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ABSTRACT

This paper addresses the question how music information
retrieval techniques originally developed to process audio
recordings can be adapted for the analysis of correspond-
ing brain activity data. In particular, we conducted a case
study applying beat tracking techniques to extract the
tempo from electroencephalography (EEG) recordings
obtained from people listening to music stimuli. We point
out similarities and differences in processing audio and
EEG data and show to which extent the tempo can be
successfully extracted from EEG signals. Furthermore, we
demonstrate how the tempo extraction from EEG signals
can be stabilized by applying different fusion approaches
on the mid-level tempogram features.

1 Introduction

Recent findings in cognitive neuroscience suggest that
it is possible to track a listener’s attention to different
speakers or music signals [1,24], or to identify beat-related
or rhythmic features in electroencephalography (EEG)
recordings ! of brain activity during music perception. In
particular, it has been shown that oscillatory neural activity
is sensitive to accented tones in a rhythmic sequence [19].
Neural oscillations entrain (synchronize) to rhythmic se-
quences [2, 14] and increase in anticipation of strong tones
in a non-isochronous (not evenly spaced), rhythmic se-
quence [3,4,10]. When subjects hear rhythmic sequences,
the magnitude of the oscillations changes for frequencies
related to the metrical structure of the rhythm [16, 17].

EEG studies [5] have further shown that perturbations of
the rhythmic pattern lead to distinguishable electrophysio-
logical responses—commonly referred to as event-related
potentials (ERPs). This effect appears to be independent
of the listener’s level of musical proficiency. Furthermore,
[26] showed that accented (louder) beats imagined by a lis-
tener on top of a steady metronome beat can be recognized

! Electroencephalography (EEG) is a non-invasive brain imaging
technique that relies on electrodes placed on the scalp to measure the
electrical activity of the brain. A recent review of neuroimaging methods
for music information retrieval (MIR) that also includes a comparison of
EEG with different approaches is given in [11].
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Figure 1. Question: Can we extract the tempo of a music
recording from brain activity data (EEG) recorded during
listening? The red vertical lines in the audio waveform
(top) and the EEG signal (bottom) mark the beat positions.

from ERPs. EEG signals have also been used to distinguish
perceived rhythmic stimuli [21] with convolutional neural
networks. First preliminary results using autocorrelation
for tempo estimation from the EEG signal during percep-
tion and imagination of music have been reported in [20].

This raises the question whether MIR techniques origi-
nally developed to detect beats and extract the tempo from
music recordings could also be used for the analysis of cor-
responding EEG signals. One could argue that as the brain
processes the perceived music, it generates a transformed
representation which is captured by the EEG electrodes.
Hence, the recorded EEG signal could in principle be
seen as a mid-level representation of the original music
piece that has been heavily distorted by two consecutive
black-box filters—the brain and the EEG equipment.

This transformation involves and intermingles with several
other brain processes unrelated to music perception and is
limited by the capabilities of the recording equipment that
can only measure cortical brain activity (close to the scalp).
It further introduces artifacts caused by electrical noise or
the participant’s movements such as eye blinks. Figura-
tively speaking, this could be compared to a cocktail-party
situation where the listener is not in the same room as the
speakers but in the next room separated by a thick wall.

In this paper, we address the question whether well-
established tempo and beat tracking methods, originally
developed for MIR, can be used to recover tempo infor-
mation from EEG data recorded from people listening to
music, see Figure 1. In the remainder of this paper, we
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Figure 2. Tempogram computation for music signals.

(a) Waveform signal. (b) Novelty curve. (¢) Tempogram
representation.

first briefly describe the EEG dataset (Section 2). As a first
contribution, we explain how an MIR technique for tempo
extraction can be applied on EEG signals (Section 3).
Then, in Section 4, we evaluate the tempo extraction on the
EEG signals by comparing it to the tempo extracted from
the corresponding audio signals. As another contribution,
we show that the tempo extraction on EEG signals can
be stabilized by applying different fusion approaches.
Finally, we conclude the paper with a summary and
indication of possible research directions (Section 5).

