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Problem Setting

Solo Voice
Enhancement

Collection of Polyphonic
Music Recordings

Monophonic
Transcription

Matching
Procedure

vs.

Our Data-Driven Approach
Use a DNN to learn the mapping from a “polyphonic” TF representation to a 
“monophonic” TF representation.

Retrieval Scenario
Given a monophonic transcription of a jazz solo as query, find the corresponding 
document in a collection of polyphonic music recordings.

Solo Voice Enhancement
1. Model-based Approach [Salamon13]
2. Data-Driven Approach [Rigaud16, Bittner15]
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Overview

1. Background on the Data
2. DNN Architecture & Training
3. Evaluation within Retrieval Scenario
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Weimar Jazz Database (WJD)

Transcription

Beats

| E7 A7 | D7 G7 | … Chords
…

[Pfleiderer17]

§ 299 transcribed jazz solos of 

monophonic instruments.

§ Transcriptions specify a musical pitch for 

physical time instances.

§ 570 min. of audio recordings.

Thanks to the Jazzomat Research team: M. Pfleiderer, K. Frieler, J. Abeßer, W.-G. Zaddach
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DNN Training
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TargetInput

§ Input: Log-freq. STFT frame (120 semitones, 10 Hz feature rate)

§ TF-representation of jazz solo recording

§ Output: Pitch activations (120 semitones, 10 Hz feature rate)

§ Target: TF-representation with solo instrument’s pitch activations
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DNN Architecture

W1 W2 W3 W4 W5

ReLU ReLU ReLU ReLU ReLU

! ∶=	Input, % ∶=	Output, & ∶=	Target, ' ∶=	Loss

! %

' = MSE(!, %)

120Dimensions: 120 120 120 120 120 120

§ Basic feed-forward DNN with 5 hidden layers.

§ Training is applied layer-wise [Bengio06], extended in [Uhlich15].
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Layer-Wise Training

W1, b1 § Initialize weights (W1) and bias (b1) with 

Linear Least Squares (LLS)

§ Train 600 epochs …

§ Interpret output of trained network as input 

to the next layer

§ Append next layer

§ Initialize W2 and b2 with LLS

§ Train 600 epochs …

Keep weights

[Uhlich15]

W1, b1 W2, b2



© AudioLabs, 2017
Balke et al.

Data-Driven Solo Voice Enhancement for Jazz Music Retrieval
9

Training Details

§ Total Duration: 570 min.
§ Active Solo Frames: 62%
§ Split: 10-fold cross-validation

§ Training Set: 63%, Validation Set: 27%
§ Test Set: 10%

§ Loss: Mean-Squared Error
§ Optimizer: Stochastic Gradient Descent

§ Mini-batch size = 100 frames (10 s)
§ Learning Rate = 1001, Momentum = 0.9
§ 600 epochs per layer (3000 epochs in total)
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Training Loss
Number of Hidden Layers: 1

600
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Training Loss
Number of Hidden Layers: 2

600 1200
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Training Loss
Number of Hidden Layers: 3

600 1200 1800
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Training Loss
Number of Hidden Layers: 4

600 1200 1800 2400
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Training Loss
Number of Hidden Layers: 5

600 1200 1800 2400 3000



© AudioLabs, 2017
Balke et al.

Data-Driven Solo Voice Enhancement for Jazz Music Retrieval
15

Qualitative Evaluation
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Experiment: Jazz Music Retrieval

T T

Solo Voice
Enhancement

Weimar Jazz
Database

Matching
Procedure

vs.

§ 30 queries with a duration of 25 s for each fold

§ 1 relevant document in the database per query

§ Additional queries by shortening to [20, 15, 10, 8, 6, 5, 4, 3] s

§ Evaluation measure is the mean reciprocal rank (MRR)



© AudioLabs, 2017
Balke et al.

Data-Driven Solo Voice Enhancement for Jazz Music Retrieval
17

Experiment: Jazz Music Retrieval
Results

Baseline   Chroma-based matching [Mueller15]
Melodia Quantized F0-trajectory [Salamon13]
DNN
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Conclusions

§ Data-driven approaches seem to be beneficial for solo voice enhancement.
§ Data-driven and model-based approaches show similar performance in a 

retrieval scenario.

Future Work
§ Investigate scenarios where predominance assumption is violated,

e. g., walking bass transcription.
§ Train instrument-specific models, e. g., implicit instrument recognition.
§ Utilize DNN’s output for other tasks (e. g., F0-tracking).

Audio examples, trained models, and data:
https://www.audiolabs-erlangen.de/resources/MIR/2017-ICASSP-SoloVoiceEnhancement
stefan.balke@audiolabs-erlangen.de



feat. Masataka Goto, Mark Plumbley, and Udo Zölzer as keynote speakers.
More Details: http://www.aes.org/conferences/2017/semantic/
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