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Abstract: In this paper, we adapt a recently proposed U-net deep neural network architecture
from melody to bass transcription. We investigate pitch shifting and random equalization as data
augmentation techniques. In a parameter importance study, we study the influence of the skip
connection strategy between the encoder and decoder layers, the data augmentation strategy, as
well as of the overall model capacity on the system’s performance. Using a training set that covers
various music genres and a validation set that includes jazz ensemble recordings, we obtain the best
transcription performance for a downscaled version of the reference algorithm combined with skip
connections that transfer intermediate activations between the encoder and decoder. The U-net based
method outperforms previous knowledge-driven and data-driven bass transcription algorithms by
around five percentage points in overall accuracy. In addition to a pitch estimation improvement, the
voicing estimation performance is clearly enhanced.

Keywords: bass transcription; convolutional neural networks; U-net architecture; data augmentation;
skip connections

1. Introduction

The transcription of melodies and bass lines from complex music recordings is a
challenging task for both human experts and machine algorithms. If musical notes are
simultaneously played on different instruments within a certain interval relationship,
a subset of the resulting overtones overlap. This can result in pitch estimation mistakes
such as octave errors. Both melodies and bass lines are typically monophonic and their
estimation from audio recordings is therefore considered as single-pitch estimation prob-
lems. In both scenarios, the transcription process involves two subproblems. The first
subproblem is activity detection (often referred to as voicing estimation), where the goal is
to estimate for each frame whether the targeted instrument is active or not. The second
subproblem is pitch estimation, where the fundamental frequency and its corresponding
pitch is computed for each active frame.

In contrast to melody lines, bass lines are rarely predominant. Particularly in jazz
recordings, melodic instruments such as saxophones and trumpets often dominate the
audio mix whereas rhythm section instruments such as upright bass and drums are playing
in the background. Walking bass lines, which are most common in jazz, provide a steady
pulse by emphasizing strong metrical positions (beat). At the same time, these bass lines
give harmonic support by including important chord tones such as roots, thirds, and fifths
of the played chords [1]. The main objective of this paper is to develop an algorithm to
automatically transcribe jazz bass lines, which provide important rhythmic and harmonic
cues for jazz ensemble performance analysis.

As the main contribution of this paper, we adapt a fully convolutional neural network
based on the U-net architecture, which was previously used for melody transcription [2],
for the task of bass transcription. In particular, we are investigating the influence of different
hyperparameters such as the type of skip connections between encoder and decoder layers,
the overall model capacity, as well as two different data augmentation strategies.
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The remainder of the paper is structured as follows. Related work on data-driven
bass and melody estimation is summarized in Section 2.1. Special focus is put on the
application of U-net neural network architectures for Music Information Retrieval (MIR)
tasks in Section 2.2. Section 3 introduces the proposed bass transcription method and
details the applied audio processing and data augmentation techniques as well as the
underlying neural network architecture. After introducing the applied datasets in Section 4,
the experimental procedure and results are summarized in Section 5. Finally, in Section 6,
we give a short conclusion of this work.

2. Related Work
2.1. Data-Driven Melody and Bass Transcription

Existing algorithms for bass and melody transcription share many techniques and
can be divided into data-driven and knowledge-based methods. Data-driven transcription
algorithms usually include machine learning models, which are trained in a supervised
fashion. More traditionally, knowledge-based methods include specialized signal process-
ing algorithms, which are often combined with heuristics informed by musical knowledge.
With the rapid proliferation of deep learning techniques, data-driven methods have become
the primary focus of research in recent years. In the subsequent discussion, we mainly
focus on these approaches.

Most methods based on deep learning require large amounts of training data. How-
ever, in MIR, even for the popular task of melody transcription, only a limited number of
public datasets such as MedleyDB [3], iKala (http://mac.citi.sinica.edu.tw/ikala/(accessed
on 11 March 2021)) and MIR1k (https://sites.google.com/site/unvoicedsoundseparation/
mir-1k (accessed on 11 March 2021)) exist, which include audio recordings and correspond-
ing pitch annotations. For bass transcription, publicly available datasets with score-based
bass annotations include the Real World Computing (RWC) dataset [4], MDB-bass-synth
[5], and parts of the Weimar Jazz Database (WJD) [1,6]. A common approach to increase the
amount and variability of potential training data is to apply data augmentation techniques
such as time stretching and pitch shifting [7].

