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Abstract: This paper provides a guide through the FMP notebooks, a comprehensive collection
of educational material for teaching and learning fundamentals of music processing (FMP) with a
particular focus on the audio domain. Organized in nine parts that consist of more than 100 individual
notebooks, this collection discusses well-established topics in music information retrieval (MIR) such
as beat tracking, chord recognition, music synchronization, audio fingerprinting, music segmentation,
and source separation, to name a few. These MIR tasks provide motivating and tangible examples that
students can hold onto when studying technical aspects in signal processing, information retrieval,
or pattern analysis. The FMP notebooks comprise detailed textbook-like explanations of central
techniques and algorithms combined with Python code examples that illustrate how to implement
the methods. All components, including the introductions of MIR scenarios, illustrations, sound
examples, technical concepts, mathematical details, and code examples, are integrated into a unified
framework based on Jupyter notebooks. Providing a platform with many baseline implementations,
the FMP notebooks are suited for conducting experiments and generating educational material for
lectures, thus addressing students, teachers, and researchers. While giving a guide through the
notebooks, this paper’s objective is to yield concrete examples on how to use the FMP notebooks to
create an enriching, interactive, and interdisciplinary supplement for studies in science, technology,
engineering, and mathematics. The FMP notebooks (including HTML exports) are publicly accessible
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Keywords: music processing; music information retrieval; MIR; audio processing; Python; jupyter
notebook; education

1. Introduction

Music information retrieval (MIR) is an exciting and challenging area of research.
Music not only connects people but also relates to many different research disciplines,
including signal processing, information retrieval, machine learning, musicology, and
psychoacoustics. In its beginnings, research in MIR has borrowed many ideas and concepts
from more established disciplines such as speech processing or computer linguistics. After
more than twenty years, the MIR field has matured to an independent research area, which
has many things to offer to signal processing and other research disciplines. Using well-
established music analysis and retrieval topics, the textbook on Fundamentals of Music
Processing [1] (FMP) yields an example of how music may provide a rich and challenging
application domain for introducing, teaching, and studying fundamental techniques and
algorithms relevant for general courses in computer science, multimedia engineering,
information science, and digital humanities. While providing profound technological
knowledge as well as a comprehensive treatment of music processing applications, the
book also includes numerous examples and illustrations to convey the main ideas in an
intuitive fashion.

In recent years, suitably designed software packages and freely accessible web-based
frameworks have made education in computer science and signal processing more in-
teractive. Such novel technology allows for designing courses that help students move
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from recalling and reciting theoretical concepts towards comprehension and application.
These new developments are precisely the motivation for the development of the FMP
Notebooks, which provide an interactive foundation for teaching and learning fundamen-
tals of music processing (FMP). The FMP notebooks are built upon the Jupyter notebook
framework, which has become a standard in industry as well as in educational settings [2].
This open-source web application allows users to create documents that contain live code,
text-based information, mathematical formulas, plots, images, sound examples, and videos.
By leveraging the Jupyter framework, the FMP notebooks bridge the gap between theory
and practice, where technical concepts and mathematical details are interleaved with code
examples, illustrations, and sound examples (see Figure 1). The FMP notebooks closely
follow the eight chapters of the textbook [1], and as such, provide an explicit link between
structured educational environments and current professional practices, in line with current
curricular recommendations for computer science [3].
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Figure 1. Components and educational aspects of the FMP notebooks.

With this paper, we provide a comprehensive guide through the FMP notebooks.
The parts of the FMP notebooks’ main body, as shown in Figure 2, cover MIR topics
starting with music representations and Fourier analysis through beat tracking and chord
recognition to retrieval and audio decomposition. Each part, in turn, consists of about
10–15 notebooks that provide in-depth descriptions of techniques and algorithms, which
are motivated, applied, and evaluated within the given MIR context. While giving a
guide through the notebooks, this paper’s main objective is to make concrete suggestions
on using the FMP notebooks to create an enriching, interactive and interdisciplinary
supplement in the form of experiments and advanced studies in a music processing
curriculum. Furthermore, we show how the notebooks allow for generating appealing
multimedia objects such as figures and sound examples, which may be useful for lectures
and scientific publications. The FMP notebooks are publicly available under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License at https://
www.audiolabs-erlangen.de/FMP (accessed on 22 April 2021) in the form of Jupyter
notebooks as well as HTML exports, which can be accessed through a conventional web
browser. The guide provided by this paper can be best appreciated and understood when
the FMP notebooks are opened in a browser simultaneously while reading.

