMFD and compare it with our fingerprinting methods.

5.1 Related Work

In this section, we briefly review the NMFD method that
we employ for decomposing the feature representation V .
Weiss and Bello [22] used non-negative matrix factoriza-
tion (NMF) to identify repeating patterns in music. By
adding sparsity constraints and shift-invariant probabilis-
tic latent component analysis (SI-PLCA), they automati-
cally identify the number of patterns and their lengths—
applied to beat-synchronous chromagrams in popular mu-
sic. Masuda et al. [12] propose a query-by-audio system
based on NMF to identify the locations where a query mu-

sical phrase is present in a musical piece. Among more
general techniques for investigating alleged music plagia-
rism, Dittmar et al. [5] proposed a method for retrieval of
sampling. Their approach, based on NMF, was not sup-
plemented with systematic evaluation, but was further in-
vestigated in [23]. Previous works [6, 11, 16, 18] success-
fully applied NMFD—a convolutive version of NMF—for
drum transcription and separation. Hockman et al. [7, 8]
specifically focused on analyzing breakbeats, i. e., drum-
only loops as used in hip hop and drum’n’bass . Detecting
sample occurrences throughout a track is a secondary as-
pect, as they address the more challenging scenario of esti-
mating the loop resequencing [8]. All these previous works
have in common that they attempt to retrieve one loop in-
side a song, whereas we pursue a more holistic approach
that allows to deconstruct the whole track into loops.

5.2 NMFD Model

Our objective is to decompose V into component mag-
nitude spectrograms that correspond to the distinct musi-
cal elements. Conventional NMF can be used to com-
pute a factorization V ≈ W · H, where the columns of
W ∈ RK×R

≥0 represent spectral basis functions (also called
templates) and the rows of H ∈ RR×M

≥0 contain time-
varying gains (also called activations). The rank R ∈ N of
the approximation (i. e., number of components) is an im-
portant but generally unknown parameter. NMFD extends
NMF to the convolutive case by using two-dimensional
templates so that each of the R spectral bases can be in-
terpreted as a magnitude spectrogram snippet consisting of
T � M spectral frames. The convolutive spectrogram
approximation V ≈ Λ is modeled as

Λ :=
T−1∑

t=0

Wt ·
t→
H , (5)

where
t→
(·) denotes a frame shift operator (see also Eq. 1).

As before, each column in Wt ∈ RK×R
≥0 represents the

spectral basis of a particular component, but this time
we have T different versions Wt, with t ∈ [0 : T − 1]
available. If we take lateral slices along the columns of
Wt, we can obtain R prototype magnitude spectrograms
Ur ∈ RK×T

≥0 . NMFD typically starts with a suitable ini-
tialization (with random values or constant values) of ma-
trices W

(0)
t and H(0). These matrices are iteratively up-

dated to minimize a suitable distance measure between the
convolutive approximation Λ and V. In this work, we use
the update rules detailed in [18], which extend the well-
known update rules for minimizing the Kullback-Leibler
Divergence (KLD) [10] to the convolutive case.

5.3 Evaluation

For our experiments with NMFD we used MS and LS to
conduct the procedure in two variants. For the first variant
(referred to as R in Table 2), the only a priori informa-
tion used is the number of patterns (or templates) R and
their length T . The templates are initialized randomly and
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Gain Pearson
µ σ µ σ

NMFD@MS, R 55.20 29.80 0.65 0.25
NMFD@MS, RP 89.62 39.67 0.88 0.11
NMFD@LS, R 52.39 35.95 0.64 0.22
NMFD@LS, RP 79.59 34.99 0.87 0.12

Table 2. Results for NMFD with magnitude spectrograms
(MS) and log-frequency spectrograms (LS), initializing the
number of templates (R) and also the loop templates (RP).
Each column shows the mean and variance for peak gain
and Pearson correlation.