Different types of signal representations are used as input. While end-to-end-learning
models directly process signal blocks [8,9], other networks process time-frequency represen-
tations obtained from a Short-Time Fourier Transform (STFT) [10], a constant-Q transform
(CQT), or a harmonic CQT (HCQT) [11–13].

Various model architectures ranging from fully-connnected neural networks
(FCNN) [1,14–16], over convolutional neural networks (CNN) [8,17], to recurrent neu-
ral networks (RNN) [10,14] are used and combined for the tasks of pitch estimation and
voicing detection. Bittner et al. [11] propose a CNN model for multitask learning, which
is trained to simultaneously perform melody, bass, and vocal transcription. The main
rationale is that these tasks rely on and benefit from shared internal feature representations.
Previously proposed data-driven bass transcription methods have used fully connected
neural networks to predict pitches on a semitone resolution [1,16].

2.2. U-Nets

The U-net is a fully convolutional neural network architecture, which was originally
proposed for biomedical image segmentation in computer vision [18]. The network struc-
ture resembles a convolutional autoencoder and consists of a contractive part (encoder) and
an expansive part (decoder). In the encoder, the spatial resolution of the two-dimensional
signal representation is gradually reduced while the number of feature channels is in-
creased at the same time. Similarly, the decoder gradually increases the spatial resolution
(using a sequence of upsampling operations), while reducing the number of feature chan-
nels. As the main improvements towards autoencoders, skip connections are introduced
on different resolution levels within the network. This way, signal representations can be
learnt at different resolutions.

http://mac.citi.sinica.edu.tw/ikala/
https://sites.google.com/site/unvoicedsoundseparation/mir-1k
https://sites.google.com/site/unvoicedsoundseparation/mir-1k
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Image segmentation algorithms aim to detect object as closes surfaces. By analogy,
musical notes can be considered as objects in time-frequency representations with a sparse
distribution since most of their concentrates at the fundamental frequency and its overtone
frequencies. As a consequence, U-net based neural network architectures have not just been
used for image segmentation but were also successfully applied for various MIR tasks such
as source separation [19,20], multi-instrument music transcription [21], and lyrics-to-music
alignment [22]. In addition to [2], other melody transcription algorithms using U-nets were
proposed, among others, by Lu and Su [23] as well as Doras et al. [13].

3. Methodology

In this section, the different processing stages of the proposed bass transcription
algorithm are detailed.

3.1. Audio Processing

Audio signals are mixed to mono and downsampled to a sample rate of 22.05 kHz.
A constant-Q transformation (CQT) is computed with a hopsize of 512 samples, 12 bins per
semitone resolution, and a core MIDI pitch range of [25:88] (E1 to F5). This range consists
of 64 pitches and was chosen in order to replicate the network architecture proposed
in [2]. Around this core MIDI pitch range, we add a lower and upper pitch margin of 5
semitones to allow for on-the-fly pitch shift data augmentation as will be explained in
Section 3.2. This results in a CQT spectrogram C ∈ RT×74 with T denoting the number of
time frames. For each audio recording, we normalize the values of C to a range of [0, 1]
by subtracting the global minimum value and dividing by the resulting global maximum
value. A bass line is encoded as vector y = (y1, y2, . . . , yT) ∈ ZT , where a component
yi > 0 encodes a MIDI pitch number and yi = 0 encodes an inactive frame (for frame
indices i ∈ [1 : T] := {1, 2, . . . , T}). The final target matrix Y ∈ RT×65 that is used to train
the network consists of two parts. The first 64 columns contain the one-hot encoded pitch
values and the last column the voicing information.

3.2. Data Augmentation

In this paper, we evaluate two approaches for data augmentation in order to enrich the
variability of the training data. As a first data augmentation strategy, we randomly sample
a pitch shift of s ∈ [−5 : 5] semitones. Since the CQT spectrogram C was extract with a
pitch margin of five semitones, pitch shifting can be performed efficiently by extracting
the feature X ∈ RT×64 as a submatrix of C according to the pitch shift s. At the same time,
the frame-level targets yi are shifted accordingly as yi ←− yi + s for all voiced frames yi > 0
and the target matrix Y is generated accordingly.

