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ABSTRACT

This paper approaches the problem of annotating measure
positions in Western classical music recordings. Such an-
notations can be useful for navigation, segmentation, and
cross-version analysis of music in different types of rep-
resentations. In a case study based on Wagner’s opera
“Die Walküre”, we analyze two types of annotations. First,
we report on an experiment where several human listeners
generated annotations in a manual fashion. Second, we
examine computer-generated annotations which were ob-
tained by using score-to-audio alignment techniques. As
one main contribution of this paper, we discuss the incon-
sistencies of the different annotations and study possible
musical reasons for deviations. As another contribution,
we propose a kernel-based method for automatically es-
timating confidences of the computed annotations which
may serve as a first step towards improving the quality of
this automatic method.

1. INTRODUCTION

Archives of Western classical music often comprise doc-
uments of various types and formats including text, sym-
bolic data, audio, image, and video. Dealing with an opera,
for example, one may have different versions of musical
scores, libretti, and audio recordings. When exploring and
analyzing the various kinds of information sources, the es-
tablishment of semantic relationships across the different
music representations becomes an important issue. For
a recorded performance, time positions are typically in-
dicated in terms of physical units such as seconds. On
the other hand, the musical score typically specifies time
positions using musical units such as measures. Know-
ing the measure positions in a given music recording not
only simplifies access and navigation [15, 19] but also al-
lows for transferring annotations from the sheet music to
the audio domain (and vice versa) [16]. Furthermore, a
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Figure 1. Two measure annotations for a Karajan perfor-
mance of Wagner’s opera “Die Walküre”, first act, mea-
sures 1–3. (a) Piano reduction of the score. (b) Annotation
A1. (c) Annotation A2. (d) Deviation of A1 from A2.

measure-based alignment of several performances enables
cross-performance analysis tasks [12, 13].

In this paper, we report on a case study based on the
opera cycle “Der Ring des Nibelungen” WWV 86 by
Richard Wagner where we consider the first act of the sec-
ond opera “Die Walküre” (The Valkyrie). For this chal-
lenging scenario, we examine different types of measure
annotations—either supplied by human annotators (man-
ual annotations) or generated automatically using synchro-
nization techniques (computed annotations). Figure 1 il-
lustrates this scenario. Surprisingly, even the manual an-
notations (not to speak of the annotations obtained by au-
tomated methods) often deviate significantly from each
other. As one contribution, we analyze such inconsisten-
cies and discuss their implications for subsequent music
analysis tasks. After describing the dataset and the anno-
tation process (Section 2), we first analyze the properties
of manual annotations stemming from different human an-
notators (Section 3). Subsequently, we evaluate computer-
generated annotations that are derived from score-to-audio
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synchronization results (Section 4). Hereby, we examine
correlations between inter-human inconsistencies and er-
rors of the automated approach and identify musical rea-
sons for the deviations. Finally, we propose a method
to derive confidence values for the computed annotations
from the synchronization procedure (Section 5).

2. DATA AND ANNOTATIONS

2.1 Music Scenario

Wagner’s four-opera cycle “Der Ring des Nibelungen”
WWV 86 is an exceptionally long work of about 14–
15 hours duration. Because of its large scale and com-
plex structure, it constitutes a challenging scenario for
computer-assisted analysis methods [16]. In this paper,
we consider the first act of “Die Walküre” WWV 86 B for
a first case study. For analyzing such music, several is-
sues are relevant. Work-related aspects such as motifs, in-
strumentation, chords, or coarse-scale harmonic structures
as well as performance-related phenomena such as tempo,
timbre, or loudness play a role. Furthermore, the relation
between such aspects and the libretto may be of interest.

For their analyses, musicologists traditionally use the mu-
sical score which corresponds to the musical idea of the
composer. Scores or piano reductions provide a compact
overview of the musical content and are particularly suit-
able for harmony analysis. For performance-related as-
pects of the music, we need to analyze audio recordings.
For this paper, we consider both types of data. Regarding
symbolic data, we use a piano-reduced version of the score
by Kleinmichel. 1 The sheet music is processed with OMR
software (AvidTM PhotoScore) followed by manual correc-
tion using notation software. This piano-reduced score
constitutes a kind of “harmonic excerpt” of the music.
From the notation software, we export symbolic data types
such as MIDI or MusicXML. For the audio domain, we
consider an interpretation by Karajan with the Berlin Phil-
harmonic (1966 Deutsche Grammophon, Berlin). 2 The
duration of the first act in this recording is 67 minutes.