Using the static HTML version, all multimedia material, including the music examples,
audio files, video files, and images, can be directly accessed without any specific technical
requirements beyond a standard web browser. To execute the FMP notebooks’ code,
one needs to install Python, Jupyter, and additional Python packages. All necessary
steps for installing, running, and updating the required software packages are described
in a separate part (called Part B) of the FMP notebooks. This part also contains short
introductions to Python programming, Jupyter notebooks, and multimedia integration

https://www.audiolabs-erlangen.de/FMP
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while providing functions for data annotation, visualization, and sonification. Rather than
being comprehensive, Part B gives instructive code examples that become relevant in the
other parts while documenting how the FMP notebooks were created.

Part Title Notions, Techniques & 
Algorithms HTML IPYNB

Basics

Basic information on Python, Jupyter
notebooks, Anaconda package 
management system, Python 
environments, visualizations, and 
other topics 

[html] [ipynb]

Overview
Overview of the notebooks 
(https://www.audiolabs-
erlangen.de/FMP)

[html] [ipynb]

Music 
Representations

Music notation, MIDI, audio signal, 
waveform, pitch, loudness, timbre [html] [ipynb]

Fourier Analysis 
of Signals

Discrete/analog signal, sinusoid, 
exponential, Fourier transform, 
Fourier representation, DFT, FFT, 
STFT

[html] [ipynb]

Music 
Synchronization

Chroma feature, dynamic 
programming, dynamic time warping 
(DTW), alignment, user interface

[html] [ipynb]

Music Structure 
Analysis

Similarity matrix, repetition, 
thumbnail, homogeneity, novelty, 
evaluation, precision, recall, F-
measure, visualization, scape plot

[html] [ipynb]

Chord 
Recognition

Harmony, music theory, chords, 
scales, templates, hidden Markov 
model (HMM), evaluation

[html] [ipynb]

Tempo and Beat 
Tracking

Onset, novelty, tempo, tempogram, 
beat, periodicity, Fourier analysis, 
autocorrelation

[html] [ipynb]

Content-Based 
Audio Retrieval

Identification, fingerprint, indexing, 
inverted list, matching, version, cover 
song

[html] [ipynb]

Musically 
Informed Audio 
Decomposition

Harmonic/percussive separation, 
signal reconstruction, instantaneous 
frequency, fundamental frequency 
(F0), trajectory, nonnegative matrix 
factorization (NMF)

[html] [ipynb]

Figure 2. Content of FMP notebooks structured along with the eight chapters of the textbook [1].

The remainder of the paper is organized as follows. In Section 2, we review related
software frameworks and toolboxes for audio and music processing. Then, in Section 3, we
give an overview of the main technical concepts and required software tools that underlie
the FMP notebook while summarizing the content of Part B. The educational guide through
the FMP notebooks can be found in Section 4, where the eight parts are organized along
with the eight chapters of the textbook [1]. Finally, concluding remarks with pointers
for further reading in the area of deep learning can be found in Section 5. While the first
sections of this paper are an extended and updated version of the ref. [4] that originally
introduced the FMP notebooks, the educational guide in Section 4 is presented here for the
first time and constitutes this paper’s main contribution.