As a second data augmentation strategy, we propose “randomEQ”, i.e., a random
multiplicative equalization of the CQT magnitude spectrogram C before applying the
normalization as discussed in Section 3.1. The main motivation is to simulate variations of
microphone characteristics and acoustic recording conditions. We use a simple parametric
equalization function h(n) = 1− 0.00005 · α(n− β)2 for n ∈ [0 : 63] with α controlling the
opening width of the parabola and β controlling the frequency position of the function
maximum. For each file and each epoch during training, we randomly sample α ∈ [1, 10]
and β ∈ [0, 63] with h(n) > 0 for all n ∈ [0 : 63]. The derived equalization function
is multiplied element-wise with each spectral frame in the feature matrix X. Figure 1
shows five randomly created examples of such equalization functions h(n). Schlüter
and Grill used a similar approach and applied random frequency filters to the linear
spectrogram [24] using Gaussian functions instead of quadratic functions. In total, we
compare four configurations—no data augmentation, pitch shifting, randomEQ, as well as
both pitch shifting and randomEQ.
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Figure 1. Five examples of random equalization functions h(n) over n ∈ [0 : 63].

3.3. Network Architecture

In this work, we take the U-net neural network used by Hsieh et al. in [2] as our
reference system. Figure 2 summarizes the architecture of this fully convolutional neural
network that consists of an encoder (left column) and a decoder (right column). The convo-
lutional blocks CB(N) include a batch normalization layer (BatchNorm), a convolutional
layers with N kernels (Conv2D(N)), and a scaled exponential linear units (SELU) activation
function. In our experiments, we control the capacity of the U-net using a multiplicative
scaling factor γ ∈ {1, 1/2, 1/4, 1/8}, which allows for the reduction of the number of
kernels in the convolutional layers (apart from those layers with one convolutional layer)
as shown in Figure 2. In the decoder, the number of frequency bins is gradually reduced
from 64 to 1 using three max-pooling operations (MP(1, 4)) while the number of convo-
lutional kernels (N) is increased from γ · 32 to γ · 128. Intermediate tensor dimensions
are shown with orange backgrounds. T indicates the number of time frames of the input
CQT spectrogram.

One of the main contributions of the model proposed by Hsieh et al. [2] is the
introduction of the concatenation layer (“Concat” in Figure 2), which adds an additional
column to the reconstructed feature tensor after the decoder. As explained in Section 3.1,
the last row in the target matrix Y encodes the nonactivity of the bass instrument (unvoiced
frames). Therefore, all unvoiced frames are encoded with a value of 1 in the last row. This
way, the model can be trained to solve pitch detection and activity detection simultaneously.
As a result, in the final prediction matrix, a simple argmax operation can be applied to
decode the final bass pitch track and no additional thresholding operation is required.
During training, we use the Adam optimizer with a learning rate of 10−4 and the categorical
crossentropy as loss functions.

3.4. Skip Connection Strategies

We compare four different skip connection strategies in this paper. As first approach
(A), we avoid all skip connections, which converts the U-net into a deep convolutional
autoencoder. As shown in Figure 2, the second approach (B) involves transferring inter-
mediate activations after the convolutional blocks from the encoder to the decoder and
stacking those with the intermediate activations in the decoder along the channel dimen-
sion [18]. In this approach, the unpooling layers perform a simple upsampling operation.
As a third approach (C), the indices of the identified maxima in the max pooling (MP) layers
are transferred to the unpooling (UP) layers [2]. The intuition is to obtain a more precise
reconstruction while increasing the spatial resolution in the decoder. Finally, we also test
the combination of the two skip-connection strategies B and C as fourth approach (D).
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Figure 2. U-net network architecture includes a decoder (left column) and an encoder (right column)
with a sequence of convolutional blocks (CB), max pooling layers (MP), and unpooling layers (UP).
Input and output variable dimensions are shown in green. Intermediate tensor dimensions are shown
in orange. Solid blue lines show layer connections. Dashed and dotted blue lines indicate different
skip connection strategies (compare Section 3.4). Number of kernels in the convolutional layers can
be scaled with a factor γ (compare Section 3.3).