The types of music representations differ in the way how
time and tempo are encoded. Audio recordings have a
physical time axis usually given in seconds. In contrast,
scores exhibit a musical time axis given in measures or
beats. The physical length of a musical unit—such as a
measure—depends on the tempo and the time signature. In
operas, both tempo and time signature change frequently.
To establish relations between the representations, we need
to interconnect their time axes. One way to do this is to
specify the measure positions in the audio recordings.

Such measure annotations may fulfill several purposes.
First, they facilitate navigation and segmentation using
musically meaningful units such as motifs, passages, or

1 This piano reduction is publicly avaible on http://www.imslp.org.
2 In our experiments, we also consider further performances yielding

similar results as the ones reported for the Karajan performance.

scenes [19]. Second, they enable the transfer of seman-
tic annotations or analysis results from one domain to the
other [16]. Third, cross-version analysis specifically uses
the relation between different performances in order to sta-
bilize analysis results [12].

2.2 Manual Annotations

To obtain measure annotations for our opera, we first con-
sider a manual approach where five students with a strong
practical experience in Western classical music annotated
the measure positions for the full Karajan recording. We
refer to these annotators as A1, . . . ,A5. While following a
vocal score [20] used as reference, the annotators listened
to the recording and marked the measure positions using
the public software Sonic Visualizer [2]. After finishing a
certain passage, the annotators corrected erroneous or in-
accurate measure positions. The length of these passages,
the tolerance of errors, and the overall duration of the an-
notation process differed between the annotators. Roughly
three hours were necessary to annotate one hour of music.

Beyond that, the annotators added comments to specify
ambiguous measure positions. As musical reasons for such
ambiguities, they mentioned tempo changes, fermatas, tied
notes over barlines, or very fast passages. Furthermore,
they reported performance-specific problems such as asyn-
chronicities between orchestra and singers or masking of
onsets through prominent other sounds. For some of these
critical passages, the annotators reported problems arising
from the use of a piano reduction instead of the full score.

Due to these (and other) difficulties, one can find sig-
nificant deviations between the different annotations (see
Figure 1 for an illustration). One goal of this paper is to
analyze the annotation consistency and to uncover possi-
ble problems in the annotation process (Section 3).

2.3 Computed Annotations

The manual generation of measure annotations for music
recordings is a time-consuming and tedious procedure. To
automate this process, different strategies are possible. For
example, one could start with a beat tracking algorithm and
try to find the downbeats which yields the measure posi-
tions [17]. Moreover, beat information may help to obtain
musically meaningful features [6]. For classical music,
however, beat tracking is often not reliable [9, 10]. In [4],
Degara et al. have automatically estimated the reliablity of
a beat tracker.

In this paper, we follow another strategy based on synchro-
nization techniques. The general goal of music synchro-
nization (or audio-to-score alignment) is to establish an
alignment between musically corresponding time positions
in different representations of the same piece [1, 3, 5, 11].
Based on a symbolic score representation where measure
positions are given explicitly, we use the computed align-
ment to transfer these positions to the audio recording.

518 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



Figure 2. Measure annotations for a Karajan performance of R. Wagner’s opera “Die Walküre”, Act 1, Measures 1429–
1453. (a) Piano reduction of the score (Kleinmichel). (b) Measure positions from manual (blue) and computed annotations
(red). (c) Standard deviations among the manual annotations (blue dashed line) and between the mean manual annotation
versus the algorithm’s annotation (red solid line). (d) Measure position confidences derived from the similarity matrix.

