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Music Tempo Estimation: Are We Done Yet?
Hendrik Schreiber*, Julián Urbano† and Meinard Müller*

With the advent of deep learning, global tempo estimation accuracy has reached a new peak, which 
presents a great opportunity to evaluate our evaluation practices. In this article, we discuss presumed 
and actual applications, the pros and cons of commonly used metrics, and the suitability of popular 
datasets. To guide future research, we present results of a survey among domain experts that investigates 
today’s applications, their requirements, and the usefulness of currently employed metrics. To aid future 
evaluations, we present a public repository containing evaluation code as well as estimates by many 
different systems and different ground truths for popular datasets.
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1. Introduction
The estimation of a music recording’s global tempo is a 
classic Music Information Retrieval (MIR) task. It is often 
defined as estimating the frequency with which humans 
tap along to the beat (Scheirer, 1998; Dixon, 2001). In 
contrast to beat-tracking (Allen and Dannenberg, 1990; 
Goto and Muraoka, 1994) or local tempo estimation 
(Peeters, 2005), successful global tempo estimation 
requires the existence of a stable tempo as often occurs in 
Rock, Pop, or Dance music. To conduct a basic evaluation 
of a global tempo estimation system one needs the system 
itself, test recordings with globally stable tempo, suitable 
annotations, and at least one metric. Starting with the 
work of Goto and Muraoka (1994) and Scheirer (1998), 
the MIR research community has been conducting such 
evaluations for 25 years. Acknowledging the importance of 
making results comparable, the first systematic evaluation 
with a defined set of metrics and datasets was conducted 
in 2004 (Gouyon et al., 2006). One year later, the 2005 
Music Information Retrieval Evaluation eXchange 
(MIREX) (Downie, 2008) established an automatic tempo 
extraction task, which has been conducted almost every 
year ever since. Through both the datasets and metrics 
established in 2004 and for MIREX, we have seen global 
tempo estimation systems improve and have been able to 
track their performance. In the meantime, new datasets 
have been published and another large-scale evaluation 
has been conducted (Zapata and Gómez, 2011), but 
neither applications nor metrics have been fundamentally 
questioned or updated. This is why recent near-perfect 

MIREX results (Böck et al., 2015; Schreiber and Müller, 
2018b) beg the question: are we done yet?

In this work, we critically discuss the evaluation of 
global tempo estimation systems. We do so based on the 
idea that applications lead to use cases that define who the 
users are, how they use the system, in what context and 
for what purpose (Schedl et al., 2013). The combination of 
these elements determines the success criteria to evaluate 
systems and judge whether the task is indeed solved (Sturm 
et al., 2014; Sturm, 2016). This kind of evaluation also 
allows us to acquire new knowledge and advance the field 
(Serra et al., 2013, p. 31), if experiments are followed by 
interpretation of results, learning, system improvement, 
and eventually re-evaluation or even re-definition of 
the task or the evaluation methodology (Figure 1). This 
is referred to as the research cycle (Urbano et al., 2013; 
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Sturm, 2016). For it to succeed, we need to be able to 
conduct analyses of all parts of the evaluation process: 
task definition, data, metrics, systems, and analysis. As has 
been pointed out before (Urbano et al., 2013; Sturm, 2013a; 
Raffel et al., 2014; Salamon et al., 2014), this disqualifies 
evaluation campaigns with private or secret data and 
closed source evaluation code. Evaluation itself must 
follow the same cycle of learning. How we evaluate must 
be analyzed, questioned, and improved (Urbano et al., 
2013; Serra et al., 2013, p. 33). Do datasets and metrics 
match current use cases? Are there recordings for which 
no system estimates the correct tempo, or recordings most 
systems estimate different tempi for? Does that mean the 
annotation is wrong, the tempo is hard to estimate, or the 
recording is not suitable for the task? To become aware of 
and address these issues, we need versioned annotations 
and publicly archived estimates. A step in this direction 
was taken by Böck et al. (2019), by publishing annotations 
and estimates as supplemental material.

We start our investigation in Section 2 with discussion 
of the relevance of tempo estimation in light of presumed 
and actual applications (in the general sense, not referring 
to a specific software program). In Section 3, we review 
popular metrics with emphasis on construct validity. 
Then, in Section 4, we present the results of a survey 
among domain experts, which aimed at finding out which 
applications are important to them and how they measure 
success. Based on these results, we propose the formal 
octave error as a complementary metric in Section 5. Then, 
in Section 6, we discuss size, quality, composition, and 
suitability of popular datasets. In Section 7, we propose 
a public repository for reference annotations, estimates, 
and evaluation code to help with future evaluations. 
Finally, in Section 8, we draw conclusions.

Throughout this article we will illustrate some 
observations with tempo estimates produced by three 
systems: � perc (Percival and Tzanetakis, 2014), � böck 
(Böck et al., 2015),1 and � schr (Schreiber and Müller, 
2018b). They were chosen for illustrative purposes, their 
conceptual differences, and availability, not because they 
necessarily represent the state of the art.

2. Applications
Even though tempo estimation is a well established MIR 
task, the existing research rarely discusses in depth why 
tempo estimation is relevant and what the application 
requirements are.

2.1 Research Justifications
Dixon (2001) identifies four main application types for 
his work on tempo and beat extraction: performance 
analysis, perceptual modeling, audio content analysis 
for retrieval, and performance synchronization. Most 
applications described in later work fall into these four 
broad categories. Alonso et al. (2003) mention automatic 
rhythmic alignment of audio, indexing for retrieval, and 
synchronized computer graphics. Peeters (2007) explicitly 
adds automatic playlist generation, DJ applications like 
beat-mixing and looping, and further beat-synchronous 

analysis (e.g., cover song identification, Ellis and Poliner 
(2007)). Tzanetakis and Percival (2013) list applications 
such as music similarity and recommendation, semi-
automatic audio editing, automatic accompaniment, 
polyphonic transcription, beat-synchronous audio effects, 
and computer assisted DJ systems. Böck et al. (2015) add 
to this the contribution tempo estimation can make to 
beat-tracking, such that beats are aligned to a previously 
estimated tempo. Elowsson and Friberg (2015) consider 
tempo annotations useful for automated mixing, e.g., for 
beat-synchronous delay and compressor release settings. 
Similarly, Font and Serra (2016) mention remixing and 
browsing as potential applications.

