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ABSTRACT

While global key and chord estimation for both popular and clas-
sical music recordings have received a lot of attention, little research
has been devoted to estimating the local key for classical music.
In this work, we approach local key estimation on a unique cross-
version dataset comprising nine performances (versions) of Schu-
bert’s song cycle Winterreise—a challenging scenario of high musi-
cal ambiguity and subjectivity. We compare an HMM-based system
with a CNN-based approach. For both models, we employ a simi-
lar training procedure including the optimization of hyperparameters
on a validation split. We systematically evaluate the model predic-
tions and provide musical explanations for key confusions. As our
main contribution, we explore how different training–test splits af-
fect the models’ efficacy. Splitting along the song axis, we find that
both methods perform similarly well. Splitting along the version axis
leads to clearly higher results, especially for the CNN, which seems
to effectively learn the harmonic progressions of the songs (“cover
song effect”) and successfully generalizes to unseen versions.

Index Terms— music information retrieval, local key estima-
tion, harmony analysis, evaluation, deep neural networks

1. INTRODUCTION

The tonal analysis of music audio recordings is of high relevance
for both musicologists and music listeners and therefore constitutes
a central task in music information retrieval (MIR) research. No-
tions of tonal structures relate to different temporal scales. Many
researchers have focused on local (i. e., temporally concentrated)
structures such as chords [1–5]—loosely defined as sets of pitches
that are perceived as an entity. In contrast, the global key describes
the tonality of a whole song, piece, or movement. It can be defined as
a set of pitch relationships that establishes a particular major or mi-
nor chord as a tonal center [6], attaining a subjective sense of arrival
and rest [7]. In this paper, we consider the intermediate notion of
local key, which relates to mid- and large-scale segments of a piece.

For the global key in Western classical music, the beginning and
ending sections [8] and the final chord [9] play an important role, and
the key label is often provided by the composer as part of the title.
Contrasting this global view, the musical key may also change over
the course of a piece, thus calling for a local key analysis. When the
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Fig. 1: Local key predictions of the CNN model for song 15 “Die
Krähe” from Schubert’s song cycle Winterreise, performed by T.
Quasthoff and C. Spencer (1998). Dark red bars indicate false posi-
tives, brighter red bars false negatives, black bars true positives.

harmonic structure prepares the arrival of the new key, we speak of
a modulation [6]. Modulations often proceed gradually over a cer-
tain time span leading to ill-defined segment boundaries. Further-
more, some keys are closely related to each other such as relative
keys (e. g., C major ↔ A minor), which share the same underly-
ing diatonic scale. Some researchers therefore focus on the 12-class
problem of diatonic scale detection [10,11]. There is also a high sim-
ilarity between parallel keys (C major ↔ C minor) or fifth-related
keys (C major↔ G major), whose associated scales largely overlap
by sharing many pitch classes. Due to these issues, local key esti-
mation (LKE) is a challenging task where annotations are often am-
biguous and highly subjective by nature. Several approaches there-
fore avoid the “hard” detection of keys and boundaries and propose
multi-scale [12,13], self-referential [14], or probabilistic [11,15,16]
visualization techniques instead. Figure 1 shows a visualization of
LKE results with an arrangement of keys according to the circle of
fifths—thus showing closely related keys next to each other. At sec-
ond 40, we observe a confusion with the relative key and around
second 90, a confusion with a fifth-related key.

To address automatic LKE from audio recordings, different
methods have been proposed. Traditional approaches combine
chroma features with template-based recognition [17, 18]. For seg-
mentation and post-filtering, many researchers used Hidden Markov
Models (HMMs) [10, 19], or non-negative matrix factorization
(NMF) as an alternative [17]. As we know from chord estimation
research [1,2], HMMs are useful mainly due to the context-sensitive
smoothing effect and less due to their quality as a language model for
key transitions. Several methods simultaneously address the estima-
tion of chords, local keys, and (down-)beats [18, 20, 21]. Recently,
deep-learning techniques have become popular for chord estima-
tion [4, 5] and global key estimation [22–24] in music recordings.
Korzeniowski et al. [23] successfully used convolutional neural net-
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ID Singer Pianist Year Duration