2. Related Work

There are a number of excellent and well-document toolboxes that provide modular
source code for processing and analyzing music and audio signals. In the following,
we give an overview of open-source toolboxes that have been specifically designed for
supporting MIR research. We start with prominent examples of code collections for audio
and music feature extraction. An early example of such a toolbox is Marsyas, which offers

https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B.html
http://marsyas.info/
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a software framework for rapid prototyping and experimentation with audio analysis
and synthesis with specific emphasis to music signals [5]. Similarly, the jAudio toolbox
was designed for facilitating easy-to-use audio feature extraction, where the duplication
of effort in calculating features from an audio signal is eliminated [6]. The MIRtoolbox
consists of an integrated set of MATLAB functions for the extraction of musical features
that decscribe tonality, rhythm, and structures from audio files [7]. The Essentia library
offers an extensive collection of flexible and easily extendable algorithms for computing a
large set of spectral, temporal, tonal, and high-level audio and music descriptors. Written in
C++, the library includes Python and JavaScript bindings as well as various command-line
tools, which facilitate its use for fast prototyping and allow setting up research experiments
rapidly [8]. Recently, the open-source JavaScript (JS) library Essentia.js that allows for
efficient and robust real-time audio feature extraction on web browsers was released [9].

There are also various, more specialized toolboxes that focus on specific MIR appli-
cations such as the Chroma Toolbox for chroma feature extraction [10], the Constant-Q
Toolbox for computing time–frequency transforms [11], the TSM Toolbox for time-scale
modification [12], the Tempogram Toolbox for tempo and pulse tracking [13], the NMF
toolbox for nonnegative matrix factorization with applications to audio decomposi-
tion [14], the SM Toolbox for computing and enhancing similarity matrices, and the MSAF
toolbox for audio structure analysis [15]. While most of these toolboxes cover more tradi-
tional MIR techniques, the recent Python library madmom offers code for MIR approaches
(including onset detection, beat tracking, and chord recognition) that employ deep learning
techniques [16]. Furthermore, based on deep learning, Open-Unmix provides an open-
source reference implementation for the MIR task of music source separation [17]. Other
useful toolboxes provide code for the evaluation of MIR approaches such as the mir_eval
library [18] or for data augmentation such as the Audio Degradation Toolbox [19] or the
muda library [20].

While most of these toolboxes have been developed especially for research purposes,
some of them go along with excellent documentation and example applications that not
only illustrate how the code works but also give insights into the underlying techniques
and algorithms. We now mention some code collections that have been specially devel-
oped for didactic purposes. One such example is the ACA-Code, which is a collection of
MATLAB and Python functions accompanying the textbook on Audio Content Analy-
sis [21]. While the book covers the theoretical background for various audio and music
processing concepts, the code collection provides corresponding reference implementa-
tions that enable students to gain hands-on experience. Based on the Juypter Notebook
framework, the MIR Notebooks provided by Steve Tjoa are a collection of instructional MIR
materials, containing a mix of casual conversation, technical discussion, and Python code.
Similarly, using the Jupyter Book framework, the tutorial on Music Source Separation
interleaves textbook-like explanations with code interactively [22]. Last but not least, we
want to draw attention to the Python package librosa, which provides basic functions as
well as advanced processing pipelines for several music and audio analysis tasks [23]. This
package also comprises a gallery of advanced examples, which nicely illustrate how to
use the package for approaching MIR tasks such as onset detection, music synchronization,
harmonic-percussive separation, and audio structure analysis.

The FMP Notebooks are inspired by librosa and integrate, extend, and complement
elements offered by this package. While librosa is designed to be an easy-to-use toolbox
with convenient presets, the emphasis of the FMP notebooks is on the educational side,
promoting the understanding of MIR concepts. Therefore, rather than providing compact
and efficient code, the FMP code examples’ programming style is explicit and straight-
forward with a flat, functional hierarchy (at the cost of redundancy). The mathematical
notation and the naming conventions used in the FMP notebooks are carefully matched to
each other, thus establishing a close relationship between theory and practice. Furthermore,
the FMP notebooks allow for generating appealing multimedia objects such as figures and
sound examples, which may be useful for lectures and scientific publications. In summary,