In publications focused on new methods, most 
application descriptions serve a motivational purpose 
justifying the conducted research. In fact, even though 
some of the mentioned applications not only require 
tempo, but also phase information (e.g., beat-synchronous 
delay), they all stem from publications primarily (but not 
necessarily exclusively) about tempo estimation. To the 
best of our knowledge, no formal application survey for 
tempo estimation has ever been conducted. Therefore 
we simply do not know how relevant tempo estimation 
is for any of the mentioned applications and what 
requirements these applications have. Rephrased in terms 
of commercial engineering: for the past 25 years we have 
largely ignored the customer. As Salamon (2019) recently 
observed, ‘There is a disconnect between MIR research 
and potential users of MIR technologies.’ This is not to say 
that the MIR community has conducted the wrong kind 
of research. After all, it is the privilege of basic research to 
not require an immediate application, and prefacing each 
scientific project with a market study is not expedient. 
But as tempo estimation and MIR as a whole mature, one 
might want sound justifications as to why and for what 
research is conducted.

2.2 Presumed Applications
We would like to illustrate the issue with two presumed 
applications of tempo estimation: similarity and 
recommendation (Tzanetakis and Percival, 2013; Percival 
and Tzanetakis, 2014; Böck et al., 2015). By definition, two 
recordings with the same tempo are similar—at least in 
this respect. But since similarity has many facets, tempo 
cannot be the only feature used to predict it. It may not 
even be very important. In fact, in their introduction to 
music similarity Knees and Schedl (2016) briefly mention 
tempo, but do not deem it important enough to thoroughly 
discuss it. To quantify how important tempo estimation 
is for music similarity, we counted the number of MIREX 
submissions for the similarity task that used tempo as a 
feature.2 Many submissions used low-level temporal or 
rhythmic features, but only 8 of 62 (13%) explicitly used 
a single beats per minute value. One team even removed 
tempo as feature in a subsequent submission.3

Music recommendation is another application 
mentioned when justifying tempo estimation research. 
But is tempo estimation really useful for recommendation? 
Content-based systems certainly can take advantage of 
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tempo annotations (Vignoli and Pauws, 2005), but to the 
best of our knowledge this is not a common approach. 
Slaney (2011) points out that recommendation based on 
collaborative filtering usually outperforms content-based 
systems, if enough usage data is available. Merely in cold-
start scenarios (e.g., lack of usage data) does content-
based recommendation play a noteworthy role. Schedl 
et al. (2018) report that if content-based recommendation 
is attempted, ‘almost all existing approaches rely on a 
number of predefined audio features that have been used 
over and over again, including spectral features, MFCCs, 
and a great number of derivatives.’ This does certainly not 
exclude tempo, but in their report on current challenges for 
music recommender research tempo is never mentioned. 
Therefore, we conjecture that global tempo estimation 
is only of marginal importance for general similarity and 
recommendation. It may however still play a role when 
it comes to specific similarity or recommendation tasks, 
for example in the context of ballroom dances or physical 
exercise.

2.3 Actual Applications
On the positive side, there are plenty of existing applica-
tions that are very similar to those stated in the literature. 
Tempo estimation has been used in computational 
ethnomusicology (Cornelis et al., 2013). Life science 
researchers who study connections between exercise and 
music tempo (Waterhouse et al., 2010) and athletes who 
want to control the tempo of their workout naturally 
benefit from tempo estimation systems. Consumer 
applications like beaTunes (https://www.beatunes.com/) 
provide this information via offline analysis, and streaming 
services like Spotify (https://www.spotify.com/) or Deezer 
(https://www.deezer.com/) offer playlists with narrow 
BPM ranges made for runners. The music store BeatPort 
(https://www.beatport.com/) labels all its tracks with 
global BPM and key values to help DJs when shopping. 
And when performing, DJs can take advantage of tempo 
analysis and beat-tracking/matching features of their DJ 
software (e.g., Traktor, https://www.native-instruments.
com/). Thus useful applications exist, even though 
they are typically not the result of user studies or other 
requirements gathering processes by the MIR community.

3. Metrics
The exemplary evaluation during the 2004 ISMIR confer-
ence effectively established the accuracy metrics ACC1 and 
ACC2 as standards. Few subsequent publications explicitly 
discuss the musical concept of global tempo. Instead, 
researchers seem to assume that measuring ACC1 and 
ACC2 is identical to measuring global tempo. De facto, the 
metrics have become the task definition (Salamon, 2019). 
The only popular alternative is the P-Score metric.

3.1 Accuracy 1 and 2
ACC1 computes a 0 or 1 score per track, which indicates 
the correctness of an estimate, allowing a 4% tolerance. 
This tolerance is described as ‘somewhat arbitrary’ 
(Gouyon et al., 2006). It was not chosen because someone 

defined an application that required a certain precision, 
but because it was assumed that the test tracks have 
‘approximately constant tempi.’ This may have been a good 
choice for traditionally produced music, but seems lenient 
for electronic music or music produced with modern 
production techniques like click tracks (Lamere, 2009), 
and strict for Romantic piano pieces. Attempting to justify 
the tolerance, Gouyon et al. (2006) argue that according 
to Friberg and Sundberg (1995) the Just-Noticeable 
Difference (JND) for music tempi is approximately 4% and 
therefore ‘4% is probably the highest precision level that 
should be considered.’

