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In this article, we show how music may serve as a vehicle to support education in

signal processing. Using Fourier analysis as a concrete example, we show how the music

domain provides motivating and tangible applications that make learning signal processing

an interactive pursuit. Furthermore, we indicate how software tools, originally developed for

music analysis, provide students multiple entry points to delve deeper into classical signal

processing techniques, while bridging the gap between education and cutting-edge research.

Introduction

Music is a ubiquitous and vital part of our lives. Thanks to the proliferation of digital music

services such as Spotify, Pandora, and iTunes, we can enjoy music anytime and anywhere,

interacting with it in a variety of ways, both as listeners and active participants. Aside

from human speech, music may be the most familiar form of structured audio to most

people. Conversely, as a scientific discipline, signal processing can be obtuse and unfamiliar

to newcomers. Conceptual and practical understanding of signal processing requires a rather

sophisticated knowledge of advanced mathematics, which can make the subject intimidating

even at the introductory level. In this article, we show how music may serve as a vehicle to

make learning signal processing an interactive pursuit, whether through concrete examples,

hands-on exploration, or through experimentation. The inclusion of music bridges the gap

between the humanities and more typical signal processing communities such as mathematics,

computer science, and engineering. This is the reason why one can find music as an integral

part of books on multimedia and audio signal processing [1,2]. Throughout this article, we

show how music yields an intuitive entry point to support education on various levels. This

leads to a learning approach that Guzdial [3] calls a “contextualized educational experience”

for signal processing.

This article presents a scaffold for incorporating interactive music-based examples and

music technology into an existing signal processing course. The proposed pipeline moves

students through Bloom’s taxonomy (Figure 1), helping them transition from passive learners

to engaged researchers and practitioners [4,5]. This scaffolding resembles “legitimate peripheral
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Figure 1: Adaptation of Bloom’s taxonomy [4], based on levels from Starr et al. [5]. Students begin at
the lowest level. Layering music examples, the FMP notebooks, and librosa can help them transition
to the highest levels of understanding.

participation” [6] aligning classroom learning more closely to the apprentice model of how

signal processing is actually researched and practiced. Presented as a series of small but

meaningful steps, this scaffold adds music to one’s signal processing course, transitioning it

from a standard lecture signal processing course into one that is interactive and project-based.

Each step provides a more context-rich signal processing course than the previous step. The

examples in the presented scaffold are informed by the field of music information retrieval

(MIR), which has interests in extracting semantic content from audio signals.

The article is organized in two main parts. In the first part, we highlight how music

processing can serve as a tangible and approachable real-world application of signal processing

methods. As such, music-based examples aid students moving from recalling and reciting

signal processing concepts (the lowest level of Bloom’s taxonomy) towards comprehension

and application (the second and third levels). In particular, we give a gentle introduction to

Fourier analysis motivated by music and discuss basic properties of music signals via Fourier

analysis.

In the second part, we discuss the role of software tools in signal processing education

and detail how they add varying depths of interaction, supporting students’ development

towards independent work in signal processing. We first explore constrained interaction

through the FMP notebooks [7], which closely follow parts of the textbook “Fundamentals

of Music Processing” [8] and which provide interactive activities to enhance teaching and

learning classical signal processing techniques. As such, the FMP notebooks carry students
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further up Bloom’s taxonomy, solidifying their abilities to apply signal processing concepts in

musical examples. From the instructor’s perspective, the inclusion of the FMP notebooks

adds interactive elements to the typical lecture-based signal processing classroom with little

effort on the instructor’s part. We then discuss incorporating the Python package librosa [9],

which enables broader experimentation with signal processing concepts. With the experience

gained using the FMP notebooks, students have the technical skills and the conceptual fluency

to synthesize their signal processing knowledge. Then, adopting and creating programming

scripts from the elements in librosa allows students to delve deeper into the implications—in

a music-context—of altering and exploring the role of various parameters common in signal

processing. From the instructor’s perspective, including librosa into a course can add

depth to examples in a typical lecture-based course as well as provide the ingredients for an

end-of-semester project.