In the following experiments, we use an alignment method
based on Dynamic Time Warping (DTW) [15]. First, the
audio recording and the symbolic score are transformed
into a common feature representation. For this, we use
CENS [15] features—a variant of chroma features which
are well-suited for capturing the coarse harmonic pro-
gression of the music—combined with features captur-
ing note onset information (see [7] for details). Using
a suitable cost measure, DTW is applied to compute a
cost-minimizing alignment between the two different ver-
sions [7]. As our opera recording is long (67 minutes),
memory requirements and run time become an issue. To
this end, we use a memory-efficient multiscale variant of
DTW that allows for explicitly controlling the memory re-
quirements [18]. The main idea of this DTW variant is
to use rectangular constraint regions on which local align-
ments are computed independently using DTW. Macrae
and Dixon [14] have used a similiar approach.

3. ANALYSIS OF MANUAL ANNOTATIONS

In our analysis, we first consider the manual annotations
(see Section 2.2). As an example, Figure 2 shows a pas-
sage of “Die Walküre”, Act 1. In Figure 2b, we plot the
physical time position of the measures’ beginning (hor-
izontal axis) for the different annotators (vertical axis).
At the beginning of this example, the annotators more or
less agree. Sometimes, a single annotator slightly devi-
ates from the others. As an example, annotator A1 sets an
early position for measure 1436 compared to A2, . . . ,A5.
To quantify the overall disagreement for a specific mea-
sure, we calculate the standard deviation over the physical
time position by all annotators. The blue dashed curve in
Figure 2c shows this quantity for our exemplary passage.
For example, one can see a small increase in measure 1436.

From measure 1440 on, the standard deviation consider-
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ably increases over several measures. Looking at the anno-
tations, we see that this disagreement does not stem from
a single annotator but results from a substantial disagree-
ment between all annotators. Annotator A2 exhibits the
largest deviations by specifying the positions for the mea-
sures 1441–1443 much earlier than the other annotators.
The confusion ends at measure 1445 for which the annota-
tors seem to agree almost perfectly.

Looking at the score, we find possible hints for these devi-
ations. For both measures 1436 and 1438–1443, the chord,
voicing and instrumentation do not change with respect to
the previous measure. In the measures 1437–1441, how-
ever, a prominent trumpet melody is present which prob-
ably served as an orientation for the annotators. In accor-
dance with this assumption, we find the highest disagree-
ment for the measures 1442 and 1443 where this melody
has ended and only a constant and dense instrumentation
of the C major chord is played. 3 Nevertheless, this ob-
servation does not explain the high deviations in measures
1440–1441. Listening to the recording, we noticed that the
bass trumpet melody (left hand in m. 1439–1441) is cov-
ered by the orchestra and thus, practically not audible in
this recording. Three of the annotators marked this prob-
lem as “masking”. In measure 1444, a remarkable chord
change (C major to E major) and a new melody in the tenor
yield an orientation point where all annotators agree again.

By means of this examplary passage, we have already
shown two important cues that may help humans to find
measure boundaries: (1) Distinct harmonic changes and
(2) salient melodic lines that can be followed easily. As for
the second class, singing melodies seem to be more helpful
than instrumental lines in the orchestra which are often su-
perimposed by other instruments. For measures 1441 and
1445, we similarly find the present chord and instrumenta-
tion continued together with a melodic line. In the case of
the trumpet line (m. 1441), the agreement is low. In con-
trast, the tenor melody (m. 1445) leads to high agreement.
On the one hand, percussive speech components such as
consonants and fricatives yield good temporal cues. On
the other hand, solo voices play an important role in op-
eras and often stand out musically as well as acoustically.

We have seen that humans may disagree substantially in
their measure annotations. We now want to quantify such
deviations on the basis of the full opera act. Since we do
not have a “correct” ground truth annotation, we calculate
for each measure the mean position across all manual an-
notations. Then, we calculate the offset of each annotation
with respect to this mean position and plot a histogram over
these offset values for all measures of the act. Figure 3
shows the resulting distributions for all five human annota-
tors. In these plots, we observe typical offsets of about 0.1
seconds in both directions (measures annotated too early
and too late). Deviations larger than 0.2 seconds are rare.
Beyond this, we notice some systematic offsets towards
one direction. For example, the distribution of A1 has its