We unfortunately see problems in this argument. First, 
Friberg and Sundberg’s experiment measured whether 
participants were able to perceive the non-isochronous 
placement of the fourth tone in a sequence of six tones. 
But instead of 4%, they actually found an average JND 
of 2.5% for tracks with tempi between 60 and 250BPM. 
Secondly, and more importantly, it is not conclusively 
explained how this experiment relates to determining 
the tempo of a 30s sample, as was the task during the 
ISMIR 2004 contest. We therefore do not believe that 
the results of the experiment are suitable to derive the 
ACC1 tolerance parameter. In fact, when plotting ACC1 for 
the tempo estimation systems böck, schr, and perc 
with different tolerances (Figure 2), we see that all three 
systems are capable of estimating tempo for Ballroom 
(Gouyon et al., 2006) tracks with almost the same accuracy 
at 2% tolerance as they are at 4% tolerance. That said, for 
datasets with less stable tempi, 4% may be too strict.

This points to issues inherent to binary metrics. The 
threshold is usually arbitrary, because it cannot be derived 
in an indisputable, objective way. Furthermore, it hides 
information. ACC1 does not tell us how wrong an estimate 
is, nor in which direction. This means that we cannot easily 
plot an error distribution or other descriptive statistics. 
ACC1 is also blind to small systematic errors below the 
threshold. At the same time, it may overemphasize 

Figure 2: ACC1 of several tempo estimation systems 
depending on tolerance measured on Ballroom with a 
ground truth based on beat annotations by Krebs et al. 
(2013).
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differences between systems. As an extreme example, 
systematic errors of +4.01% and +3.99% may not differ 
much, but their ACC1 scores could not be further apart. 
Specifying the tolerance for ACC1 in percent may also 
be questioned. Assuming a fictional tolerance of 50%, a 
recording may be estimated half as fast, but not twice as 
fast. Contrary to that, estimating a triple meter recording 
at half its tempo is arguably less appropriate than at twice 
its tempo (Elowsson and Friberg, 2015).

ACC2 additionally allows estimates to be wrong by 
the factors 2, 3, 1

2 or 1
3 (so-called octave errors). This 

metrical tolerance was not motivated by application 
requirements either, but by the realization that the used 
annotations may not match the perception of human 
listeners. Unfortunately, because the meter is not taken 
into account, ACC2 counts some perceptually erroneous 
estimates as correct (Gouyon et al., 2006). Consequently, 
Elowsson and Friberg (2015) regard it as ‘inappropriate.’ 
Another limitation of ACC2 is that it says nothing about 
a system’s ability to help a user to distinguish between 
slow and fast tracks. This reduces this metric’s usefulness 
for applications like playlist generation based on tempo 
continuity or when searching for slow music (Peeters 
and Flocon-Cholet, 2012). Gärtner (2013) states: ‘From 
the perspective of the user of DJ software, it is absolutely 
mandatory that the tempo is annotated correctly. The 
so-called octave errors are unacceptable.’ This mismatch 
between metric and usefulness illustrates that the 
construct validity (Urbano et al., 2013) of ACC2, i.e., the 
correlation between use case, success criteria, and the 
employed metric, is far from perfect for the mentioned use 
cases.

3.2 P-Score
A metric that takes tempo ambiguity into account and 
treats it as an inherent property of music (Moelants and 
McKinney, 2004) is the P-Score proposed by Moelants 
and McKinney for the MIREX audio tempo extraction task 
in 2005.4 The original metric incorporated two metrical 
levels as well as a phase estimate, and considered an 
estimation system’s salience estimation. In 2006 it was 
simplified to:

 P ST1 TT1 (1– ST1) TT2* *= +  (1)

Where each track is annotated with two reference tempi, 
T1 and T2, and T1’s relative perceptual strength ST1 
∈ [0, 1]. T1, T2, and ST1 are the result of an expensive 
process involving many annotators per track. To calculate 
a P-Score, TT1 ∈ {0, 1} encodes the ability of an estimation 
system to identify T1 with a tolerance of 8% as boolean 
value, 0 or 1. TT2 ∈ {0, 1} is defined correspondingly.5 In 
addition to the P-Score, ‘One Correct’ and ‘Both Correct’ 
percentages are published for systems participating in 
MIREX. Because P-Score accounts for ambiguity in human 
perception and does not reward perceptually erroneous 
estimates, it is an improvement compared to ACC2, but 
still has shortcomings. We were unable to find any formal 
justification for the used 8% tolerance. According to 

McKinney, ‘the tolerance was derived empirically through 
the evaluation of a number of excerpts, algorithms and 
studies. It is somewhat arbitrary […].’6 Furthermore, since 
2006 the metric does not require an estimation system to 
assign a salience value to its two estimates per track.7 This 
means that an application using a system with a perfect 
P-Score still has to guess which of the two estimates is 
the more salient one. Just like ACC2, P-Score does not test 
the ability of a system to distinguish between slow and 
fast. It also is not efficient in the sense that it is relatively 
expensive to create the necessary ground truth. This might 
explain why only one other suitable dataset (Schreiber 
and Müller, 2018a) has been created since the original 
MIREX dataset in 2005, which itself had been created for 
an experiment about the perception of tempo and not for 
MIREX.

4. Survey
To better answer some of the questions raised regarding 
applications and metrics, we have conducted a survey 
among domain experts who work or have worked on 
tempo estimation. In this section, we are highlighting the 
most important results. Details with graphical depictions 
are shown in Appendix A and the raw data is available as 
supplemental material.

Of the 24 individuals who filled out the questionnaire, 
17 (71%) belonged to academia and 7 (29%) to the 
industry. Most participants identified themselves as 
researchers (92%), and a majority claimed to be involved 
in hands-on algorithm implementation (71%). We were 
surprised to learn that, according to participants, none of 
the usually mentioned applications is most important to 
them, but to produce ‘input for other algorithms.’ While 
‘other algorithms’ may include ‘recommendation’ and 
‘similarity’, neither of these two options was explicitly 
chosen by any participant. The second most important 
application is ‘performance synchronization.’