Music Domain

A typical introductory course on digital signal processing covers a range of topics, including

but not limited to: sampling theory, Fourier analysis and the discrete Fourier transform

(DFT), convolution and filtering, time-frequency representations, and so on. Although these

topics are each fundamental and broadly applicable to a wide array of settings, they can also

be conceptually difficult to grasp for newcomers.

When teaching a challenging concept, instructors attempt to find a compelling example

that their students can hold onto through the sea of equations and subtleties. For signal

processing, music can be that motivating example, and help anchor the abstract concepts in a

concrete, familiar context. This kind of contextualized pedagogical practice has been shown to

improve student retention in computer science curricula [3]. As such, using music as a context

for signal processing gives students an avenue for explaining signal processing in their own

words, which moves students from simply recalling formulas and reciting signal processing

facts (the lowest level of learning on Bloom’s taxonomy) to deeper levels of comprehension.

As a multimedia domain, music offers a wide range of data types and formats including

text, symbolic data, audio, image, and video [8, 10]. For example, music can be represented

as printed sheet music (often available in the form of digitized images), encoded as MIDI

(Musical Instrument Digital Interface) or MusicXML files (structured textual data), and

played back as audio recordings. In this article, our primary focus is on music signals or audio

representations, which encode acoustic waves as generated by an instrument (or voice) and
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Figure 2: Singing scenario, illustrated by a short excerpt of the romantic opera “Der Freischütz” by
Carl Maria von Weber. A singer performs a melody accompanied by some instruments. Analyzing the
resulting music recording (waveform) leads to challenging signal processing problems (e.g., extracting
the singer’s fundamental frequency trajectory).

transmitted through the air as pressure oscillations. As opposed to score and most symbolic

representations, an audio representation encodes information needed to reproduce a specific

acoustic realization of a piece of music. This includes the temporal, dynamic, and tonal

micro-deviations that make up the particular performance style of a musician. However, in

an audio representation, note parameters such as onset times, pitches or note durations are

not given explicitly.

Audio representations of music connect to several standard concepts in signal processing.

In Figure 2, we have the musical score, which is performed to create an audio representation.

We can then derive several signal processing concepts, including the waveform, spectrogram,

and fundamental frequencies (as shown in the right side of Figure 2). Constructing these

different representations and concepts can be a challenging signal processing problem, which

in turn provide a motivating example to understand and apply signal processing concepts

appropriately. As a small side note, we want to mention in this context that the design

of computational approaches for converting an acoustic music signal into some form of

music notation—a task commonly referred to as automatic music transcription—is one of

the most challenging and fascinating research problems in signal processing and artificial

intelligence. As detailed by Benetos et al. [11], it comprises several subtasks, including

multipitch estimation, onset and offset detection, instrument recognition, beat and rhythm

tracking, interpretation of expressive timing and dynamics, and score typesetting, to name a

few. In the remainder of this section, we explore the connection between music and signal

processing and how incorporating music examples into a standard signal processing course

provides students with a method for a more nuanced understanding of signal processing.
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Understanding Fourier Analysis Through Music

Music signals present numerous opportunities to pose natural questions which may be

understood by a novice. At very short time-scales, one might want to know the fundamental

frequency of a played note; at longer time-scales, one may ask about the timbre of different

instruments; moving to even longer time-scales allows us to inquire about higher-level concepts

such as melody and rhythm. Each of these questions can be addressed by different applications

of Fourier analysis, and exposure to the same basic principle in multiple related contexts can

help solidify a student’s understanding. Both the familiarity and complexity of music makes

it an ideal motivation and a vehicle for learning signal processing.