AL98 Thomas Allen Roger Vignoles 1998 1:13:33
FI55 Dietrich Fischer-Dieskau Gerald Moore 1955 1:14:35
FI66 Dietrich Fischer-Dieskau Jörg Demus 1966 1:11:23
FI80 Dietrich Fischer-Dieskau Daniel Barenboim 1980 1:13:07
HU33 Gerhard Hüsch Hanns-Udo Müller 1933 1:07:31
OL06 Thomas Oliemans Bert van den Brink 2006 1:14:42
QU98 Thomas Quasthoff Charles Spencer 1998 1:12:24
SC06 Randall Scarlata Jeremy Denk 2006 1:06:45
TR99 Roman Trekel Ulrich Eisenlohr 1999 1:15:21

Table 1: Cross-version dataset of Franz Schubert’s Winterreise.

works (CNN) to estimate the global key for music recordings across
different genres. Though we are not aware of any research using
deep neural networks for LKE, this is an obvious endeavor due to
the task’s similarity to chord and global key estimation—both of
which have been tackled successfully using CNNs.

While most audio-based LKE systems were developed and
tested on popular music, Western classical music has rarely been
approached. Mearns et al. [25] analyze modulations in synthesized
recordings of twelve chorales by J. S. Bach. Papadopoulos and
Peeters [18] consider recordings of Mozart’s piano sonatas. Weiss et
al. [16] provide visualizations of local key regions in Wagner’s op-
eras. Compared to popular music, changes between closely related
keys and gradual modulations are particularly prominent in classical
music. Moreover, many classical music styles involve altered chords
featuring non-scale tones that make LKE even harder. As a peculiar-
ity of classical music, there are usually many recorded performances
(interpretations) available. Together with other representations, such
as symbolic scores, we consider these as individual versions of an
abstract musical work. Exploiting several such versions in a cross-
version scenario allows for studying and improving the robustness
and generalization for various tasks such as chord [3] and scale
analysis [16] or singing voice detection [26, 27].

In this paper, we study LKE within a cross-version scenario.
We make use of a dataset comprising nine recorded performances
(referred to as versions) of Franz Schubert’s 24-song cycle Winter-
reise [13]. Using measure annotations as anchor points, we semi-
automatically generate local key annotations [13, 28]. We propose a
straightforward LKE approach based on a CNN and compare it to a
traditional method using chroma features and HMMs. In our exper-
iments, we evaluate the efficacy of both methods and systematically
assess their robustness. As our main contribution, we investigate
the effect of using different training–test splits that require general-
ization across versions, songs, or both. Furthermore, we conduct an
in-depth analysis and investigate musical reasons for key confusions.

The paper is organized as follows. In Section 2, we start with the
description of the dataset and our training–test scenarios. We pro-
ceed in Section 3 with introducing the technical approaches (HMM
and CNN). In Section 4, we then discuss our results in detail. We
draw our conclusions in Section 5.

2. CROSS-VERSION DATASET

In this section, we describe our dataset and annotation procedure fol-
lowed by the different splits used for training, validation, and testing.

2.1. Dataset

Franz Schubert’s song cycle Winterreise (Winter Journey, published
1828) consists of 24 songs for voice (originally tenor) and piano.
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Fig. 2: Dataset splitting into training, validation, and test sets. (a)
Version split V, (b) Song split S, (c) Neither song nor version split N.

The individual songs differ in length and complexity. Some songs
are harmonically unambiguous showing distinct key regions of di-
atonic pitch content (No. 2) or being based on a single tonic chord
(No. 24). Other songs involve many altered chords (No. 10) and am-
biguous key regions (No. 16). Inspired by previous analyses [13,28],
each song has been annotated on score level (musical time axis) with
continuous local key segments by a professionally trained musician.1

Since the local key is sometimes ambiguous, our annotations differ
from [13, 28] in several respects: We did not label unclear or tran-
sitional passages with “no key” but decided on the most likely key.
Furthermore, we ensured a certain continuity of the key segments.