Participants from the industry tend to focus their tempo 
estimation efforts much more on particular genres than 
those from academia. To industry, the danceable genres 
Ballroom, EDM/Disco, Hip Hop/Rap, and Reggae are 
most important (in that order). Classical is only ranked 
fifth. Contrary to this, those members from academia who 
target specific genres, ranked Classical first, followed by 
EDM/Disco, Pop/Rock, and Hip Hop/Rap. Ballroom and 
Folk were not ranked at all by academics. We speculate 
that this difference may be related to the respective 
group’s motivation. Academia has already reached very 
good results for Ballroom music (Böck et al., 2015), which 
makes it uninteresting, while Classical music might still 
be seen as a challenge and may appear as more interesting 
from a musicological point of view. In contrast, the 
industry is not primarily driven by interestingness, and 
typical industry applications—like DJ software—focus on 
dance, not classical music.

Being able to distinguish slow from fast tracks is very 
important for the applications of most participants. This 
appears to be a central requirement. A strong majority of 
industry applications (71%) also seem to need a single 
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BPM value rather than a tempo distribution. In academia, 
this is only true for 57%. Both groups see ACC1 as a very 
useful metric when it comes to measuring how well an 
application meets its requirements or how well a research 
objective is achieved. For ACC2 the picture is less clear. 
While the industry leans toward ‘useful,’ members of 
academia gave answers covering almost the entire possible 
spectrum. This supports our criticism from Section 3.1 
regarding the construct validity of ACC2. When asked about 
the usefulness of P-Score, the two groups were of very 
different opinion. Most members of the industry tend to 
regard P-Score as ‘not useful,’ while many academics see it 
as ‘essential.’ This reveals a big divide between evaluation 
for industry applications and the scientific evaluation at 
MIREX.

The survey documents that many industry members 
are interested in more accurate tempo values than are 
tolerated by ACC1 or ACC2. Among them, the most often 
demanded accuracy was ‘2 decimal places.’ This must 
be seen in the context of target genres, which for the 
industry are more oriented towards dance music, which 
typically has a very stable tempo. The most popular choice 
among academics was ‘Other.’ Here, free-form answers 
ranged from ‘BPM with as small as possible tolerance’ over 
‘no specific application yet’ to ‘depends on the dataset and 
the accuracy of the annotations.’ The second most popular 
choices among academics were ‘nearest integer’ and ‘2% 
tolerance.’ Regardless of affiliation, no one chose 8%—the 
tolerance traditionally used at MIREX.8

Lastly, while a strong majority (73%) of all participants 
still regard global tempo estimation as a relevant MIR 
task, only 57% of industry members believe so. Some of 
the stated doubts are: ‘tempo estimation is good enough 
for most industrial use cases’, ‘local tempo estimation is 
a much more useful task’, and ‘beat tracking, as a more 
general task than tempo estimation, solves all problems.’

5. Formal Octave Error
We have argued in Section 3 that the tolerances of ACC1, 
ACC2, and P-Score are difficult to justify and that the binary 
nature of these metrics hides information. Furthermore, 
using a percentage as threshold is sub-optimal, and the 
survey results indicate that there is interest in metrics with 
lower tolerance, up to an ‘as small as possible tolerance.’ 
We therefore propose a complementary metric that 
measures how close and in which direction an estimate 
is to a reference value. Inherently, such a metric supports 
meaningful visual depiction of error distributions. 
Gouyon et al. (2006) and Peeters (2007) have used such a 
metric, by showing the log2 of the ratio between estimates 
and reference values in histograms. Following them, we 
formally define the octave error OE1 as

 ( )1 2

ˆ
ˆOE , log ,

y
y y

y
=  (2)

with y, ŷ ∈ ℝ>0 as ground truth and estimate. OE1 is 
designed to highlight the most important error class, 
octave errors, in an intuitive way. Errors by factors k and 
1
k  have the same magnitude, which means that in an 

OE1 visualization the octave errors 2, 1
2, 3, and 1

3, are 
easily identifiable as clusters around 1, –1, 1.58, and 
–1.58. Figure 3a shows examples for OE1 distributions 
for Ballroom rendered as violin plots.9 Clearly visible is 
the concentration around –1 tempo octaves (TO) for all 
systems but böck, schreiber2017 (Schreiber and 
Müller, 2017), and schr. None of the systems suffer much 
from the relatively rare octave errors 3 or 13 (Peeters, 2007; 
Schreiber and Müller, 2017). The extent of the horizontal 
spread of the concentrations around 0 TO visualizes non-
octave errors. OE1 distributions can serve as indicators 
for the overall performance of a global tempo estimation 
system including the capability to help distinguish 

Figure 3: Empirical distributions of (a) OE1, (b) OE2, (c) AOE1, and (d) AOE2 using kernel density estimation (KDE). 
Based on values measured for Ballroom using a median ICBI-derived ground truth created from beat annotations by 
Krebs et al. (2013). Ordered by year of publication (Scheirer, 1998; Klapuri et al., 2006; Davies et al., 2009; Oliveira 
et al., 2010; Gkiokas et al., 2012; Percival and Tzanetakis, 2014; Schreiber and Müller, 2014; Böck et al., 2015; Schreiber 
and Müller, 2017, 2018b). Estimates for zplane and echonest stem from Percival and Tzanetakis (2014).

(a) (b) (c) (d)
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between slow and fast. Most importantly, one can see at a 
glance what kind of errors the tested systems are prone to.

We have seen in our discussion of P-Score that taking 
tempo ambiguity into account is desirable, but that 
suitable datasets are rare and new datasets are expensive 
to create. Furthermore, P-Score has not been adopted by 
the industry (Section 4). For these pragmatic reasons, we 
do not attempt to solve the metrical level problem, but 
define OE2 similar to ACC2 as

 

( )

( ) ( ) ( ){
( ) ( )}

2

1
21 1 1

1
31 1

ˆOE , arg min(| |), with

ˆ ˆ ˆ: OE , , OE , 2 , OE , ,

ˆ ˆOE , 3 , OE , .

x
y y x

y y y y y y

y y y y

ÎW
=

W =  (3)

OE2 (Figure 3b) measures accuracy on a micro level, where 
the most common errors on the metrical level are ignored, 
i.e., it measures how close the estimate is to the nearest 
related tempo.10 This is useful for genres with high tempo 
ambiguity, e.g., Dubstep (Schreiber and Müller, 2018a), 
and for applications that require errors to be as small as 
possible. The latter is a use case currently unsupported by 
ACC1 and ACC2, but desired by the industry (Section 4).