http://jaudio.sourceforge.net/
https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
https://essentia.upf.edu
https://mtg.github.io/essentia.js/docs/api/
https://www.audiolabs-erlangen.de/resources/MIR/chromatoolbox
https://www.cs.tut.fi/sgn/arg/CQT/
https://www.cs.tut.fi/sgn/arg/CQT/
https://www.audiolabs-erlangen.de/resources/MIR/TSMtoolbox
https://www.audiolabs-erlangen.de/resources/MIR/tempogramtoolbox
https://www.audiolabs-erlangen.de/resources/MIR/NMFtoolbox/
https://www.audiolabs-erlangen.de/resources/MIR/NMFtoolbox/
https://www.audiolabs-erlangen.de/resources/MIR/SMtoolbox
https://github.com/urinieto/msaf
https://github.com/urinieto/msaf
https://madmom.readthedocs.io/
https://sigsep.github.io/open-unmix/
https://github.com/craffel/mir_eval
https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox
https://muda.readthedocs.io
https://muda.readthedocs.io
https://www.audiocontentanalysis.org/
https://jupyter.org/
https://musicinformationretrieval.com/
https://jupyterbook.org/
https://source-separation.github.io/tutorial/landing.html
https://librosa.org/
https://librosa.org/librosa_gallery/
https://www.audiolabs-erlangen.de/FMP
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educational and didactic considerations are the leading guide in the development of the
FMP notebooks. We hope that these notebooks constitute a useful complement to existing
open-source toolboxes while fostering education and research in MIR.

3. Technical Framework (Part B)

This section describes the software framework and central functions that form the
technical backbone of the FMP notebooks. These aspects are also covered by Part B—a part
which serves different purposes. First, the notebooks of Part B describe the main tools used
for developing the FMP notebooks. Second, they give short introductions of the relevant
software concepts while providing links to more advanced tutorials. Third, the notebooks
give practical advice and examples for generating, using, and integrating code, figures, and
sound elements as used throughout the FMP notebooks. In the following, we describe the
technical aspects along with the notebooks of Part B. To better understand the explanations,
we recommend opening the corresponding notebooks of Part B, which can be accessed as
a static HTML version through a standard web browser without any further installation.

3.1. Installation

To obtain a dynamic version of the FMP notebooks, one needs to install Python,
Jupyter, and additional Python packages. In the FMP Notebook Get Started, one finds
a short introduction on how to get the FMP notebooks run. More detailed explanations
can be found in the FMP Notebook Installation, where we introduce the source package
manager conda and explain how to use it for installing, running, and updating the required
software packages. Furthermore, we provide a file that specifies a Python environment
called FMP. This environment file lists all packages (specified by name and version number)
needed for the FMP notebooks. Giving a detailed description, we explain how to use the
package manager to automatically set up this environment.

3.2. Jupyter Notebook

The FMP notebooks are based on the Jupyter notebook framework. As said before,
this open-source web application allows users to create documents that contain live code,
text-based information, mathematical formulas, plots, images, sound examples, and videos.
Jupyter notebooks are often used as a publishing format for reproducible computational
workflows [2]. They can be exported to a static HTML format, making it possible to
generate web applications that can be accessed through standard web browsers with no
specific technical requirements. The FMP Notebook Jupyter Notebook covers some basic
elements of the Jupyter framework, including practical aspects such as essential Jupyter
operators and keyboard shortcuts.

3.3. Python

In the FMP notebooks, we use Python as the programming language. The reason for
this choice is that Python is an open-source general-purpose language, which is widely used
in scientific computing and offers plenty of resources in data sciences and machine learning.
Furthermore, being a beginner-friendly language, it suits the didactic orientation of the
FMP notebooks well. The FMP Notebook Python Basics contains a short introduction
to Python summarizing the most important data types, control structures, and functions
as occurring in later parts of the FMP notebooks. One of our design principles is to
keep the required programming skills at an elementary level. Furthermore, one finds
code examples that illustrate how to create appealing figures, process audio files, and
program interactive plots. Furthermore, the FMP Notebook Python Style Guide makes
some general recommendations for coding conventions as often used in Python.