The key idea underlying Fourier analysis is to represent arbitrary signals as combinations of

sinusoids. When introducing Fourier analysis, it is natural to start with simple combinations,

consisting of only a single sinusoid, i.e., a pure tone. A sinusoid is completely specified by

three parameters: its frequency (the number of oscillations per second, measured in Hertz

denoted Hz), its amplitude (the peak deviation of the sinusoid from its mean), and its phase

(determining where in its cycle the sinusoid is at time zero). Thinking of frequency as the rate

of vibration, it is easy to understand that the higher the frequency of a sinusoidal wave, the

higher it sounds. This physical analogy yields an intuition for signal processing. For example,

a sinusoid having a frequency of 440 Hz (physical attribute) corresponds to the pitch A4

(musical and perceptual attribute). Similarly, the amplitude of a sinusoidal wave relates to

the intensity of the sound from a musical instrument. With this intuition in mind, the aim of

Fourier analysis can be interpreted as a kind of reverse engineering problem. Given a music

signal, the aim is to measure the intensity with which a sinusoidal wave of a given frequency

occurs in (or, more precisely, correlates with) the signal. The collection of intensity values for

all frequencies (concealing the role of the phase for the moment) is commonly referred to as

Fourier transform. Plotting the intensity values over a frequency axis yields a visualization

that reveals the signal’s frequency spectrum.

As an example, let us consider the note C4 having a fundamental frequency of 261.6 Hz.

When playing this note on different instruments, we hear different sounds. Figure 3 shows

the waveforms for C4 when played on a piano, trumpet, violin, and flute. Looking at

the respective Fourier transform (frequency–intensity plot), one can observe peaks at the

fundamental frequency f = 261 Hz and its harmonics 2f , 3f , 4f , and so on. However, these

plots are not identical. While the peak values drop with increasing frequency for the piano
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Figure 3: Waveform, Fourier transform, and spectrogram for different instruments playing the same
note C4 (fundamental frequency 261.6 Hz).

and the violin after f = 261 Hz, the highest peak occurs at the fourth harmonic (4f = 1046 Hz)

for the trumpet and at the second harmonic (2f = 523 Hz) for the flute. The distribution

of the signal’s energy across the harmonics is one important characteristic for the timbre or

tone color of an instrument.

The Fourier transform yields frequency information that is integrated over the entire

time domain, but most signals are not stationary, and their frequency contents change over

time. This observation leads to another central technique in signal processing: short-time

Fourier transform (STFT). Instead of considering the entire signal at once, the main idea

of the STFT is to partition the signal into small sections in time and consider each smaller

section individually. To this end, one fixes a window function, which is a function that is

nonzero for only a short period of time (defining the considered section). The original signal

is then multiplied with the window function to yield a windowed signal. To obtain frequency

information at different time instances, one shifts the window function across time-axis

and computes a Fourier transform for each of the resulting windowed signals. The STFT

yields a two-dimensional representation of the original signal, which can be visualized by

means of a two-dimensional image known as spectrogram. In this image, the horizontal axis

represents time and the vertical axis represents frequency. Musical signals provide a concrete

demonstration of the utility of the STFT: changes in pitch, loudness, or other musically

salient characteristics are directly observable in the spectrogram image.
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The distinction between the STFT and a standard Fourier transform can often be confusing

to students. Additionally, the STFT introduces new parameters not present in the standard

Fourier transform, notably the window length (also called frame length) and the frame rate

(as dictated by the hop length, or number of samples between successive frames). Without

a grounding context, these parameters have no obvious default setting, and students may

not immediately grasp the effect of these parameters on the resulting analysis. However,

musical signals provide a means for demonstrating the effects of these parameters, and by

appealing to basic psychoacoustics, provide a way to connect the values of these parameters

to real phenomena: for example, the frame length can be connected to a minimal (perceptible)

non-trivial analysis frequency. In this setting, music provides a distinct advantage over

other example stimuli (e.g. speech or environmental sound), as it is relatively easy to find

(or construct) musical examples which probe the extremal cases of STFT parameters to

demonstrate behavior.