While the mean of OE1 or OE2 indicates whether an 
algorithm is expected to over- or underestimate the 
tempo, the absolute octave error (AOE = |OE|) can be used 
for system comparisons. To illustrate, Figure 3c shows 
annotated AOE1-distributions. Most older systems have an 
average AOE1 between 0.3 and 0.4TO, böck managed to 
halve this figure, and schr further reduced it to 0.056TO. 
When ignoring octave errors by using AOE2 (Figure 3d), 
we can see that böck and schr perform on a similar 
level.

Note that though the mean AOE is informative, we 
recommend also reporting a distribution for a more 
complete picture.

6. Datasets
Evaluations of tempo estimation systems rely on datasets 
consisting of suitable recordings and annotations that 
model what we want to measure. Without claim to 
completeness, Table 1 lists popular tempo datasets. 
Unfortunately, some of these datasets are relatively small, 
focus on a particular genre, are not freely available (any 
more), or have other flaws like duplicates, mislabelings, 
and distortions (Sturm, 2013b, 2014; Salamon, 2019).

6.1 Dataset Size
To reliably measure differences between systems, a 
dataset must be sufficiently large to minimize the effect of 
random variation due to the sampling of tracks it contains. 
Generalizability Theory (GT) offers a statistical tool to 
estimate the required size for performance assessments 
in general (Cronbach et al., 1963; Brennan, 2003; Bodoff, 
2008; Carterette et al., 2009; Salamon and Urbano, 
2012; Bosch et al., 2016). Essentially, the GT framework 
decomposes the variability in the observed scores into 
variability due to actual differences between systems ( 2

ss ), 
variability due to differences in track difficulty ( 2

ts ), and 
residual variability ( 2

es ), which often refers to system-track 
interactions. The total variance of the observed scores is 
therefore modeled as:

 2 2 2 2 .s t es s s s= + +  (4)

An evaluation with high 2
ss  does not require large datasets, 

because the evaluated systems are very different to begin 

Table 1: Popular public tempo datasets.

Dataset Recordings Tempo Ann. Beat Ann.

ISMIR04 Songs (Gouyon et al., 2006)1 464 BPM No

Ballroom (Gouyon et al., 2006; Krebs et al., 2013)1 698 BPM Yes

RWC-C (Goto et al., 2002)2 50 BPM Yes

RWC-G (Goto et al., 2003)2 100 BPM Yes

RWC-J (Goto et al., 2002)2 50 BPM Yes

RWC-P (Goto et al., 2002)2 100 BPM Yes

RWC-R (Goto et al., 2002)2 15 BPM Yes

GTzan (Tzanetakis and Cook, 2002; Marchand and Peeters, 2015)1 999 BPM Yes

Hainsworth (Hainsworth, 2004)1 222 BPM Yes

ACM Mirum (Peeters and Flocon-Cholet, 2012)1 1,410 BPM No

SMC (Holzapfel et al., 2012)1 217 BPM Yes

GiantSteps Tempo (Knees et al., 2015; Schreiber and Müller, 2018a)3 664 BPM/T1,T2,ST1 No

Extended Ballroom (Marchand and Peeters, 2016)1 4,180 BPM No

LMD Tempo (Raffel, 2016; Schreiber and Müller, 2018b)4 3,611 BPM No

1 Excerpts available. 2 Requires application and purchase. 3 BeatPort previews, cached versions available from JKU.  
4 7Digital  previews available.
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with, but evaluations with high 2
ts  or high 2

es  do require 
large datasets, because systems tend to perform similarly 
for the given tracks.

There are several coefficients in GT, but here we will 
report only the dependability index Φ ∈ [0, 1], which 
measures the ratio of system variance to itself plus error 
variance (Brennan, 2003):

 2 2

2

2
,

t e

s

s M
s s

s

s +
F=

+
 (5)

where M is the size of the dataset. A high Φ-value means 
that the dataset can reliably separate actual differences 
among systems from random variation due to sampling of 
tracks. Φ-values greater than 0.95 are generally considered 
high enough, but because this is rather arbitrary we focus 
more on qualitative comparisons among datasets and 
metrics.

We estimated Φ through an Analysis of Variance 
(ANOVA) for the datasets ISMIR04 Songs, Hainsworth, 
GTzan, Ballroom, SMC, RWC (here, the union of RWC-C, 
RWC-G, RWC-J, RWC-P, and RWC-R), and GiantSteps Tempo 
(Figure 4, a–g) using scores from five different systems 
(Davies et al., 2009; Percival and Tzanetakis, 2014; Böck 
et al., 2015; Schreiber and Müller, 2017, 2018b), closely 
following the approach described in Salamon and Urbano 
(2012). Figure 4 shows Φ̂  as a function of the number of 
songs M, which lets us determine how many songs would 
be necessary for a reliable evaluation. The actual number 

of songs in the respective dataset is indicated by a vertical 
and the 0.95 reliability level by a horizontal dotted line. 
In other words, for a large enough dataset, Φ̂ should pass 
through the upper left quadrant (colored in pale orange). 
Using this criterion, only ISMIR04 Songs, Ballroom, and 
GiantSteps Tempo, are large enough to reliably differentiate 
system performance for the tested algorithms when using 
ACC1 or ACC2. In all cases but GiantSteps Tempo, both OE1 
and AOE1 lead to similar or better Φ̂-values than ACC1, i.e., 
we reach a greater reliability level for the given dataset. In 
fact, all seven tested datasets are large enough to reach 
the 0.95 threshold when using OE1 as metric. For OE2 and 
AOE2 the picture is not quite as clear—for some datasets, 
like GTzan and Ballroom, they reach higher Φ̂-values than 
ACC2, for others, like SMC, lower values.

In Figure 4h, we show an evaluation of the MIREX 
dataset (McKinney et al., 2007) based on the published 
MIREX 2018 results.11 ‘One Correct’ reaches Φ̂ = 0.95, 
P-Score reaches Φ̂ = 0.92, but ‘Both Correct’ only Φ̂ = 0.67, 
this means that the MIREX dataset is close to being large 
enough for P-Score but certainly not for ‘Both Correct.’