3 The full score shows 8th triplets (winds) and 16th arpeggios (strings).
Our reduction focuses on the triplets that are hard to perceive in the audio.
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Figure 3. Histograms of annotation offsets for the individ-
ual annotations (full act). The deviations refer to the mean
position of all annotations for the respective measure (la-
belled as zero). Positive offset values indicate “too late”,
negative values indicate “too early” positions compared to
the mean position. The lowest plot refers to the computed
annotation generated by our synchronization algorithm.

maximal bin at -0.04 seconds. For annotators A2, A3, and
A5, the maximal bin is centered at zero but positive de-
viations are more frequent than negative ones. Overall,
systematic offsets seem to be rather small. For single mea-
sures, deviations up to 0.2 seconds occur in both directions.
In the following, we use the mean positions of all annota-
tors as reference for evaluating our automatic approach.

4. ANALYSIS OF COMPUTED ANNOTATIONS

In this section, we analyze the computed annotations with
respect to the manual annotations. Let us consider Figure 2
again. In the lowest row of Figure 2b (red), we show
the measure positions as generated by the algorithm. The
red curve in Figure 2c quantifies the deviation between
the algorithm’s and the average manual measure position.
For the first measures 1429–1435, the computed positions
seem to coincide with the manual annotations. Similarly,
the annotations for the final measures 1445–1454 more or
less agree. For the middle section, we find a different situa-
tion. In measures 1436–1441, the algorithm strongly devi-
ates from the human annotators. For example, the position
of measure 1441 is close to the human’s position of mea-
sure 1440—a deviation of more than two seconds. Inter-
estingly, the algorithm then produces a very long measure
1441 leading to a good coincidence with the manual anno-
tations in measure 1442 again.

Looking at the score, we may find an explanation for this
behaviour. The measures 1437–1443 (where the algorithm
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strongly deviates) are harmonically restricted to a single
C major triad. The listeners may have used the trumpet
melody as cue to follow the rhythm. However, the trumpet
only plays pitches from the C major chord which is present
in the accompaniment. For chroma features which are the
basis of the synchronization approach, these pitches con-
tribute to the same chroma entries. For this reason, the
chroma-based feature representation does not yield suit-
able cues for the matching process. For measures with
clear harmonic change such as 1446 or 1448, we mostly
see high agreement. Interestingly, one finds a small devia-
tion for measure 1442 which is the most ambiguous mea-
sure among the human annotators. Here, we have to care-
fully interpret the figure since we use the mean manual an-
notations as reference. For measures with strong human
disagreement, this mean position is not a reliable reference
and, thus, the small deviation may be rather accidental.

In contrast, the relatively large deviation for measure 1444
seems surprising since we have a prominent harmonic
change here (C major to E major chord). The situation be-
comes clearer when we listen to the audio recording. Ac-
tually, the onset of the singing voice (note B4) in measure
1444 is too early in this interpretation (by almost a quar-
ter note) with respect to the chord change of the orches-
tra. The human annotators consistently followed the voice
whereas the chroma-based synchronization method relies
on the harmonic content dominated by the orchestra.

Let us consider Figure 3 again. The lowest plot (red) shows
a histogram over the annotation offsets of the synchroniza-
tion algorithm with respect to the mean manual annota-
tion. This distribution is much flatter than the human ones.
Large deviations such as the one in measure 1439 are more
frequent for the automated approach. Furthermore, there
is a remarkable systematic offset towards late measure po-
sitions. The majority of the annotations lies within a win-
dow of ± 0.3 seconds around the humans’ mean position.
For passages with strong disagreement, the algorithm finds
back after a few measures—as for our example in Figure 2.
Overall, we conclude that the automated approach does not
reach the reliablity of the manual annotations but yields
reasonable results for most measure positions.

5. CONFIDENCES FOR COMPUTED
ANNOTATIONS

As we have seen from our previous analysis, there is a
need for improving automated procedures. As a first step
towards an improvement, we now introduce an approach
for generating confidence values for the computed measure
positions. Recall that the core of our method is a synchro-
nization algorithm (see Section 2.3). Our idea is to use the
local reliablity of the synchronization for estimating the
confidence of the computed measure positions. Since the
synchronization is based on chroma features, the change in
harmony influences the quality of the alignment. Having
similar chords in neighbouring measures usually results
in similar chroma vectors. This often leads to situations

Figure 4. Estimation of measure position confidences
(schematically). In the similarity matrix, we shift a check-
erboard kernel along the warping path and calculate a con-
fidence value for each measure position.

where the measure position is ambiguous. In contrast,
measure boundaries that coincide with harmonic changes
often lead to reliable measure annotations.