4. Datasets

Table 1 summarizes two sets that we assembled for this study. The Mixed Genre Set
(MGS) comprises 137 recordings from four different datasets and covers multiple music
genres such as pop, rock, and jazz. We included 70 recordings of the MDB-bass-synth
database [5]. In these recordings, the bass track has been resynthesized to achieve a perfect
correspondence to a previously estimated bass pitch track. The second subset includes
21 recordings from the MedleyDB dataset with manually transcribed bass lines. The third
subset comprises of 16 files from the Popular Music Database of the RWC Database [25].
Finally, we have bass score annotations for 66 jazz ensemble recordings mostly coming
from the Weimar Jazz Database (WJD) [6]. A subset of 30 of these files is included in
the MGS.

The Jazz Set (JS) includes the remaining 36 WJD files. It includes the 10 files previously
used as test set in [16]. This set covers various artists, jazz styles, and recording decades
and therefore allows for a realistic evaluation within the targeted application scenario.

We compare two data partition strategies as described in Table 2 to split the MGS
and JS into training and validation sets. In the first strategy (Mixed), we aim for a bass
transcription algorithm, which performs well for multiple music styles. Here, we randomly
split the MGS into a training set (80%) and a validation set (20%). In the second strategy
(Jazz), we aim to optimize the bass transcription algorithm to perform well on jazz ensemble
recordings, which are in the focus of this paper. Here, we use the full MGS as training data
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and a random split of 20% of the JS as validation set. The remaining 80% of the files in JS
are used as final test set for both strategies.

Table 1. Composition of the Mixed Genre Set (MGS) and Jazz Set (JS).

Dataset Subset # Files

Mixed Genre Set (MGS) - 137

- MDB-bass-synth 70

- MedleyDB 21

- RWC 16

- WJD 30

Jazz Set (JS) - 36

- WJD 36

Table 2. Two data partition strategies to split the two datasets introduced in Table 1 into training,
validation, and test sets. The validation sets are used for the parameter optimization (Section 5.1)
and the test set is used for the final evaluation study (Section 5.2).

Set Data Partition Strategy
Mixed Jazz

Training Set MGS (80 %) MGS (full)
Validation Set MGS (20 %) JS (20 %)
Test Set JS (80 %)

5. Evaluation
5.1. Parameter Optimization Study

As discussed in Section 4, we investigate two different data partition strategies. In
this experiment, we want to study the influence of the data augmentation method, the skip
connection type, as well as the network capacity of the U-net approach to the transcription
performance on the validation set. For each strategy, we compare 64 hyperparameter con-
figurations based on the parameter settings defined in Table 3. The sets of hyperparameters
for the best performing models in both scenarios are listed in Table 4.

Table 3. Settings for the parameter optimization study described in Section 5.1.

Hyperparameter Section Search Space

Data augmentation Section 3.2 {no, PS, REQ, PS+REQ}
Scaling factor γ Section 3.3 { 1

8 , 1
4 , 1

2 , 1}
Skip connection strategy Section 3.4 {A, B, C, D }

Table 4. Parameter optimization results: optimal hyperparameter configurations for both data
partition strategies.

Hyperparameter Data Partition Strategy
Mixed Jazz

Data augmentation REQ PS
Skip connection strategy B C
Filter number factor γ 1 1

2
Highest overall accuracy (OA) on validation set 0.82 0.6

For the mixed data partition, skip connection strategy B, where the intermediate
activations are transferred, outperforms strategy C, which involves transferring the max
pooling indices. This finding goes in line with the proposed method for melody tran-
scription in [2]. Larger models with γ = 1 combined with RandomEQ data augmentation
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consistently showed the best results. The highest overall accuracy value achieved was 0.82.
We conjecture that this relatively high number is due to model overfitting to the Mixed
Genre Set, where both the training and the validation set were drawn from it.

For the Jazz data partition, the highest overall accuracy is 0.6 and therefore significantly
lower compared to the mixed data partition. Note that, in this case, the validation set
only contains jazz ensemble recordings while the training set includes various music
genres. Presumably, this shows that the bass transcription task is more complex due to the
predominance of the melody instruments. Skip connection strategy B and pitch shifting
data augmentation seem beneficial for this data partition although no clear trends could
be observed across different hyperparameter configurations. The best models BassUNetM

and BassUNetJ obtained from the Mixed and Jazz data partition strategy, respectively,
will be evaluated in the comparative study against three state-of-the-art bass transcription
algorithms as will be described in the following section.