Note that all reported Φ̂-values depend on the tested 
systems. Removing older, worse performing systems from 
the evaluation may actually lower the Φ̂-value.

6.2 Annotation Quality
Serra (2014) states that among other aspects quality is an 
important criterion when creating research corpora. The 
audio has to be of high quality and annotations have to 

Figure 4: Dependability index Φ̂ as function of metric and track count. Vertical dotted line: actual number of tracks in 
dataset. Horizontal dotted line: Φ̂ = 0.95. Desired quadrant shaded in pale orange. (a–g) Φ̂ based on estimates Davies 
et al. (2009); Percival and Tzanetakis (2014); Böck et al. (2015); Schreiber and Müller (2017, 2018b). (h) Φ̂ based on 
MIREX 2018 results.
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be accurate. Ten years after Ballroom had been used for 
the first time, Percival and Tzanetakis (2014) investigated 
the accuracy of the annotations and corrected 32 
(4.6%) of them. Corrections were also made to ACM 
Mirum (135, 9.6%) and GTzan (24, 2.4%). Interestingly, 
Percival and Tzanetakis emphasize the importance of 
using correct annotations, because testing systems on 
faulty data may lead researchers to optimize for these 
errors. This fear might be indicative for the state of MIR 
at the time. Machine learning was not ubiquitous yet 
and tuning hyperparameters using the test set was not 
perceived as quite the methodological faux-pas it is seen 
as now. But there are other good reasons to strive for 
quantifiable quality in test datasets: interpretability and 
comparability. If the quality of a test dataset is unknown, 
a metric like accuracy can at best be used to approximate 
the lower bound of a system’s true performance. At worst 
it is simply useless. It is impossible to say whether any 
changes to the system can still increase performance. 
Additionally, it is impossible to compare results for 
different datasets in a meaningful way, if the dataset 
quality is unknown.

Schreiber and Müller (2018a), for example, noticed the 
fairly low ACC2 performance of state-of-the-art tempo 
estimation systems on the original annotations of the 
GiantSteps Tempo dataset, and conducted a crowdsourced 
experiment to create a new ground truth. When comparing 
the performance of böck on the original annotations 
with the performance in the new annotations, ACC1 jumps 
from 58.9% to 64.8% and ACC2 from 86.4% to 94.0%.

6.3 Modeling Global Tempo
It is well known that some of the tracks in popular 
datasets have varying tempi (Hainsworth, 2004; Peeters, 
2007; Percival and Tzanetakis, 2014). To address this issue, 
Hainsworth defined the tempo for the tracks in his dataset 
as the mean of the Inter-Beat Intervals (IBI). Percival and 
Tzanetakis (2014) suggested using the median instead, to 
counter the influence of outliers—an idea already used by 
Peeters (2007) and Oliveira et al. (2010). Böck et al. (2015) 
followed this suggestion, but to the best of our knowledge 
did not publish their annotations. Subsequent publications 
still used the original mean-based annotations (Schreiber 
and Müller, 2017) or tempo values obtained in some other 
way. For example, Elowsson (2016) derived tempi from the 
peaks of smoothed IBI histograms.

In addition to changing tempi, some datasets 
(Hainsworth, 2004; Marchand and Peeters, 2015) contain 
recordings with microtiming variations. One may argue 
that for such recordings neither the mean nor the 
median IBI is an ideal solution, because the beats are not 
necessarily isochronous. As a result, one may see multiple 
peaks in an IBI histogram. For example, the IBI-based 
BPM histogram for the GTzan recording jazz.00053 
(Figure 5a) shows distinct peaks at 186, 190 and 201BPM 
even though the tempo of the track does not change 
over time. Choosing the median of the IBIs (200.7BPM) 
ignores the lower peaks at 186 and 190BPM. If we know 
a track’s meter, we therefore may rather use the median 
of the intervals between corresponding beats, i.e., the 

intervals between beats that occur at the same position 
in subsequent measures divided by the number of 
beats per measure. Using this Inter-Corresponding-Beat 
Interval (ICBI) for tempo calculation, we can neutralize 
effects of variations in microtiming as well as outliers  
(Figure 5b).

6.4 Dataset Suitability
While improving and versioning annotations is commen-
dable, it does not ensure that the dataset fits the use case. 
Obviously, if the use case focuses on Ballroom, using a 
Reggae dataset for testing is the wrong approach. Similarly, 
if a metric is chosen that was designed for a certain use 
case, which may imply a certain kind of music, one must 
ensure that it is suitable for the actually used kind of music 
(Figure 6). As pointed out above, a precondition for using 
ACC1 and ACC2 with 4% tolerance is a stable tempo in each 
test track. We can visualize whether this precondition is 
met for a dataset by converting IBIs to normalized tempi 
and plotting their distribution. Concretely, given a track’s 
IBIs b = {b0, b1, …, bN–1} in seconds with bn ∈ ℝ>0 and the 

Figure 5: Histograms of BPM values for GTzan jazz.00053 
based on (a) IBIs and (b) ICBIs.

(a) IBI-based BPM values

(b) ICBI-based BPM values

Figure 6: Dependencies between application, use case, 
metric, and dataset (an arrow from A to B denotes that 
A depends on B).

Application

Use Case

Metric Dataset
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number of IBIs N ∈ ℕ>0, we define its (local) tempo values 
t = {t0, t1, …, tN–1} in BPM as
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Figure 7 depicts distributions of tnorm. For SMC, only half 
the normalized local tempi fall into the ±4% interval 
[0.96,1.04] (shown in gray). For Hainsworth, it is 75.6%. 
GTzan and Ballroom have values of 91% or more and are 
thus much better suited for ACC1 and ACC2.