Returning to Figure 3, which shows the spectrograms for note C4, one can observe

horizontal lines that are stacked on top of each other for all four instruments. These equally

spaced lines correspond to partials—sinusoidal sound components that are not necessarily but

often close to harmonics. In case of the piano, the higher partials contain less and less of the

signal’s energy. Furthermore, the decay of a piano sound over time is reflected by the fading

out of the horizontal lines. For the trumpet sound, the spectrogram shows that the signal’s

energy is concentrated more in the higher partials. Also, opposed to the piano sound, there

does not seem to be any intensity decay over time, indicating that the trumpet player keeps

the volume of the sound constant. While this is also the case for the violin and flute sounds,

one can observe other phenomena that typically go along with certain playing styles such

as vibrato. For example, when looking at the waveform, one can observe periodic variations

in amplitude, also referred to as amplitude modulation. In the spectrogram (in particular

visible in the flute example), these variations appear as regular pulsation of intensity values

along the time dimension. Amplitude modulations often go along with frequency modulations,

which are regular, pulsating changes of frequency over time. In the spectrogram (in particular

visible in the violin example), these modulations appear as wave-like oscillations along the

time dimension. Both amplitude and frequency depend on two parameters: the extent of

the variation and the rate at which the amplitude or frequency is varied. Even though being

simply local changes in intensity and frequency, the modulations do not necessarily evoke a

perceived change in loudness or pitch of the overall musical tone. Rather, they are features
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Figure 4: Short excerpt of “Another One Bites the Dust” by Queen. The figure shows the waveform
with annotated onset positions, a spectrogram, and a novelty function with annotated beat positions.

that are used by musicians to influence the timbre of a musical tone.

Practical Application of Fourier Analysis to Music

So far, we have established that music can provide intuition for the Fourier transform and

its short-time version, and we have demonstrated how the Fourier transform and STFT

can provide an intuitive understanding of a music signal’s properties. With this connection

between music and signal processing established, music scenarios such as singing (see Figure 2)

can motivate students to explore the potential of Fourier analysis in an interactive and playful

fashion. Most students and schoolchildren are familiar with music video games (e.g, SingStar

or Rock Band), where the task is to sing along with music in order to score points. To compare

the singer’s input waveform with the game’s reference melody, one could employ Fourier

analysis. This makes it possible to convert the waveform into a sequence (or trajectory) of

fundamental frequency values. Such trajectories are often made visible even in the video

games, superimposed with piano-roll like visualizations of reference pitches. One can mimic

the basic idea of such games by employing realtime-capable software for visualizing the

frequency content of sounds while singing. Deepening the understanding of signal properties,

such software also allows students to experiment with algorithmic parameters that control the

STFT’s time and frequency resolution as well as the intensity visualization (e.g., switching

from a linear to a decibel scale).

Besides analyzing melodic properties of music signals, the Fourier transform can be applied
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for many more music processing tasks including harmony analysis, instrument recognition,

rhythmic analysis, and source separation. In the following, we examine beat tracking. Temporal

and structural regularities are perhaps the most important incentives for people to get involved

and to interact with music [8, 12]. It is the beat that drives music forward and provides the

temporal framework of a piece of music. Intuitively, the beat corresponds to the pulse a

human taps along when listening to music [13]. The term tempo (often specified in beats

per minute or BPM) refers to the rate of the pulse and is given by the reciprocal of the beat

period.

The beat tracking task seeks to extract beat and tempo information from audio recordings,

and it is one of the central and most well-studied research problems in MIR. We will now

discuss why beat tracking is an instructive, challenging, and multi-faceted application for

teaching and learning signal processing. Most approaches to beat tracking are based on two

assumptions: first, the beat positions correspond to note onsets (often percussive in nature)

and, second, beats are periodically spaced in time. Note that, for certain types of music,

these two assumptions may be questionable. For example, in passages with syncopation beat

positions may not go along with any onsets, or the periodicity assumption may be violated for

romantic piano music with strong tempo fluctuations (played rubato). The explicit modeling

of such simplifying assumptions is at the core of researching and teaching music processing.

Our two assumptions above motivate approaching beat-tracking in two steps. Consider

the short excerpt of “Another One Bites the Dust” by Queen, shown in Figure 4, for a

concrete visualization as we examine each of these steps. In the first step, one often estimates

the positions of starting times of notes or other musical events as they occur in a music

signal—a task commonly referred to as onset detection. As shown in Figure 4, onsets often

go along with a sudden change in a signal’s properties. Such changes may be seen as sharp

amplitude increases in the waveform. For notes with soft onsets or complex music with

several instruments playing at the same time, the detection of individual note onsets becomes

much harder. In these cases, converting the signal into a spectrogram turns out beneficial.