2 Recording Setup and Dataset

In this study, we use a subset of the OpenMIIR
dataset [22]—a public domain dataset of EEG recordings
taken during music perception and imagination.> For our
study, we use only the music perception EEG data from
the five participants p € P := {09,11,12,13,14}* who
listened to twelve short music stimuli—each 7s to 16s
long. These stimuli were selected from well-known pieces
of different genres. They span several musical dimensions
such as meter, tempo, instrumentation (ranging from piano
to orchestra) and the presence of lyrics (singing or no
singing present), see Table 1. All stimuli were normalized
in volume and kept similar in length, while ensuring that
they all contained complete musical phrases starting from
the beginning of the piece. The EEG recording sessions
consisted of five trials ¢ € T := {1,...,5} in which all
stimuli s € S :={01,02,03,04,11,12,13,14,21,22,23,24}
were presented in randomized order. This results in a
total of |S|-|T|-|P|=12-5-5 = 300 trials for the five

2 The dataset is available at https://github.com/sstober/
openmiir

3 The remaining participants in the dataset had some of the stimuli
presented at a slightly different tempo (c.f. [22]), which would not allow
our fusion approaches discussed later in Section 4.
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Figure 3. Tempogram computation for EEG signals. (a)
EEG signal. (b) Local average curve. (c) Normalized EEG
signal (used as novelty curve). (d) Tempogram representa-
tion.

participants, |S|-|T| =12-5=060 trials per particpant, and
|P|-|T'| =25 trials per stimulus.

EEG was recorded with a BioSemi Active-Two system us-
ing 64+2 EEG channels at 512 Hz. Horizontal and vertical
electrooculography (EOG) channels were used to record
eye movements. As described in [22], EEG pre-processing
comprised the removal and interpolation of bad channels
as well as the reduction of eye blink artifacts by removing
highly correlated components computed using extended
Infomax independent component analysis (ICA) [12] with
the MNE-python toolbox [6].

3 Computation of Tempo Information

In this section, we describe how tempo information can be
extracted both from music and EEG signals. To this end,
we transform a signal into a tempogram T : R x R<y —
R>o which is a time-tempo representation of a signal. A
tempogram reveals periodicities in a given signal, similar
to a spectrogram. The value 7 (¢,7) indicates how predom-
inant a tempo value 7 € R+ (measured in BPM) is at time
position ¢ € R (measured in seconds) [15, Chapter 14].

In the following, we provide a basic description of the
tempogram extraction for music recordings (Section 3.1)
and EEG signals (Section 3.2). For algorithmic details,
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we refer to the descriptions in [8, 15]. To compute the
tempograms for the experiments in this work, we used
the implementations from the Tempogram Toolbox.*
Furthermore, we describe how the tempo information of
a tempogram can be aggregated into a tempo histogram
similar to [25] from which a global tempo value can be
extracted (Section 3.3).

3.1 Tempogram for Music Audio Signals

To compute a tempogram, a given music audio signal is
first transformed into a novelty curve capturing note onset
information. In the following, we use a novelty curve
computed as the positive part of a spectral flux, see [8].
Figure 2a shows the waveform of an audio stimulus, which
begins with a set of cue clicks (in beats) followed by a short
music excerpt of the same tempo. In Figure 2b, the novelty
curve extracted from the waveform is shown. The onsets of
the cue clicks are clearly reflected by peaks in the novelty
curve. For the subsequent music excerpt, one can see that
the peaks are similarly spaced as the cue clicks. However,
there are some additional peaks in the music excerpt that
correspond to additional notes or noise. Especially for mu-
sic with soft onsets, the novelty curve may contain some
noise in the peak structures. As for the tempo extraction,
we further transform the novelty curve into an audio tem-
pogram that reveals how dominant different tempi are at a
given time point in the audio signal. In this study, we use a
tempogram computed by short-term Fourier analysis of the
novelty curve with a tempo window of 8 seconds, see [8]
for details. The frequency axis (given in Hz) is trans-
formed into a tempo axis (given in BPM). In Figure 2c, the
audio tempogram of the example is shown, which reveals a
predominant tempo of 160 BPM throughout the recording.

3.2 Tempogram for EEG Signals

In this section, we describe how we extract a tempogram
from EEG signals that were measured when participants
listened to a music stimulus. In principle, we use a similar
approach for the tempo extraction from EEG signals as for
the music recordings.