To get an impression of how many tracks in a dataset 
have large tempo variability, we can use the standard 
deviation σ of the normalized tempi tnorm—also known as 
the coefficient of variation cvar:

 ( )
( )
( ) ( )norm

var .
t

c t t
t

s
s

m
= =  (8)

Figure 8 shows the percentage of tracks for which 
cvar(t) < τ. with τ ∈ [0,0.5]. Among the shown datasets, 
SMC contains the highest percentage of tracks with 
large tempo variability. For only 61.3% of the tracks 
is cvar(t) < τ. In contrast, cvar(t) is less than 0.1 for 
99.4% of all Ballroom tracks. This affects accuracy. To 
demonstrate, we measure ACC2 using böck, schr, and 
perc for subsets of the datasets containing only tracks 
with cvar(t) < τ, τ ∈ [0,0.5].12 The used tempo annotations 
are based on median IBI-values. For SMC (Figure 9a), 
all three systems reach higher scores at τ = 0.1 than for 

greater τ. Comparing ACC2 for τ = ∞ to τ = 0.1, accuracy 
increases for böck by 18.4 pp, for schr by 11.5 pp, and 
for perc by 10.0 pp. For Hainsworth (Figure 9b) the 
systems also achieve higher scores at τ = 0.1, but not 
as much in absolute numbers. For GTzan (Figure 9c) 
the increase is still a little smaller, and for Ballroom 
(Figure 9d) there is none, because almost all tracks have 
small cvar(t). This relationship between τ and ACC2 reveals 
that of the four datasets only Ballroom is suitable for 

Figure 7: Distributions of normalized tempi. The gray area 
marks the interval [0.96,1.04]. The shown percentage is 
the fraction of normalized tempi within the interval.

Figure 8: Percentage of tracks with cvar(t) < τ.
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ACC2 (and thus ACC1) without reservations, because it 
meets the required degree of stability.

7. Public Repository
To help overcome issues like opaque one-figure evalua-
tions with binary metrics, differently derived annotations, 
closed source evaluation code, and the inability to 
evaluate the evaluation, we have created a public GitHub 
repository called tempo_eval (https://tempoeval.
github.io/tempo_eval/) that hosts different versions 
of corpus annotations (Section 7.1), estimates for these 
corpora (Section 7.2), and evaluation code that goes 
beyond single figure binary metrics. It provides a basis 
for the needed collaborative improvement of data and 
metrics. Section 7.3 demonstrates how the repository can 
be used for evaluation.

7.1 Reference Annotations
The tempo_eval repository allows the continuous 
improvement of reference annotations without shadowing 
past versions. This makes it possible to evaluate against 
all reference versions, improving comparability to older 
published results and thus transparency as well as 
interpretability. To provide easy access to reference data 
we converted published annotations to JAMS (Humphrey 
et al., 2014) for which tools already exist (Raffel et al., 2014).

7.2 Estimated Annotations
Rather than just serving as a static source of reference data, 
the tempo_eval repository offers a place for researchers 
to publish and archive their algorithms’ estimates instead of 
just mentioning single value metrics in their publications. 
This allows re-evaluation with new and old reference 
annotations and proper development of new metrics, 
which may ultimately lead to a better understanding of 
tempo estimation systems and the tempo estimation task. 

For example, Figure 3 shows values for a proposed metric 
(Section 5) for historic estimates measured against a 
ground truth, which has been newly derived from median 
ICBI-values. Because the repository is open and public, 
contributing is easy, e.g., via pull requests. As a starting 
point, we have added estimates by many recent and classic 
systems for commonly used datasets.

7.3 Evaluation Code
The tempo_eval repository also contains evaluation 
code. Implemented are ACC1, ACC2, and P-Score, along 
with McNemar’s test for significant differences for 
ACC1 and ACC2, OE1, OE2, their corresponding absolute 
incarnations, and t-tests for estimates from algorithm 
pairs. Results can be rendered in a publishable report 
(Markdown/HTML), and figures and data are exportable 
in several formats. As argued above, reporting single value 
metrics is not sufficient for an in-depth evaluation. We 
have therefore implemented visualizations for system 
performance depending on tolerances (Figure 2), tempo 
stability (Figure 9), tempo range (Figure 10), and—if 
available—genre- or free-form-tags (Figure 11). As an 
example, we will discuss tempo- and genre-dependent 
evaluation using the Ballroom dataset with annotations 
from Percival and Tzanetakis (2014).

Figure 10a shows ACC1 values for subsets defined 
by tempo ranges [T – 10, T + 10] BPM. Clearly visible, 
perc’s ACC1 drops to zero for T > 150BPM, and 
böck’s ACC1 sharply decreases to 27.3% or less for 
T > 190BPM. Both systems seem to exhibit some form of 
octave bias (Schreiber and Müller, 2017), i.e., the ability to 
estimate the tempo appears tied to certain tempo ranges. 
Figure 10c depicts mean OE1 values for the same scenario 
and shows what kind of errors lead to the observed low 
accuracy. Apparently, perc suffers from octave errors of 
–1 TO for T > 150BPM. The same is true for böck and 

Figure 10: (a), (c) ACC1 and mean OE1 for T ± 10BPM intervals. (b) Smoothed tempo distribution of tracks in Ballroom 
according to the ground truth from Percival and Tzanetakis (2014). (d) OE1 predictions of generalized additive models 
(GAM). Shaded areas correspond to 95% confidence intervals.

50 100 150 200
0

50

100

A
C

C
1

(%
)

(a) ACC1 for tempo interval subsets

50 100 150 200
0

10

20

30

Tr
ac

ks
(%

)

(b) Smoothed tempo distribution

50 100 150 200
−1

0

1

T (BPM)

O
E

1
(T

O
)

perc schr böck

(c) Mean OE1 for tempo interval subsets

50 100 150 200
−1

0

1

Tempo (BPM)

O
E

1
(T

O
)

perc schr böck

(d) GAM estimation for OE1

https://tempoeval.github.io/tempo_eval/
https://tempoeval.github.io/tempo_eval/


Schreiber et al: Music Tempo Estimation: Are We Done Yet? 121

T > 190BPM. None of the systems seem to do well for 
tracks with T < 66 BPM or T > 225BPM, but as we can 
see in Figure 10b, the dataset contains only very few 
songs in these tempo ranges. Figure 10d combines error 
magnitude, error direction, and significance in a single 
graph. It shows the predictions and their 95% confidence 
interval of generalized additive models (GAMs) fitted on 
the respective systems’ OE1 results. A large confidence 
interval indicates tempo regions with few samples or 
large variability in performance. In Figure 10d this can 
be seen for less than 75BPM (few tracks), around 150BPM 
(performance starts to shift), and for more than 210BPM 
(few tracks, low performance).