fifty iterative updates are used to minimize the KLD. To
account for the effects of random initialization, we carry
out ten initialization passes per track. The results in Ta-
ble 2 reflect the mean and standard deviation across all
passes. For the second variant (RP), we supply the pat-
tern templates themselves at initialization (i. e., R, T and
P are known). We also disallow template updates and only
allow activation updates. Since the templates in variant
R are initialized randomly, there is no direct relationship
between the learned activation curves and the correspond-
ing ground truth curves. We deal with this permutation in-
determinacy by comparing all computed activation curves
with all ground truth curves and taking the results which
maximize the overall score. For all configurations in Ta-
ble 2, we observe a peak gain at least twice as high as
that obtained through diagonal matching; the Pearson cor-
relation increases by a factor of 1.2–1.7, depending on the
NMFD configuration taken for comparison. Focusing on
the differences among NMFD configurations, RP brings
peak gain improvements by a factor slightly greater than
1.5; the Pearson correlation increases by about 1.35. The
feature choice (MS or LS) does not play a significant role
in result quality. Due to the amount of prior knowledge
used to initialize the RP configuration, we consider it as an
upper bound for less informed approaches.

6. CONCLUSIONS AND FUTURE WORK

In the preceding sections we developed a better under-
standing of the feature representations and matching tech-
niques that are commonly used for pattern activation dis-
covery. In this section, we reflect on some of the limita-
tions of our work, further research topics, and computa-
tional performance issues.

Clearly, our work only provides a baseline for further
work towards more realistic scenarios. As to our model’s
inherent shortcomings, real-world EM tracks usually con-
tain more than four individual patterns, which are rarely
available. Moreover, activations of a given pattern are of-
ten (spectrally) different from one another due to the use
of effects such as delay and reverb, filter sweeps or re-
sequencing. Thus, we consider this study as a stepping
stone towards a fully-developed pipeline for EM structure
analysis and decomposition. One potential research direc-
tion would be the automatic identification of suitable pat-
tern candidates. A repetition-based analysis technique as

Method Time (s)

PLS 0.2
NMFD@LS,(R/RP) 2.5
NMFD@MS,(R/RP) 36.0

Table 3. Computation times for diagonal matching with
log-spectral peak maps (PLS), NMFD with magnitude
spectrograms (MS), and NMFD with log-frequency spec-
trograms (LS). The choice of initialization R or RP for
NMFD does not impact execution time.

described in [14] could be used in conjunction with spec-
tral peak maps to compute self-similarity matrices (SSMs)
that saliently encode inclusion relationships. Furthermore,
semi-informed variants of NMFD might be helpful in dis-
covering additional patterns that are not explicitly given,
where the use of rhythmic structure can serve as prior
knowledge to initialize the activations. Although diago-
nal matching curves can be computed efficiently with a
straightforward implementation, we have seen they have
certain shortcomings; we wish to investigate the feasi-
bility of using them as rough initial guesses and leaving
the refinement up to NMFD. Beyond each method’s ca-
pabilities, as seen in Tables 1 and 2, there is also the is-
sue of their running time and memory requirements. For
the running example, we tested our MATLAB implementa-
tion on a 3.2 GHz Intel Core i5 CPU with 16 GB RAM,
yielding the mean execution times in Table 3. From Ta-
bles 3 and 2 we can conclude that NMFD@LS offers
the best balance between quality and resource intensity.
NMFD@MS takes approximately 14 times longer to com-
pute than NMFD@LS and only produces marginally bet-
ter results. Indeed, recall that the feature dimensionality
K = 286 for LS and K = 2049 for MS, which explains
the large difference in execution times.

As a final remark, musical structure analysis is an ill-
defined problem, primarily because of ambiguity; a seg-
mentation may be based on different principles (homo-
geneity, repetition, novelty) that can conflict with each
other [15]. The main advantage of our method is that we
avoid the philosophical issue of how a track’s structure is
perceived, and rather attempt to determine how it was pro-
duced—a univocal problem. It can then be argued that the
listeners’ perception is influenced by the cues inherent to
EM’s compositional style.
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