Our dataset [13] comprises nine complete performances by dif-
ferent duos, recorded in a studio setting (Table 1). While all ver-
sions realize the same musical scores, tempi, dynamics, and acoustic
conditions such as reverb and timbre can vary greatly. On average,
a song lasts 3min (σ=1:10min), ranging from 0:44min (No. 18,
SC06) to 6:18min (No. 1, OL06). We manually annotated mea-
sure positions for two recordings (HU33, SC06) and automatically
transferred these to the other recordings using synchronization tech-
niques as proposed in [29]. Using the measure positions as anchor
points, we semi-automatically transferred the local key regions from
the score level to the nine recordings (physical time axis).2

2.2. Splits

To train our models and optimize their hyperparameters, we split our
dataset into training, validation, and test subsets so that each song in
each version is analyzed exactly once in a cross-validation proce-
dure. Since our dataset has a specific structure, we can split along
two axes—the “version axis” and the “song axis” (see Figure 2). In
order to systematically investigate the models’ efficacy when trained
in different ways, we create three different splits:

• Version split V (Figure 2a). The training subset contains all
songs in five versions, the validation subset all songs of one
version, and the test subset all songs of three versions. In
this case, the models can exploit their knowledge of the ab-
stract musical structure (harmonic progressions), but have to
generalize to unseen acoustic conditions and different inter-
pretations, which is not trivial.

• Song split S (Figure 2b). The training subset contains record-
ings of 13 songs in all nine versions, the validation subset
three songs in all versions, and the test subset eight songs in
all versions. The models have to generalize to unseen musical
pieces with different harmonic properties but can adapt to the
acoustic conditions of each version during training.

• Neither split N (Figure 2c). In this strict split, the training
subset contains 19 songs in four versions, the validation sub-
set two other songs in two other versions, and the test subset

1The 2nd author.
2Annotations are at https://github.com/hendriks73/key-cnn.
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three other songs in three other versions. Thus, the model
knows neither song nor version and has to generalize across
both axes. This is the only split where not all data is used in
one run, and it is the most realistic one.

To ensure comparability, we fix the exact versions and songs in
each of the splits (no randomization) for both models.

3. METHODS

We present two approaches for LKE. The first one is a classical sys-
tem relying on HMMs, the second one a typical CNN-based system.

3.1. HMM-Based Method

Our first system, denoted as HMM, relies on the extraction of chroma
features using the filter-bank method proposed in [30].3 We post-
process the filter-bank output (pitch features) by applying logarith-
mic compression with a parameter γ ∈ {100, 1000, 10 000} and ap-
ply pitch weighting to emphasize the mid range centered at C4 [1].
We smooth the resulting 10 Hz chroma features with a median fil-
ter of length λ ∈ {81, 85, . . . , 157}. On the training subset, we
learn Gaussian models for the 24 keys (assuming enharmonic equiv-
alence) in the chroma space R12. We cyclically average the ma-
jor and the minor key model over the chroma dimension in order to
achieve transposition-blind models, which we then use for generat-
ing the HMM’s emission probabilities. Inspired by [1], we apply a
uniform, diagonal-enhanced transition matrix with a self-transition
probability of 1 − σ where σ ∈ {10−5, 10−6, 10−7, 10−8}. Using
these HMM parameters, we run Viterbi decoding to predict a key la-
bel for every 10 Hz frame. We optimize the parameters γ, λ, and σ
on the validation subset. That way, we exploit the available data in a
similar way as the CNN-based system described next.