On the basis of this observation, we propose a novelty-
based confidence measure. To compute the novelty score,
we transfer our music recording to a sequence of chroma
features X = (x1, . . . , xN ) with a resolution of 10 Hz.
Similarly, we compute a feature representation Y =
(y1, . . . , yM ) of the symbolic data (score). Then, we de-
rive a similarity matrix S ∈ RN×M from the two fea-
ture sequences using a cosine measure to compare feature
vectors. The automated synchronization procedure (see
Section 2.3) yields an alignment in terms of a warping path
which we project on the given feature resolution. To es-
timate local confidence values for this warping path, we
adapt an idea by Foote [8] who computes a novelty func-
tion by shifting a checkerboard kernel K ∈ RK×K along
the diagonal of a self-similarity matrix (SSM) and locally
measures the similarity between K and the underlying re-
gion of the SSM. Here, we compute a novelty function by
shifting the kernel along the warping path and locally mea-
suring the similarity between K and the region of our sim-
ilarity matrix S. In our experiments, we use a kernel K of
size K=10 features (one second of the recording).

With this procedure and a subsequent normalization step,
we obtain a curve Γ : {1, 2, . . . , N} → [−1, 1] which
measures the novelty of the local chroma vectors along
the warping path. For a feature index n ∈ {1, . . . , N},
a value of Γ(n) ≈ 1 indicates high similarity between the
local region of S and the structure of K. Intuitively, we
then expect a structural change in the features’ properties.
Musically spoken, Γ(n) ≈ 1 implies clear change in local
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Figure 5. Confidence-dependent accuracy values for the
entire act (1523 measures). For fixed tolerance values τ ,
the upper plot shows the partial accuracies Aτ (γ) of the
computed measure annotations over the confidence thresh-
old γ. The lower plot shows the fraction of measures under
consideration.

harmony. At such positions, we expect the synchronization
algorithm to work accurately. For Γ(n) ≈ 0, there is little
change in the features, which points to a harmonically ho-
mogenous situation in a neighbourhood of n. Finally, we
evaluate Γ on those time instances that correspond to the
measure positions. Figure 4 outlines this principle.

For quantitatively evaluating the computed annotations, we
consider the mean of all five manual annotations as a ref-
erence. Using a tolerance parameter τ ∈ R, we regard
a computed position to be correct if it lies within an in-
terval of length 2τ centered at the reference position. Let
M := {1, 2, . . . , L} be the set of all measures and Aτ the
fraction of correctly annotated measures with respect to τ .
For τ = 0.2 s, for example, a fraction Aτ = 62.5 % of
the measures inM lies within this interval. We further de-
fine a subsetMγ := {m ∈ M|Γ(m) ≥ γ} which only
includes measures with a confidence above the threshold
γ ∈ R. Additionally, we define a partial accuracy Aτ (γ)
which only refers to the measures inMγ .

Figure 5 shows the results for the full first act of “Die
Walküre”. In the upper part, we show the curve γ →
Aτ (γ) for fixed τ . The lower plot displays the curve
γ → |Mγ |/|M|. In general, the accuracy increases for
larger confidence thresholds γ. For τ = 0.3 s (cyan curve),
for example, Aτ (γ) improves from 78.2 % (for γ = 0)
to 87.8 % (for γ = 0.2). At the same time, the fraction
of considered measures decreases. To obtain accuracies
Aτ (γ) > 90 %, we end up evaluating less than 10 % of
the measures (for τ = 0.3 s). A good tradeoff seems to
be at γ = 0.1 where we get up to 10 % increase of Aτ (γ)
while still having half of the measure annotations included.
These more “confident” measure positions may serve as
a kind of anchor points for improving the quality of the
automated approach. For example, one could replace the
measure position with low consistency using linear inter-
polation or a smoothed tempo curve.