3.4. Multimedia

The FMP Notebook Multimedia gives a short overview of how to integrate multime-
dia objects (in particular, audio, image, and video objects) into a Jupyter notebook. Rather

https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_GetStarted.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Installation.html
https://conda.io/en/latest/
https://jupyter.org/
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Jupyter.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_PythonBasics.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_PythonStyleGuide.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Multimedia.html
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than being comprehensive, we only give a selection of possibilities as used in the other
parts of the FMP notebooks. In particular, we discuss two alternatives: a direct integration
of images, video, and audio elements using HTML tags as well as an integration using the
Python module IPython.display. Python provides powerful functionalities for generat-
ing and plotting figures. In the FMP Notebook Python Visualization, we discuss concrete
examples on how to generate images to visualize waveforms (audio signals), spectrograms
(time–frequency representations), and other feature representations. In doing so, we in-
troduce alternatives based on the Python library matplotlib and the Python package
librosa. Furthermore, we discuss how to control the size and position of a colorbar and
how to define useful colormaps. Finally, the handling of audio files is covered in the FMP
Notebook Python Audio. In particular, we introduce several ways to read and write audio
files in Python, using different packages. Furthermore, we discuss the advantages as well
as disadvantages of these options.

3.5. Numba

In the FMP Notebook Numba, we give a short introduction to the Python package
numba, which offers a just-in-time (JIT) compiler that translates a subset of Python code
into fast machine code. Even though not crucial from a functionality point of view, we
use this package to significantly speed up (sometimes by a factor of 100) some of our
implementations. Rather than being comprehensive, we give some concrete examples
(including the option for parallel computing) while highlighting some of the restrictions
when using numba.

3.6. Annotation Visualization and Sonification

Annotations of musical properties such as beat positions, structural segments, or chord
labels play an essential role when training or testing MIR approaches. Such annotations,
which are typically generated by domain experts in a manual process, are often used
as reference for evaluating computational methods. In the FMP Notebook Annotation
Visualization, we introduce some Python functions for parsing and visualizing various
kinds of annotations as encountered in music processing. In particular, we consider single-
value annotations (e.g., used to encode beat positions) and segment annotations that
consist of pairs of values (e.g., used to encode chord segments). These functions are used
throughout the FMP notebooks to explain feature properties and enrich visualizations (see
Figure 3 for examples).

Figure 3. Examples for visualizing annotations of time positions (left part) and segments (right part),
which may be interlinked (upper part) and superimposed (lower part) with feature representations
(shown as gray-scale matrix plots).

https://ipython.readthedocs.io/
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_PythonVisualization.html
https://matplotlib.org/
https://librosa.org/
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https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_PythonAudio.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_PythonNumba.html
https://numba.pydata.org/
https://numba.pydata.org/
https://numba.pydata.org/
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Annotations.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Annotations.html
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The visualization of feature representations along with annotations not only deepens
the understanding of signal processing concepts but also provides valuable insights into
musical and acoustic properties of the underlying audio signals. As an alternative or
complement to data visualization, one may also use data sonification as a means for
providing acoustic feedback on the nature of extracted or annotated information. In the
FMP Notebook Sonification, we introduce several sonification methods that are helpful
in analyzing annotations as well as audio features extracted from a music recording.

3.7. Further Topics and Summary

In Part B, we introduce various Python libraries that are used throughout the FMP
notebooks. In particular, in the FMP Notebook libfmp, we give a short introduction on
how Python modules and packages are structured. Based on these concepts, we explain
how the functions that are systematically developed throughout the various parts of the
FMP notebooks are organized to form the Python package libfmp. This packages makes it
possible to easily use all the FMP notebooks’ functionality for other projects. Finally, the
FMP Notebook MIR Resources contains links to literature, toolboxes, and other resources
that may be useful for research in music processing and music information retrieval (MIR).
However, we would like to point out that the information provided on this website does
not claim to be comprehensive.

In summary, with the notebooks of Part B, our goal is to make the FMP notebooks
self-contained. Rather than trying to be comprehensive, we give useful and instructive
code examples that become relevant in the other parts. Furthermore, Part B also motivates
and documents how the FMP notebooks were created.