3.2. CNN-Based Method

The second system, denoted as CNN, is identical to the global key es-
timation network DeepSquare [24].4 It is a convolutional neural
network in the style of Oxford’s Visual Geometry Group’s (VGG)
image recognition networks [31]. For feature extraction, we use
twelve 2D convolutional layers with square kernels of sizes 5 × 5
and 3 × 3, batch normalization [32] after every convolutional layer,
and 2 × 2 max pooling with a subsequent dropout layer (p = 0.3)
after every second convolutional layer. This is followed by a fully
convolutional classification stage using a “bottleneck” layer (1 × 1
convolution), 2D global average pooling, and the softmax activa-
tion function. Overall, the network has 293 296 trainable parame-
ters. The employed training procedure is similar to [24]. We first
convert the audio to constant-Q magnitude spectrograms. Then, we
use samples of dimension F × T as input to the network. F =168
is the number of frequency bins covering a frequency range of seven
octaves with a frequency resolution of two bins per semitone. T =60
is the number of time frames with a resolution of 0.19 s per frame,
i.e., 60 frames correspond to 11.1 s. To account for class imbalances
within the major or minor keys, we randomly shift each spectrogram
along the frequency axis by {−4,−3, . . . , 6, 7} semitones and ad-
just the ground truth labels accordingly. Since key estimation is a
single-label, multi-class problem, we use categorical cross-entropy
as loss function. Adam [33] is used as optimizer with a batch size
of 32 and an initial learning rate of 0.001. Once the validation loss

3We use the librosa implementation: https://librosa.github.io/
4Scaled with model sizing parameter k=8, see [24] for details.

plateaus, we halve the learning rate and continue training with the
best performing model up to that point (stepwise annealing). We
repeat this at most ten times. If reduction does not lead to a lower
validation loss three times in a row, we stop training.5

4. RESULTS

In order to evaluate LKE on classical music, we trained both systems
on recorded songs from Schubert’s Winterreise using different data
splits. As evaluation measure, we compute the accuracy while ignor-
ing “no key” regions (which only occur at the beginning and ending
of a piece). Moreover, we analyze musically explainable key confu-
sions such as relative, parallel, and fifth-related keys. We discuss the
results with a focus on the data splits and musical key confusions.

Detailed Results. We first consider the realistic split N, where
neither test songs nor test versions are seen during training or val-
idation. Figure 3a depicts the HMM’s results. With most songs, we
observe a similar accuracy for the different versions. However, the
accuracy varies greatly between songs. For example, song no. 1
reaches high accuracies around 93% for all versions, which is ex-
pected due to its clear harmonic structure. In contrast, song no. 10,
which is highly chromatic, shows low accuracies around 50%. For
few songs, we observe higher variance along the version axis. An ex-
ample for such an outlier is song No. 18, whose accuracy is strongly
version-dependent. Investigating these results in detail, we find that
this is a very short song of approx. 45 seconds, whose beginning and
ending sections are monophonic (unisono) without any chords in the
piano, thus posing a particular challenge. The HMM’s tendency to
stay in a key reinforces the impact of such errors on the overall ac-
curacy. Comparing the HMM’s results with the CNN’s (Figure 3b), we
observe similar tendencies in both plots. With an average of 73%, the
CNN performs only marginally better than the HMM trained on split
N (71%). For the CNN, accuracies are also similar across different
versions of a song. Moreover, the variation across songs is similar
to the HMM’s results, which indicates that musical properties of the
individual songs may pose the main challenge for both systems.

Data Splits. To statistically summarize these results, we report
the average per-song accuracy values in Figure 4. For the “neither”
split N, the two right-most bars correspond to the overall averages
(lower-right values) in Figure 3a+b. Black errorbars indicate the av-
erage standard deviation over all versions of a song (“vertical direc-
tion” in Figure 3). Red errorbars denote the average standard devia-
tion over all songs of a version (“horizontal direction” in Figure 3).
The standard deviation across songs (14.4% for CNN) is substan-
tially greater than across versions (5.2% for CNN), which confirms
our observation that the accuracy variance can be traced back more
to differences in songs than in versions. This also holds for the other
splits V and S depicted in Figure 4. Comparing the average accuracy
between splits, we find that the “song split” S leads to similar re-
sults (69% for HMM, 72% for CNN). Interestingly, accuracies are a bit
lower than for N, despite having more training data available in each
step. In N, the split between training and validation is stricter, which
leads to higher generalization and robustness of the trained systems.
Contrary to findings for genre classification [34], we found no ad-
vantage for either system when being exposed to other versions from
the same CD recording, i.e., no observable “album effect.” Looking
at the “version split” V, we find a remarkable result. Accuracies are
considerably higher with 76% for HMM and 96% for CNN. Both sys-
tems apparently have a capacity to learn the specific musical charac-
teristics of the individual songs (resp. their specific annotations),