First, we aggregate the 64 EEG channels into one signal.
Note that there is a lot of redundancy in these channels.
This redundancy can be exploited to improve the signal-
to-noise ratio. In the following, we use the channel aggre-
gation filter shown in Figure 4. It was learned as part of a
convolutional neural network (CNN) during a previous ex-
periment attempting to recognize the stimuli from the EEG
recordings [23]. In [23], a technique called “similarity-
constraint encoding” (SCE) was applied that is motivated
by earlier work on learning similarity measures from rela-
tive similarity constraints as introduced in [18]. The CNN

4The Tempogram Toolbox contains MATLAB implementa-
tions for extracting various types of tempo and pulse related au-
dio representations [9] A free implementation can be obtained at
https://www.audiolabs-erlangen.de/resources/MIR/
tempogramtoolbox

Figure 4. Topographic visualization of the SCE-trained
channel aggregation filter used to compute a single signal
from the 64 EEG channels (indicated by black dots). The
filter consists of a weighted sum with the respective chan-
nel weights (shown in a color-coded fashion) and a sub-
sequent application of the tanh which results in an output
range of [—1,1].

was trained using triplets of trials consisting of a reference
trial, a paired trial from the same class (i.e., the same
stimulus) and a third trial from a different class. For each
triplet, the network had to predict which trial belongs to the
same class as the reference trial. This way, it learned chan-
nel aggregation weights that produce signals that are most
similar for trials belonging to the same class. In our earlier
experiments, we found that the resulting aggregated EEG
signals capture important characteristics of the music stim-
uli such as downbeats. We hypothesized that the learned
filter from [23] could also be useful in our tempo extraction
scenario, even though it is a very different task. 5

Figure 3a shows an example of an aggregated EEG signal.
From the aggregated EEG signal, we then compute a
novelty curve. Here, opposed to the novelty computation
for the audio signal, we assume that the beat periodicities
we want to measure are already present in the time-domain
EEG signal. We therefore interpret the EEG signal as a
kind of novelty curve. As pre-processing, we normalize
the signal by subtracting a moving average curve, see
Figure 3b. This ensures that the signal is centered around
zero and low frequent components of the signal are
attenuated. The resulting signal (Figure 3c) is then used
as a novelty curve to compute an EEG tempogram that
reveals how dominant different tempi are at a given
time point in the EEG signal (see Figure 3d). Note that,
compared to the audio novelty curve, the EEG novelty
curve is much nosier. As a result, there is more noise in
the EEG tempogram compared to the audio tempogram,
making it hard to determine a predominant global tempo.

3.3 Tempo Histograms

In this section, we explain how we extract a single tempo
value from the audio and EEG tempograms. First, we
aggregate the time-tempo information over the time by

5 We compared the tempo extraction on the SCE-trained channel ag-
gregation with simply averaging the raw data across channels and found
that the tempo extraction on the raw EEG data often performed roughly
10% points worse and was only on par with SCE in the best cases.
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Figure 5. (a) Tempogram for the music signal from Fig-
ure 2 and (b) resulting tempo histogram. (c¢) Tempogram
for EEG signal from Figure 3 and (d) resulting tempo his-
togram.

computing a tempo histogram H : Ry¢o — R>¢ from the
tempogram (similar to [25]). A value H(7) in the tempo
histogram indicates how present a certain tempo 7 is
within the entire signal. In Figure 5, a tempogram for a
music recording and an EEG signal are shown along with
their respective tempo histograms. In the audio tempo
histogram, the highest peak at 7 =159 BPM indicates the
correct tempo of the music recording. The tempogram for
the EEG data is much noisier, where it is hard to identify
a predominant tempo from the tempogram. In the tempo
histogram, however, the highest peak in the example corre-
sponds to a tempo of 158 BPM, which is nearly the same as
the main tempo obtained from the audio tempo histogram.