Finally, let us consider our running example again.
Figure 2d shows the confidence values for this passage.
We see that for the measures 1437–1443, the confidences
are low due to the harmonic homongeneity (C major chord
over seven measures). In contrast, we find high con-
fidences for distinct chord changes as in measure 1444
(C major→E major), measure 1446 (E major→A minor),
or measure 1448 (A minor→B major). Let us compare
these values to the corresponding annotation consistency
(red line in Figure 2c). For some of the high-confident
measures (1446, 1448–1450, 1452–1454), the measure po-
sition is consistent with manual annotations. The situation
is different for measure 1444. Here, our confidence value is
high but the position deviates from the manual annotations.
Remembering the audio properties discussed in Section 4,
we can understand this behaviour. Here, the human an-
notators consistently follow the entry of the voice which
is too early compared to the orchestra’s onset. Thus, the
high confidence indicates a good measure position which
is correct with respect to harmony. The deviation from the
manual annotations arises from the asynchronicity.

In general, we can only draw conclusions for measures
with high confidence Γ(m). A low confidence does not
necessarily indicate a bad estimate of the measure posi-
tion. In Figure 2, measures 1431 and 1445 are examples
for such a behaviour, where we find low Γ-values but high
consistency of measure positions with manual annotations.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed different types of measure an-
notations for an opera recording. For manual annota-
tions generated by different human annotators, we iden-
tified musical challenges which can lead to inconsisten-
cies among the annotators. In contrast, harmonic changes
and melodic lines seem to be important cues for the listen-
ers to accurately locate measure boundaries. Furthermore,
we analyzed measure annotations generated by a computer
using score-to-audio alignment. This approach provides
useful results but is less accurate than manual annotations.
In particular, harmonic homogeneity can be problematic
for chroma-based approaches. Based on this observation,
we automatically estimate the confidence of the computed
annotations. To this end, we shift a checkerboard kernel
along the warping path. The resulting confidence values
seem to be useful for identifying reliable measure posi-
tion. Thus, they may serve as a first step towards improving
synchronization-based annotation strategies.
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tional random field framework for robust and scalable
audio-to-score matching. IEEE Transactions on Audio,
Speech, and Language Processing, 19(8):2385–2397,
2011.

[12] Verena Konz, Meinard Müller, and Rainer Kleinertz.
A cross-version chord labelling approach for explor-
ing harmonic structures – a case study on Beethoven’s
Appassionata. Journal of New Music Research, pages
1–17, 2013.

[13] Cynthia C.S. Liem and Alan Hanjalic. Expressive tim-
ing from cross-performance and audio-based align-
ment patterns: An extended case study. In Proceed-
ings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 519–524, Miami,
USA, 2011.

[14] Robert Macrae and Simon Dixon. Accurate real-time
windowed time warping. In Proceedings of the Inter-
national Society for Music Information Retrieval Con-
ference (ISMIR), pages 423–428, Utrecht, The Nether-
lands, 2010.

[15] Meinard Müller. Fundamentals of Music Processing.
Springer Verlag, 2015.

[16] Kevin R. Page, Terhi Nurmikko-Fuller, Carolin Rind-
fleisch, David M. Weigl, Richard Lewis, Laurence
Dreyfus, and David De Roure. A toolkit for live an-
notation of opera performance: Experiences capturing
Wagner’s ring cycle. In Proceedings of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR), pages 211–217, Málaga, Spain, 2015.

[17] Hélène Papadopoulos and Geoffroy Peeters. Joint esti-
mation of chords and downbeats from an audio signal.
IEEE Transactions on Audio, Speech, and Language
Processing, 19(1):138–152, 2011.

[18] Thomas Prätzlich, Jonathan Driedger, and Meinard
Müller. Memory-restricted multiscale dynamic time
warping. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), Shanghai, China, 2016.

[19] Thomas Prätzlich and Meinard Müller. Freischütz Dig-
ital: a case study for reference-based audio segmen-
tation of operas. In Proceedings of the International
Conference on Music Information Retrieval (ISMIR),
pages 589–594, Curitiba, Brazil, 2013.

[20] Richard Wagner. Die Walküre. Vocal score based on
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