After identifying the optimal models BassUNetM and BassUNetJ, we report in Table 5
the results of an ablation study. This table shows how the overall model accuracy values
decrease when data augmentation and skip connections are neglected separately and jointly
during the model training. The results show that both components are important for the
performance of the U-net model. Similar findings were reported for the skip connections
in U-nets for singing voice separation [26] as well as for the use of data augmentation for
singing voice detection [24] and music transcription [27]. The sets of hyperparameters for
the best performing models in both scenarios are listed in Table Table 4.

Table 5. Ablation study results. Overall accuracy (OA) values on the validation sets reported for the
optimal configuration (first row) and training configurations derived by removing data augmentation
and skip connections separately and jointly from the model training (remaining rows).

Configuration Data Partition Strategy
Mixed (BassUNetM) Jazz (BassUNetJ)

Best parameter settings (see Table 4) 0.82 0.6
No data augmentation 0.81 0.52
No skip connections 0.78 0.58
No data augmentation & no skip connections 0.76 0.5

5.2. Comparison to the State of the Art

In this experiment, we compare the two best configurations of the proposed method
BassUNetJ and BassUNetM as identified in Section 5.1 with three reference bass transcrip-
tion algorithms as listed in Table 6. We use the remaining 80% of the Jazz Set (compare
Section 4 and Table 2), i.e., the full Jazz Set without the validation set of the Jazz data
partition as test set.

The first reference algorithm (BI18) is encapsulated in a deep neural network for joint
estimation of melody, multiple F0, and bass estimation as proposed by Bittner et al. [11].
The network processes harmonic CQT representations of audio signals with a cascade of
multiple convolutional layers for multitask feature learning. We use an available online im-
plementation (https://github.com/marl/superchip/blob/master/superchip/transcribe_
f0.py (accessed on 11 March 2021)).

The second reference algorithm ({AB07) was proposed by Abeßer et al. in [1]. Here,
a fully-connected neural network maps a CQT spectrogram to a bass pitch activity rep-
resentation. Again, we use an available online implementation (https://github.com/
jakobabesser/walking_bass_transcription_dnn (accessed on 11 March 2021)). Both algo-
rithms AB17 and BI18 output independent pitch salience values for different F0 candidates
on a frame level. Voicing estimation is implemented by using a fixed minimum salience
threshold τ. Each time frame is considered to be unvoiced if all pitch salience values are
below this threshold. We optimize this threshold independently for both algorithms on the
full training set.

https://github.com/marl/superchip/blob/master/superchip/transcribe_f0.py
https://github.com/marl/superchip/blob/master/superchip/transcribe_f0.py
https://github.com/jakobabesser/walking_bass_transcription_dnn
https://github.com/jakobabesser/walking_bass_transcription_dnn
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Table 6. Brief description of all evaluated bass transcription algorithms (top) and average file-level
scores on the test set (bottom). Optimal minimum salience thresholds τ for BI18 and AB17 obtained
on the validation set are given in brackets.

Method Algorithm & Reference

BassUNet Convolutional U-net (proposed)
BassUNetJ Trained with Jazz data partition strategy.
BassUNetM Trained with mixed data partition strategy.

BI18 Convolutional Neural Network, Multitask Learning [11]
AB17 Fully Connected Neural Network [1]
SA12 Melodia Bass [28,29]

Method VR↑ VFA↓ RPA↑ RCA↑ OA↑

BassUNetJ 0.75 0.39 0.60 0.66 0.60
BassUNetM 0.78 0.55 0.56 0.62 0.55
BI18 (τ = 0.12) 0.80 0.72 0.55 0.61 0.53
AB17 (τ = 0.16) 0.80 0.58 0.55 0.62 0.54
SA12 0.90 0.80 0.49 0.65 0.46

The third reference algorithm (SA12) is based on a version of the Melodia melody
estimation algorithm [28], which is modified to transcribe lower fundamental frequencies
as described in [29]. In contrast to the before-mentioned data-driven algorithms, this
algorithm combines music domain knowledge with several audio signal processing steps.
Furthermore, it analyzes only two octaves from 27.5 Hz to 110.0 Hz. Therefore, it only
makes sense to compare the pitch estimation performance of SA12 with the other algorithm
based on the raw chroma accuracy (RCA), which disregards the detected octave positions.