4 Evaluation

In this section, we report on our experiments to show to
which extent the tempo extraction for the audio signals
and the EEG signals are related. In the following, H; , ;
denotes to the tempo histogram stemming from the audio
stimulus s € S, participant p € P, and trial ¢t € T (see Sec-
tion 2). An overview of the stimuli is given in Table 1. For
all experiments, we used a tempo window of 8 seconds,
see [7]. Furthermore, we applied a moving average filter on
the EEG data of 0.5 seconds. In Section 4.1, we introduce
our evaluation measures and discuss quantitative results for
different tempo extraction strategies. Then, in Section 4.2,
to better understand the benefits and limitations of our ap-
proach, we look at some representative examples for tem-
pograms and tempo histograms across the dataset.

4.1 Quantitative Results

To determine the tempo a of a given audio stimulus,
we consider the highest peak in the respective audio
tempo histogram H*'4°, see Table 1.° The EEG tempo

6 The OpenMIIR dataset also provides ground-truth tempi in the meta-
data. Except for stimulus 21 with a difference of 4 BPM, our computed

Table 1. Information about the tempo, meter and length of
the stimuli (with cue clicks) used in this study. Note that
stimuli 1-4 and 11-14 are different versions of the same
song with and without lyrics.

ID Name Meter Length Tempo

with cue [BPM]
1 Chim Chim Cheree (lyrics) 3/4 14.9s 213
2 Take Me Out to the Ballgame (lyrics)  3/4 9.5s 188
3 Jingle Bells (lyrics) 4/4 12.0s 199
4 Mary Had a Little Lamb (lyrics) 4/4 14.6s 159
11 Chim Chim Cheree 3/4 15.1s 213
12 Take Me Out to the Ballgame 3/4 9.6s 188
13 Jingle Bells 4/4 11.3s 201
14 Mary Had a Little Lamb 4/4 15.2s 159
21 Emperor Waltz 3/4 10.3s 174
22 Hedwig’s Theme (Harry Potter) 3/4 18.2s 165
23 Imperial March (Star Wars Theme) 4/4 11.5s 104
24 Eine Kleine Nachtmusik 4/4 10.2s 140
mean 12.7s 175

histogram HPFS is much noisier. To obtain some insights
on the tempo information contained in HFFS, we look
at the tempi corresponding to the highest peak as well as
subsequent peaks. To this end, after selecting the tempo
corresponding to the highest peak, we set the values within
410 BPM in the neighborhood of the peak in the tempo
histogram to zero. This procedure is repeated until the
top n peaks are selected. In the following, we consider
the first three tempi by, be, bs obtained from a given
tempo histogram and build the sets of tempo estimates
By :={b1} (top 1 peak), By :={b1,bs} (top 2 peaks), and
Bs := {by,b2,b3} (top 3 peaks). To determine the error
of the tempo estimates B3,, with n € {1,2,3}, we compute
the minimum absolute BPM deviation compared to the
audio tempo: &(B,,a) := minyep, |b — a|. Furthermore,
as small errors are less severe as large errors, we quantify
different error classes with an error tolerance § > 0. To
this end, we compute the BPM error rate Es(5,,) which
is defined as the percentage of absolute BPM deviations
with ¢(B,,,a) > ¢. In our experiments, we use different
0€{0,3,5,7} (given in BPM).

We performed the tempo extraction from the EEG tempo
histograms with three different strategies:

(S1) Single-trial tempo extraction: For each trial, the
tempo is extracted individually. This results in ex-
tracting the tempi from |S|-|P|-|T|=12-5-5=2300
tempo histograms (see Section 4).

(S2) Fusion I: Fixing a stimulus s € S and a participant
p € P, we average over the tempo histograms of the
trials t€ 71"

1
Hop(T):= mzﬁ)‘-{s,p,t (7).
teT

This results in extracting the tempi from |.S|-|P| =60
tempo histograms.

(S3) Fusion II: Fixing a stimulus s € S, we average the
tempo histograms over the participants p € P and the

tempi differed at most 1 BPM from the OpenMIIR ground-truth.
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trials t€T":

1
Hs(T):= LT ZZ’HS,p,t(T).

peEPLET

This results in extracting the tempi from |S| = 12
tempo histograms.

Note that it is a common approach in EEG signal pro-
cessing to average the EEG signals over different trials as
described in [13]. This usually reduces the noise in the
signals. In this study, instead of averaging over the EEG
signals, we averaged over the tempo histograms, which is
a kind of mid-level feature representation.