4. Educational Guide

The main music processing and MIR topics covered by the FMP notebooks are or-
ganized in eight parts, which follow the eight chapters of the textbook on Fundamentals
of Music Processing [1]. The notebooks include introductions for each MIR task, provide
important mathematical definitions, and describe computational approaches in detail. One
primary purpose of the FMP notebooks is to provide audio-visual material as well as
Python code examples that implement the computational approaches described in [1].
Additionally, the FMP notebooks provide code that allows users to experiment with pa-
rameters and to gain an understanding of the computed results by suitable visualizations
and sonifications. These functionalities also make it easily possible to input different music
examples and to generate figures and illustrations that can be used in lectures and scien-
tific articles. This way, the FMP notebooks complement and go beyond the textbook [1],
where one finds a more mathematically oriented approach to MIR. The following guide
is organized along with the eight parts corresponding to the textbook’s chapters. For
each part, we start with a short summary of the topic and then go through the part’s
notebooks in the same chronological as they occur in the FMP notebooks. To understand
the guide’s explanations, it is essential to synchronously open the respective notebook.
This can be easily achieved, since we explicitly mention each of the notebook’s title, which
is additionally linked in the article’s PDF to the HTML version of the respective notebook.

4.1. Music Representations (Part 1)

Musical information can be represented in many different ways. In ([1], Chapter 1),
three widely used music representations are introduced: sheet music, symbolic, and audio
representations. The term sheet music is used to refer to visual representations of a musical
score either given in printed form or encoded digitally in some image format. The term
symbolic stands for any kind of symbolic representation where the entities have an explicit
musical meaning. Finally, the term audio is used to denote music recordings given in
the form of acoustic waveforms. The boundaries between these classes are not clear. In
particular, as illustrated by Figure 4, symbolic representations may be close to both sheet
music as well as audio representations [24]. In Part 1 of the FMP notebooks, which is

https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_LibFMP.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_ResourcesMIR.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_ResourcesMIR.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1.html
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closely associated with the textbook’s first chapter, we introduce basic terminology used
throughout the following FMP notebooks. Furthermore, we offer visual and acoustic
material as well as Python code examples to study musical and acoustic properties of
music, including frequency, pitch, dynamics, and timbre. We now go through the FMP
notebooks of Part 1 one by one while indicating how these notebooks can be used for
possible experiments and exercises.

Audio
Representations

Symbolic
Representations

Sheet Music
Representations

Acoustic Domain Visual Domain

Transcription

Synthesis
Performance

Rendering

OMR

Musical TimePhysical Time

Figure 4. Illustration of three classes of music representation and their relations (from [1], Figure 1.24).

We start with the FMP Notebook Sheet Music Representations, where we take up
the example of Beethoven’s Fifth Symphony. Besides the piano reduced version and a
full orchestral score, we also show a computer-generated sheet music representation. The
comparison of these versions is instructive, since it demonstrates the huge differences
one may have between different layouts, also indicating that the generation of visually
pleasing sheet music representations from score representations is an art in itself. Besides
the visual data, the notebook also provides different recordings of this passage, including
a synthesized orchestral version created from a full score and a recording by the Vienna
Philharmonic orchestra conducted by Herbert von Karajan (1946). The comparison between
the mechanical and performed versions shows that one requires additional knowledge not
directly specified in the sheet music to make the music come alive. In the data folder of Part
1 (data/C1), one finds additional representations of our Beethoven example including a
piano, orchestral, and string quartet version. The files with the extension .sib, which were
generated by the Sibelius music notation software application, have been exported in
other symbolic formats (.mid, .sib, .xml), image formats (.png), and audio formats (.wav,
.mp3). Such systematically generated data is well suited for hands-on exercises that allow
teachers and students to experiment within a controlled setting. This is also one reason
why we will take up the Beethoven (and other) examples again and again throughout the
FMP notebooks.

In the FMP Notebook Musical Notes and Pitches, we deepen the concepts as intro-
duced in ([1], Section 1.1.1). We show how to generate musical sounds using a simple
sinusoidal model, which can then be used to obtain acoustic representations of concepts
such as octaves, pitch classes, and musical scales. In the FMP Notebook Chroma and Shep-
ard Tones, we generate Shepard tones, which are weighted superpositions of sine waves
separated by octaves. These tones can be used to sonify the chromatic circle and Shepard’s
helix of pitch as shown in the notebook’s figures. Extending the notion of the twelve-tone
discrete chromatic circle, one can generate a pitch-continuous version, where the Shepard
tones ascend (or descend) continuously. Originally created by the French composer Jean-
Claude Risset, this continuous version is also known as the Shepard–Risset glissando. To
implement such a glissando, one requires a chirp function with an exponential (rather than
a linear) frequency increase. Experimenting with Shepard tones and glissandi not only
leads to interesting sound effects that may be used even for musical compositions but also
deepens the understanding of concepts such as frequency, pitch, and the role of overtones.
The concept of Shepard tones can also be used to obtain a chromagram sonification as
introduced in the FMP Notebook Sonification of Part B.