We use five common evaluation measures to evaluate the pitch estimation and voicing
estimation as defined in [30]. Raw pitch accuracy (RPA) equals the fraction of the number of
frames with correctly estimated pitches (within a given tolerance) and the number of voiced
frames, i.e., frames with an annotated pitch. Raw chroma accuracy (RCA) additionally
maps all frequency into one octave and therefore focuses on pitch class estimation. In order
to evaluate the voicing estimation quality, voicing recall (VR) measures the fraction of
correctly identified voiced frames and voicing false alarm rate (VFA) measures the fraction
of frames which are incorrectly estimated to be voiced. A well-performing transcription
algorithm should have high VR values and low VFA values as indicated by upwards and
downwards arrows in Table 6. Finally, overall accuracy (OA) measures the percentage of
frames with correctly estimated voicing and pitch.

Table 6 lists the five evaluation scores for each investigated bass transcription algo-
rithm averaged over all test set files. While the proposed method BassUNetJ showed a
lower OA value on the validation set of the Jazz data partition strategy (see Section 5.1), it
outperforms all other algorithm on the test set by around 5 percent in overall accuracy (OA).
The algorithm represents a model configuration, which is optimized for transcribing bass
lines in jazz ensemble recordings. We believe that the main reason for that is the similar
data distribution between its validation set, which guided the model training process,
and the final test set.

The BassUNetM model on the other hand, which was not optimized for the jazz
scenario, shows a lower overall accuracy of 0.55, which results from both lower voicing
and pitch detection scores. While the RPA improvement of 0.05 between BassUNetJ and
the best performing reference algorithm AB17 is only of minor size, the main improvement
was achieved in voicing detection especially which is particularly evident in the reduced
voicing false alarm rate of (VFA) from 0.58 (AB17) to 0.39 (BassUNetJ). We consider this
to be the main contribution of the proposed U-net architecture since it explicitly learns to
predict the frame-level instrument activity (voicing) without any additional thresholding
operation. Similar findings were reported for the melody estimation task for some of the
evaluated datasets in [2]. When looking at the pitch estimation performance (RPA, RCA),
the BassUNetM model performs similar to the reference methods BI18 and AB17. Notably,
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the reference algorithm SA12 achieves the highest VR and an almost similar raw chroma
accuracy RCA as the proposed method.

6. Conclusions

In this paper, we adapt a recently proposed U-net deep neural network architecture
for bass transcription of jazz ensemble recordings. Based on a constant-Q spectrogram
representation of the audio signal, the network jointly predicts instrument activity (voicing)
and pitch on a frame-level without requiring an additional thresholding operation. In our
experiments, we perform an in-depth analysis of the influence of the applied data augmen-
tation techniques, skip connection strategy between the encoder and decoder, as well as the
overall model capacity on the model performance. In addition to the commonly used pitch
shifting, we propose a simple random equalization technique (randomEQ), which increases
the timbral variety of the training data. We investigate two different data partition strategy
with one aiming at training a U-net model, which is optimized for transcribing bass lines
in jazz ensemble recordings.

Our results show that the proposed model outperforms previous bass transcription
algorithms based on fully-connected and convolutional neural network architectures as
well as classical audio signal processing chains. In addition to minor pitch estimation
improvements, the U-net model shows significantly lower voicing false alarms. Our
findings also confirm that, especially for smaller amounts of available annotated training
data, data-driven methods can be powerful but also highly sensitive to the choice of training
and validation set. Our experiments confirm that the validation set should represent the
expected data distribution in a given application scenario.

As discussed in Section 1, the presented bass transcription algorithm can be used to
assist musicological corpus analyses. As one example, we plan to transcribe bass lines
underlying all instrumental solo parts in the Weimar Jazz Database (WJD). In combination
with manually transcribed beat times, we can derive beat-level bass note estimates. By com-
bining these bass notes with the annotated harmonic changes of the lead-sheet, clues about
the performed harmonic changes can be derived, which allow for a more in-depth analysis
of the solo melodies.
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