In particular, percussive onsets, as produced by a drum or hi-hat, result in vertical lines in

the spectrogram. This phenomenon comes from Fourier analysis: the energy of transient

events is spread across the entire spectrum of frequencies, thus yielding broadband spectral

structures. To detect these structures, one basic idea is to compute a kind of distance between

subsequent column vectors of the spectrogram. This results in a novelty function (also known

as the spectral flux ), which captures sudden changes in the signal’s frequency distribution.
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The peaks of such a novelty function are good indicators for note onset candidates.

In a second step, based on the assumption that beats are periodically spaced in time, the

novelty function is analyzed with regard to reoccurring patterns. This is particularly suitable,

intuitive, and concrete setting for studying different techniques of periodicity analysis—

a central concern of signal processing and time-series analysis. One approach based on

autocorrelation analysis aims to detect periodic self-similarities by comparing a novelty

function with time-shifted copies [14]. An alternative approach uses a bank of comb filter

resonators, where a novelty function is compared with templates consisting of equally spaced

spikes, each template representing a specific tempo [15]. A third approach compares the

novelty function with sinusoidal templates, each corresponding to a specific frequency. This

is exactly the idea of Fourier analysis, yielding a frequency representation of the novelty

function. We will come back to this last approach when introducing the FMP notebooks (see

also Figure 7).

Starting with playing and listening to music, a teacher can smoothly transition to

introducing basic concepts in signal processing. Singing analysis and beat tracking are

two tangible example tasks that help transition learning signal processing from one of rote

memorization to a contextually meaningful pursuit. Additional examples can be found in the

“Fundamentals of Music Processing” textbook [8]. Although our focus in this section has been

on applications of basic Fourier analysis, many music analysis tasks can be easily adapted

to more advanced topics, such as wavelet theory [16]. In the next section, we will discuss

educational software tools for teaching and learning such concepts.

Educational Software Tools

In addition to motivating and tangible music-based scenarios, the availability of suitably

designed software packages that make signal processing more accessible are crucial in view of

interactive learning [17]. Over the last 20 years, as MIR developed as a research field, so did

computational accessibility, and the MIR community has contributed with several excellent

toolboxes that provide modular source code for processing and analyzing music signals.

Prominent examples are essentia [18], madmom [19], Marsyas [20], or the MIRtoolbox [21].

These toolboxes are mainly designed for research-oriented access to audio processing, yielding

code for audio feature extraction as well as for various MIR applications. Here we focus on

two concrete software examples: the FMP notebooks [7] which have an explicit educational

lens, and the Python package librosa [9] which has become a standard in MIR research,
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and recently has also been incorporated into introductory MIR courses. We indicate how

these tools facilitate multiple entry points to delve deeper into classical signal processing

techniques, while bridging the gap between education and cutting-edge research.

FMP Notebooks

The FMP notebooks offer an interactive foundation for MIR and for teaching and learning

fundamentals of music processing (FMP) [7], which when used in a traditional signal processing

course can enhance students’ understanding of signal processing. By closely following the

eight chapters of the textbook [8], the FMP notebooks provide an explicit link between

structured educational environments and current professional practices, inline with current

curricular recommendations for computer science [22]. Furthermore, these notebooks provide

a vehicle for students to transition between comprehending signal processing ideas in their

own words (the second level of Bloom’s taxonomy) towards applying these ideas interactively

to music examples (the third and fourth levels of Bloom’s taxonomy). For many MIR tasks,

fundamental algorithms and signal processing techniques are discussed in detail. An overview

of the main topics covered by the FMP notebooks is shown in Figure 6. Besides the treatment

of the theory, the notebooks demonstrate how these techniques can be implemented by

providing specific Python code examples.