In the subsequent FMP notebooks, we discuss Python code for parsing, converting,
and visualizing various symbolic music formats. In particular, for students who are not
familiar with Western music notation, the piano-roll representation yields an easy-to-
understand geometric encoding of symbolic music. Motivated by traditional piano rolls,
the horizontal axis of this two-dimensional representation encodes time, whereas the
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vertical axis encodes pitch. The notes are visualized as axis-parallel rectangles, where the
color of the rectangles can be used to encode additional note parameters such as velocity
or instrumentation (see Figure 5). A piano-roll representation can be easily stored in a
comma-separated values (.csv) file, where each line encodes a note event specified by
parameters such as start, duration, pitch, velocity, and an additional parameter called
label (e.g., encoding the instrumentation). This slim and explicit format, even though
representing symbolic music in a simplified way, is used throughout most parts of the FMP
notebooks, where the focus is on the processing of waveform-based audio signals. In the
FMP Notebook Symbolic Format: CSV , we introduce the Python library pandas, which
provides easy-to-use data structures and data analysis tools for parsing and modifying text
files. Furthermore, we introduce a function for visualizing a piano-roll representation as
shown in Figure 5. The implementation of such visualization functions is an instructive
exercise for students to get familiar with fundamental musical concepts as well as to gain
experience in standard concepts of Python programming.

Figure 5. Visualization of a piano-roll representation generated by the FMP Notebook Symbolic
Format: CSV . The figure shows the beginning of the four-voice Fugue BWV 846 in C major by Johann
Sebastian Bach.

As discussed in ([1], Section 1.2), there are numerous formats for encoding symbolic
music. Describing and handling these formats in detail goes beyond the FMP notebooks.
The good news is that there are various Python software tools for parsing, manipulating,
synthesizing, and storing music files. In the FMP Notebook Symbolic Format: MIDI,
we introduce the Python package PrettyMIDI for handling MIDI files. This package
allows for transforming the (often cryptic) MIDI messages into a list of easy-to-understand
note events, which may then be stored using simple .csv files. Similarly, in the FMP
Notebook Symbolic Format: MusicXML, we indicate how the Python package music21
can be used for parsing and handling symbolic music given as a MusicXML file. This
package is a toolkit for computer-aided musicology allowing users to study large datasets of
symbolically encoded music, to generate musical examples, to teach fundamentals of music
theory, to edit musical notation, study music and the brain, and to compose music. Finally,
in the FMP Notebook Symbolic Format: Rendering, we discuss some software tools for
rendering sheet music from a given symbolic music representation. By mentioning a few
open-source tools, our notebooks only scratch the surface on symbolic music processing
and are intended to yield entry points to this area.

The next FMP notebooks cover aspects of audio representations and their properties
following ([1], Section 1.3). In the FMP Notebook Waves and Waveforms, we provide
functions for simulating transverse and longitudinal waves as well as combinations thereof.
Furthermore, one finds Python code for generating videos of these simulations, thus
indicating how the FMP notebooks can be used for generating educational material (see
Figure 6). In the FMP Notebook Frequency and Pitch, we discuss some experiments on the
audible frequency range and the just-noticeable difference in pitch perception. In the FMP
Notebook Harmonic Series, one finds an acoustic comparison of the musical scale based
on harmonics with the twelve-tone equal-tempered scale. Similarly, the FMP Notebook
Pythagorean Tuning considers the Pythagorean scale. In both of these notebooks, we
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again use simple sinusoidal models for the sonification. The FMP Notebook Dynamics,
Intensity, and Loudness yields an implementation for visualizing the sound power level
over time for our Beethoven example. Furthermore, we present an experiment using a
chirp signal to illustrate the relation between signal power and perceived loudness. In
the FMP Notebook Timbre, we introduce simple yet instructive experiments that are also
suitable as programming exercises. First, we give an example on how one may compute
an envelope of a waveform by applying a windowed maximum filter. Then, we provide
some implementations for generating synthetic sinusoidal signals with vibrato (frequency
modulations) and tremolo (amplitude modulations). Finally, we demonstrate that the
perception of the perceived pitch depends not only on the fundamental frequency but also
on its higher harmonics and their relationships. In particular, we show that a human may
perceive the pitch of a tone even if the fundamental frequency associated to this pitch is
completely missing.