5Trained CNN models: https://github.com/hendriks73/key-cnn
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Fig. 3: Individual accuracy values (in percent) per song and version for the strict neither split N. (a) Results for HMM. (b) Results for CNN.
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Fig. 4: Average accuracies for songs based on different splits (V, S,
N) and models (HMM, CNN). Black errorbars denote standard devia-
tions across versions (averaged over all songs), red errorbars denote
standard deviations across songs (averaged over all versions).
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Fig. 5: Accumulated accuracy including different types of musically
explainable key confusions.

with the CNN’s capacity being greater than the HMM’s. The CNN
system is effectively (over)fitting to harmonic progressions in the
songs. Therefore, we cannot expect it to perform similarly well for
other classical songs—we might call this a “cover song effect.” In-
terestingly, generalization to unseen acoustic conditions works well,
especially for the CNN. Exploiting several versions for training (and
validation) seems to build up the model’s robustness against version
differences and thus, is sufficient for avoiding the “album effect.”

Musical Key Confusions. Finally, we want to discuss the spe-
cific types of confusions in the models’ predictions. Figure 5 shows
the percentage of frames with certain prediction errors on top of the
accuracy (true positives). We report confusions with the relative key
(e. g., C major↔ A minor), the parallel key (C major↔ C minor),

fifth-related keys (C major↔ G major, or C major↔ F major), as
well as the relative of fifth-related keys (C major ↔ E minor, or
C major↔ D minor) and the parallel of fifth-related keys (C major
↔ G minor, or C major↔ F minor). For both the S- and the N-split,
we see that the most common errors are fifth errors, parallel key er-
rors, relative key errors, relative fifth errors, and parallel fifth errors
(roughly in this order). Together, these errors explain most of the
performance gap between the CNN trained on the V-split and either
system trained on one of the other splits (Figure 5). Gray and yel-
low bars together constitute the accuracy for estimating the correct
diatonic scale [11,16]. Correct predictions and all musical errors to-
gether comprise ≈ 95% of all frames. Based on these observation,
we assume that it is most challenging for the models to learn how
musically ambiguous regions have to be labeled in order to predict
the local key label as given by a specific annotator.

5. CONCLUSIONS

We approached the task of local key estimation in classical music
recordings and systematically explored the efficacy of an HMM-
based and a CNN-based approach. Using a cross-version dataset of
Schubert’s song cycle Winterreise, we trained, validated, and tested
both systems on splits along songs or versions. Moreover, we ex-
plored a strict split where neither test songs nor test versions are
shown during training. For the song and the “neither” split, we found
that CNN and HMM models perform similarly well, reaching an ac-
curacy of approximately 70%. Most of the observed errors can be
explained through musical ambiguities where annotations are often
subjective. Comparing results for different splits, we showed that
generalization across versions (“album effect”) does not pose ma-
jor problems for the models. Knowing the specific songs (version
split) leads to clearly higher results, especially for the CNN (96%).
We call this the “cover song effect.” While this is beneficial in our
scenario, it means that the CNN (over)fits to the harmonic progres-
sions of specific songs and learns how a single annotator labeled
these songs. Song and “neither” split therefore show more realistic
results as can be expected for unseen pieces. Yet, providing CNN
models with more training data covering a wide variety of harmonic
progressions is supposed to have high potential for improving local
key estimation systems in general.
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