The FMP notebooks leverage the Jupyter notebook framework [23], which has become a

standard in industry as well as in educational settings. This open-source web application

allows users to create documents that contain live code, text-based information, mathematical

formulas, plots, images, sound examples, and videos. Jupyter notebooks are often used as

a publishing format for reproducible computational workflows [23]. They can be exported

to a static HTML format, which makes it possible to generate web applications that can

be accessed through standard web browsers with no specific technical requirements. By

leveraging the Jupyter framework, the FMP notebooks bride the gap between theory and

practice by interleaving technical concepts, mathematical details, code examples, illustrations,

and sound examples within the unifying Jupyter framework (see Figure 5). Additionally, the

notebooks are essentially self-contained in terms of content by including introductions for each

MIR task, providing important mathematical definitions, and describing the computational

approaches in detail.

One primary purpose of the FMP notebooks is to provide audio-visual material as

well as Python code examples that implement the computational approaches step by step.
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Figure 5: Overview of didactical aspects of the FMP notebooks and their implementation using the
interactive Jupyter notebook framework.

Additionally, the FMP notebooks provide an interactive framework that allows students to

experiment with their own music examples, to explore the effect of parameter settings, and

to gain an understanding of the computed results by suitable visualizations and sonifications.

These functionalities are examples of “procedural literacy” [24] by centering theoretical

discussions around computational procedures.

The FMP notebooks, even though containing a library of MIR functions (called LibFMP),

are not designed to be a toolbox per se. Instead, for a given music processing pipeline, the

FMP notebooks introduce the code in a step-by-step fashion interleaved with explanations.

This allows a student to access, visualize, and understand the intermediate steps. We

illustrate this principle by coming back to our beat tracking scenario. Discussing Figure 4,

we introduced a spectrum-based novelty function the peaks of which indicating note onset

candidates. We now apply the same concept to an orchestral recording of the Waltz No.

2 by Dimitri Shostakovich’s Suite for Variety Orchestra No. 1. Figure 7 shows the score

(in a piano-reduced version) as well as the novelty function of a short excerpt of this piece.

Note that the first beats (downbeats) of the 3/4 meter are played softly by nonpercussive

instruments, leading to relatively weak and blurred onsets. In contrast, the second and

third beats are played sharply (“staccato”), supported by percussive instruments. These

properties are also reflected by the spectral-based novelty function: the peaks that correspond

to downbeats are hardly visible or even missing, whereas the peaks that correspond to the

percussive beats are much more pronounced. As for beat tracking, we again use Fourier

analysis—this time applied to the novelty function rather than to the audio signal. As for the
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Figure 6: Overview of the main topics covered by the FMP notebooks (adapted from [7,8]).

STFT, the idea is to locally compare a given novelty function with windowed sinusoids. This

time, the frequency of the sinusoid is interpreted in terms of BPM (e.g., an oscillation rate of

1 Hz corresponds to 60 BPM). The resulting spectrogram is then called tempogram, where

the frequency axis is interpreted as tempo axis. Besides the frequency, we also use the phase

information of the complex STFT coefficients to determine for each time position a windowed

sinusoid that best captures the local peak structure of the novelty function. This is illustrated

by Figure 7. Instead of looking at the windowed sinusoids individually, the idea is to employ

an overlap-add technique by accumulating all locally optimal sinusoids over time. As result,

one obtains a single function that can be regarded as a local periodicity enhancement of

the original novelty function. Revealing predominant local pulse (PLP) information, this

representation is referred to as a PLP function [25]. Having a pronounced peak structure,

the beat positions can now be obtained form the PLP function using a simple peak picking

strategy.

By looking at this concrete example, we illustrated how the FMP notebooks yield explicit

access to all intermediate steps, starting with a musical score and ending with a sonification

of the detected beat positions superimposed with the original audio recording. Furthermore,

this example showed how Fourier analysis can be applied for periodicity enhancement, while
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Figure 7: Illustration of the music processing pipeline for computing the predominant local pulse
(PLP) function given a novelty function (see also Figure 4). The figure shows a small excerpt of the
Waltz No. 2 by Dimitri Shostakovich’s Suite for Variety Orchestra No. 1.

highlighting the role of the phase. When teaching and learning signal processing, we advocate

that it is essential to have a holistic view on the MIR task at hand, the algorithmic approach,

and its practical implementation. Looking at all steps of the processing pipeline sheds light on

the input data and its biases, possible violations of model assumptions, and the short-coming

of quantitative evaluation measures. Only by an interactive examination of all these aspects,

students will acquire a deeper understanding of the concepts, transitioning from merely

explaining concepts (the lowest level of Bloom’s taxonomy) to applying their signal processing

approaches both conceptually and in code. Furthermore, the imprecise definitions of MIR

tasks allow for richer discussion and cognitive interaction with signal processing and music.