Figure 6 shows the BPM error rates (left) as well as the
absolute BPM error (right). Each row in the figure corre-
sponds to the results for a different set of tempo estimates
B,,. For n = 1, a strict error tolerance of 6 = 0, and
strategy S1, the tempo extraction basically fails, having
a BPM error rate of 98%. This is not surprising, as no
deviation from the audio tempo is allowed. When allowing
a deviation of five BPM (6 =5), the tempo extraction using
only the top peak (n = 1) fails in 78% of the cases. By
applying the fusion strategy S2 for the tempo extraction,
the BPM error rate significantly drops to 75%, which is an
improvement of 3% points. The BPM error rate goes down
to 50% for the fusion strategy S3 which averages over
all trials for a given stimulus. This shows that averaging
stabilizes the results. When looking at the results by
considering the set of tempo estimates By (n =2) and Bs
(n = 3), we can see that the second and third peak often
correspond to the expected tempo. For example, for § =5
and strategy S3, the BPM error rate goes down from 50%
(for n=1), to 33% (for n=2), and 25% (for n=23).

Furthermore, Figure 6 shows that the results strongly
depend on the music stimulus used. The extraction for
stimulus s = 14, for example, works well for nearly all
participants. This is a piece performed on a piano which
has clear percussive onsets. Also, for the first eight stimuli
(01 —04 and 11 —14) the tempo extraction seems to work
better than for the last four stimuli (21 — 24). This may
have different reasons. For instance, s = 21, s = 23 and
s = 24 are amongst the shortest stimuli in the dataset
and s = 22 has very soft onsets. Furthermore, the stimuli
21-24 are purely instrumental (soundtracks and classical
music) without lyrics.

4.2 Qualitative examples

Figure 7 shows the tempograms and tempo histograms
for some representative examples. We subsequently
discuss the top, middle, and bottom row of the figure
corresponding to stimulus 14, 04, and 24, respectively.

The EEG tempogram shown in Figure 7a (top row) clearly
reflects the correct tempo of the music stimulus. In the
corresponding tempo histogram (b), a clear peak can be
seen at the correct tempo. In the tempo histograms (c) and
(d), corresponding to strategies S2 and S3, one can clearly

see the stabilizing and noise reducing effect of the two
fusion strategies, resulting in a very clear tempo peak.

In Figure 7b (middle row), the tempo histogram does
not reveal the expected tempo. As also indicated by the
tempogram in Figure 7a, the listener does not seem to
follow the beat of the music stimulus. However, when
averaging over the trials of participant p = 11, the tempo
peak near 160 BPM becomes more dominant (see tempo
histogram (c)). When averaging over all trials and all
participants for the stimulus s = 04, the tempo peak
becomes more blurry, but appears at the expected position,
(see tempo histogram (d)).

For the third example in Figure 7 (bottom row), the
tempogram (a) shows predominant values near the correct
tempo. In the corresponding tempo histogram (b), the
correct tempo is revealed by the second peak. However,
the histograms for strategy S2 (c) and S3 (d) lead to very
blurry peaks where the correct tempo peak is not among
the top three peaks. These examples illustrate that the
fusion strategies often stabilize the tempo extraction.
When the data is too noisy, however, these strategies may
sometimes degrade the results.

5 Conclusions

In this paper, we presented a case study where we applied
an MIR tempo extraction technique, originally developed
for audio recordings, to EEG signals. In experiments, we
showed that it is possible to extract the tempo from EEG
signals using a similar technique as for audio signals. We
could see that the averaging over trials and participants
typically stabilized the tempo estimation. Furthermore, we
noticed that the quality of the tempo estimation was highly
dependent on the music stimulus used. Exploring this
effect is beyond the scope of this small study. To properly
understand the reasons for this effect, a large-scale music
perception experiment using stimuli with systematically
adapted tempi would be needed. Possible reasons might
be the complexity of the music stimuli, the presence of
lyrics, the participants, or the applied methodology and
techniques. Investigating these issues could be a starting
point for interdisciplinary research between MIR and
music perception. Supplementary material and code is
available at https://dx.doi.org/10.6084/m9.
figshare.3398545.
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