Because JAMS supports additional annotations like 
genre, tags, and beat positions, these can be incorporated 
into the evaluation. For example, Figure 11a shows OE1 
distributions by genre. Mostly due to –1TO octave errors, 
perc does poorly on Jive, Quickstep, and Viennese Waltz—
the three genres with the highest average tempo. böck 
faces the same issue with Quickstep. This is noteworthy, 
because Jive, Quickstep, and Viennese Waltz combined 
make up almost 30% of the Ballroom dataset, as shown in 
Figure 11b (light-blue bars).

Note that evaluation by ballroom genre is just an 
example. The code picks up on any JAMS annotation 
declared in the tag_open namespace.

8. Conclusions
In this article we asked the question whether the task 
of global tempo estimation is solved yet. To find out, we 
investigated what applications global tempo estimation 
is used for, discussed currently used metrics, analyzed 
popular datasets with emphasis on tempo stability and 
size, and presented the results of a survey among domain 
experts. We found that applications and use cases for 
global tempo estimation are somewhat ill-defined, the 
binary nature of ACC1 and ACC2 is problematic and the 
metrics are not suitable for some use cases, the construct-
validity of ACC2 is questionable, the industry has not 
adopted P-Score, and that some currently used datasets 
are too small or do not have a tempo that is stable enough 
for ACC1 and ACC2. Because of these issues, our answer to 
the opening question, whether the task of global tempo 
estimation is solved yet, is no. Not because estimation 
systems are not good enough—we do not really know 
whether that is the case or not, but because it is impossible 
to solve a task for which neither use cases with success 
criteria have been well motivated and properly defined, 
nor the suitability of metrics or datasets has been shown.

Going forward, we need to recognize that global tempo 
estimation is a task serving different possible applications, 
each with its own accuracy requirements. Performance 
synchronization may need as accurate a tempo estimate 
as possible, while a general musicological interest, playlist 
building, or some other downstream algorithm may only 
require a rough estimate or tempo markings like andante 
and allegro. Actually achievable accuracy depends on 
tempo stability, on how tempo is modeled, and annotations 
are derived. ACC1 and ACC2 with their fixed 4% tolerance 
do neither different accuracy requirements nor tempo 
stability levels justice. We therefore recommend using the 
complementary OE metrics, which do not suffer from this 
limitation and deliver meaningful results for music with 
different degrees of tempo stability. If reporting ACC1 and 
ACC2 is a necessity, one might also want to plot results 
for tolerance ranges (Figure 2). In accordance with the 
industry and despite its popularity among scholars, we see 
no practical use for P-Score, until larger datasets with the 
required annotations become available.

Almost regardless of metric or use case, we recommend 
not to use Hainsworth or the combined RWC datasets. 
Even though technically an evaluation with OE1 is 
possible, they are too small for metrics that allow easy 
summarization like ACC1 or AOE1. Because of its borderline 
size, we also do not recommend GTzan. Due to its large 
tempo instabilities and small size, the SMC dataset should 
probably only be used to evaluate for low accuracy use 
cases using OE1 or AOE1, if at all. Of the tested datasets, we 
endorse using ISMIR04 Songs, Ballroom, and GiantSteps 
Tempo, if appropriate for the use case. To ensure 
comparable evaluations, we suggest using open source 
code like mir_eval or tempo_eval. All estimates 
and used annotations should be published, to improve 
reproducibility of the evaluation. The tempo_eval 
repository is meant as a home for this. Since annotations 
often exist in different versions, we explicitly warn against 
comparisons with accuracy figures reported by others.

Figure 11: (a) Per genre OE1 distributions based on kernel 
density estimation (KDE) for tracks from Ballroom using 
the ground truth from Percival and Tzanetakis (2014). 
Mean OE1 values are marked in black. (b) Genre distri-
bution in Ballroom.
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Finally, to actually solve the task, we must clearly 
define use cases and success criteria (e.g., ballroom 
dance tournament, 99.9% accuracy, integer precision), 
choose the appropriate metrics for the use case, and—
if not available—curate suitable datasets. Only then an 
estimation system may succeed at solving whatever the 
resulting task may be.

Notes
 1 Estimates produced using madmom TempoDetector 

2016 version 0.17.dev0.
 2 MIREX 2006 to 2014.
 3 Because some links on the MIREX website are broken, 

we were unable to check all 74 distinct submissions. 
Some teams submitted multiple algorithms in a given 
year. Re-submissions were ignored.

 4 http://www.music-ir.org/mirex/wiki/2005:Audio_
Tempo_Extraction.

 5 http://www.music-ir.org/mirex/wiki/2006:Audio_
Tempo_Extraction.

 6 Private correspondence.
 7 Confusingly, the MIREX tempo estimation task 

requires estimation systems to estimate the salience, 
but has not used it in any evaluation since 2005.

 8 In 2018, an additional evaluation with 4% was 
conducted.

 9 We were unable to obtain either implementations 
of the approaches taken by Elowsson (2016) and 
Foroughmand and Peeters (2019) or estimates of 
their systems for the Ballroom dataset. We also do not 
include Böck et al. (2019) here, because their Ballroom 
results were apparently achieved using cross-validation 
during training (genre bias).

 10 The criticism voiced about ACC2 in Section 3.1 obvio-
usly applies to OE2 as well.

 11 Data from https://nema.lis.illinois.edu/nema_out/
mirex2018/results/ate/mck/files.html. Based on 
137 tracks, since some estimates for three tracks are 
missing.

 12 ACC2 is appropriate, because the question of suitability 
does not hinge on octave errors.
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