For example, in beat-tracking, there are a number of questions that naturally arise: What

is an onset? Can it be described by a single time instant? Does beat tracking make sense

for certain musical passages (e.g., music with rubato)? Would humans agree when asked to

specify a single tempo value? Is the evaluation metric relevant for a given application? In a

curriculum on signal processing, wrestling with such questions illuminates to students the

challenges of computational approaches in the applied sciences.
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librosa Python Package

The FMP Notebooks provide an interactive framework in which students can learn about and

experiment with signal processing and MIR algorithms. However, when students transition

from learning to professional practice and research, we expect them to outgrow the FMP

notebooks, and begin developing their own DSP methods and programs, corresponding to

students’ arrival at the top of Bloom’s taxonomy. However, this transition can be difficult

without proper (software) infrastructural support. The librosa package was designed to fill

this role, providing standardized and flexible reference implementations of many common

methods in MIR [9].

Whereas the FMP notebooks are designed to introduce fundamental concepts in signal

processing, librosa is intended to facilitate high-level composition of basic methods into

complex pipelines. As its original intended audience was the MIR research community, it was

designed to facilitate the development of experimental research code. In the seven years since

its first release, numerous scholarly publications have used librosa to provide the underlying

signal processing framework, and many of these publications include open source software

which students and researchers can download, use, and extend the work. The availability of

open research software provides an avenue to train new researchers, as they can directly see

how prior work was done, and have a significantly less work to do if modifying or extending

it to achieve a new goal.

Conversely, librosa itself provides both reference implementations of many previously

published methods (various feature extractors, phase retrieval methods, spectrogram decom-

positions, beat tracking algorithms, etc.), which can be used to independently replicate a

method with relatively little effort. To demonstrate this, a collection of advanced examples

are provided in the documentation, several of which demonstrate how to fully reproduce a

published method by combining building blocks provided by librosa. These examples can

also be exported as Jupyter notebooks, which a user can download and run on their own

machine. This feature of the documentation serves a similar, interaction-oriented goal as

the FMP notebooks, except that is aimed principally at researchers and software developers

already familiar with the fundamentals.
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The design of librosa

The application programming interface (API) of librosa was intentionally designed to present

a low barrier to entry for new users, eschewing complex class hierarchies and object-oriented

interfaces in favor of simple data structures (numerical arrays) and functions. This kind of

function-oriented design can be easier for new users to learn, as functions (in contrast to

objects) have well-defined entry and exit points, and no internal state for the programmer

to understand: all parameters are explicitly visible in the call signature. Similarly, variable

names are consistently defined across the package and human-readable (e.g., n fft instead of

N for the number of analysis frequencies in a Fourier transform).1

Figure 8 provides a brief example code listing which follows the rhythm analysis example

given in Figure 7. While the library allows a user to directly construct the PLP function

from an audio signal (line 7), a user can also explicitly construct intermediate representations

such as the novelty function directly (lines 10–11). The resulting code is still compact and

high-level, but it also facilitates exploration and experimentation. For example, a user can

easily change the calculation of the novelty function and leave the remainder of the PLP

analysis fixed, allowing users to carefully measure the result of their interventions. This

design philosophy is not limited to this one example, but rather is seen throughout the library

as a whole.

Beyond its API design, the library developers strive for complete and thorough documen-

tation, fully worked code examples for each function, and well-documented, readable source

code. The latter point is enforced by stringent code review, and ensures a high standard

of quality for all source code contributions. Well-written source code can be instructional,

both in demonstrating clearly how any particular method works, as well as providing more

general examples of how to structure complex programs and libraries. The intent behind the

emphasis on code quality is to allow any knowledgeable user to look into the code, and with

minimal effort, quickly be able to understand how it works, and potentially extend it with

new contributions. More generally, the library itself provides an example of many software

engineering best practices, which can be readily adopted in research settings, such as version

control, code review processes, and continuous integration testing [27].

Both the FMP notebooks and librosa create opportunities for interaction in a traditional

signal processing course. Adding just the FMP notebooks adds interactions similar to a

1These design principles, among many others found in the scientific Python community, were clearly
articulated by Gaël Varoquaux’s 2017 keynote address at the annual SciPy conference [26].
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Figure 8: Example usage of librosa to reproduce the analysis illustrated in Figure 7. All results
are stored as numerical arrays, can be directly manipulated by the user. Functionality is grouped
into different submodules (onset, feature, beat), and the interfaces for high-level analyses (e.g. PLP)
support exploration by allowing users to pre-compute intermediate representations.

“coding worksheet” that allows students to dynamically play with examples. Additionally,

students become familiar with the Jupyter framework and Python syntax. Including librosa

allows for broader experimentation with signal processing and provides a common language for

cumulative course projects, where students can demonstrate their familiarity and creativity

with a number of signal processing topics. Furthermore, leveraging tools like the FMP

notebooks and librosa provides opportunities for learning beyond signal processing. By

employing these Python and Jupyter-based tools, students are passively learning about open

access and reproducibility, two topics that cut across disciplines.

Interactivity and Learning

In this article, we have presented a scaffold to naturally transition students from starting

to learn about signal processing to beginning independent research. Using music examples

and technologies provide what Guzdial [3] calls a contextualized educational experience for

signal processing. Concretely, we have shown how music-based examples can make Fourier

analysis more tangible to beginners. We then demonstrated how the FMP notebooks provide

a constrained scaffold for interacting with music examples for signal processing. Building on

the skills and conceptual understanding gained through concrete and interactive music-based

examples, students can explore more advance applications of Fourier analysis through broader

experimentation via the Python library librosa.

The incorporation of music into a signal processing course allows students an avenue for

“inauthentic legitimate peripheral participation” [28] in the field of signal processing. Extending

the work of Lave and Wenger [6] defining “legitimate peripheral participation” which builds
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a scaffold for introducing students to concepts similar to the apprentice structure, Guzdial

and Tew [28] connect this model to computing courses that have media-based examples (such

as photographs) as the basis for the coursework. In this work we have modeled a similar

extension, applying their framework to the specifics of music as a vehicle for learning signal

processing by first engaging the highly structured FMP notebooks and then leveraging the

range of tools in the librosa package. In effect, this structure brings students through

Bloom’s taxonomy, helping them to reach the deepest understanding of SP concepts.

Signal processing is about finding structure in signals. Audio is a familiar signal modality,

and music is explicitly and intentionally structured audio. Leveraging the familiarity of music,

Fourier analysis becomes more concrete, and examples from textbooks such as [1, 8] can

be easily incorporated into a traditional signal processing course. For instructors seeking

to transition to an interactive alternative to the lecture-based classroom model with a

“sage on a stage” simply depositing knowledge into students’ brains, the FMP notebooks

provide one such alternative. Created in the Jupyter framework with an explicit connection

to the “Fundamentals of Music Processing” textbook [8], the FMP notebooks provide an

interactive environment where students are invited to grapple with concepts through small

structured coding examples. The Jupyter framework underlying the FMP notebooks provide

an experimental playground for students to test signal processing concepts on music and to

manipulate music using signal processing ideas. Once students are familiar with introductory

signal processing and MIR concepts, they can continue experimenting via the examples in

librosa presented as coding notebooks.

In this paper, we leverage the inherent familiarity of music to motivate theoretical signal

processing and extend these examples to an interactive learning experience through the

FMP notebooks and librosa. We have discussed how the interplay between music and

signal processing leads to a variety of kinds of interaction: interaction through applications,

hands-on interaction with the material through experimentation, and interaction between the

structure of a classroom and the experimentation of research. We have provided resources

that instructions can use in their classrooms, and we have been diligent to describe how

these resources can be implemented in terms of course activities from enhancing lectures to

incorporating cumulative class projects.
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