Figure 6. Videos generated by the FMP Notebook Waves and Waveforms to illustrate the concepts
of transverse, longitudinal, and combined waves.

In summary, the FMP notebooks of Part 1 provide basic Python code examples for
parsing and visualizing various music representations. Furthermore, we consider tangible
music examples and suggest various experiments for gaining a deeper understanding
of musical and acoustic properties of audio signals. At the same time, the material is
also intended for developing Python programming skills as required in the subsequent
FMP notebooks.

4.2. Fourier Analysis of Signals (Part 2)

The Fourier transform is undoubtedly one the most fundamental tools in signal
processing, and it plays a central role also throughout all parts of the FMP notebooks. In ([1],
Chapter 2), the Fourier transform is approached from various perspectives considering real-
valued and complex-valued versions as well as analog and discrete signals. The underlying
idea is to analyze a given signal by means of elementary sinusoidal (or exponential)
functions, which possess an explicit physical meaning in terms of frequency. The Fourier
transform converts a time-dependent signal into frequency-dependent coefficients, each of
which indicates the degree of correlation between the signal and the respective elementary
sinusoidal function. The process of decomposing a signal into frequency components
is also called Fourier analysis. In contrast, the Fourier representation shows how to
rebuild a signal from the elementary functions, a process also called Fourier synthesis. In
Part 2 of the FMP notebooks, we approach Fourier analysis from a practical perspective
with a focus on the discrete Fourier transform (DFT). In particular, we cover the entire
computational pipeline in a bottom-up fashion by providing Python code examples for
deepening the understanding of complex numbers, exponential functions, the DFT, the fast
Fourier transform (FFT), and the short-time Fourier transform (STFT). In this context, we
address practical issues such as digitization, padding, and axis conventions—issues that
are often neglected in theory. Assuming that the reader has opened the FMP notebooks of
Part 2, we now briefly comment on the FMP notebooks in the order in which they appear.

We start with the FMP Notebook Complex Numbers, where we review basic proper-
ties of complex numbers. In particular, we provide Python code for visualizing complex
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numbers using either Cartesian coordinates or polar coordinates. Such visualizations help
students gain a geometric understanding of complex numbers and the effect of their alge-
braic operations. Subsequently, we consider in the FMP Notebook Exponential Function
the complex version of the exponential function. Many students are familiar with the real
version of this function, which is often introduced by its power series

exp(a) =
∞

∑
n=0

an/n!

for a ∈ R This definition can be extended by replacing the real variable a ∈ R by a
complex variable c ∈ C. Studying the approximation quality of the power series (and
other limit definitions of the exponential function) is instructive and can be combined well
with small programming exercises. One important property of the complex exponential
function, which is also central for the Fourier transform, is expressed by Euler’s formula
exp(iγ) = cos(γ) + i sin(γ) for γ ∈ R. We provide a visualization that illustrates how the
exponential function restricted to the unit circle relates to the real sine and cosine functions.
Furthermore, we discuss the notion of roots of unity, which are the central building blocks
that relate the exponential function to the DFT matrix. The study of these roots can be
supported by small programming exercises, which may also cover mathematical concepts
such as complex polynomials and the fundamental theorem of algebra.

In the FMP Notebook Discrete Fourier Transform, we approach the DFT in various
ways. Given an input vector x = (x(0), x(1), . . . , x(N − 1))> ∈ RN of length N ∈ N, the
DFT is defined by

X(k) :=
N−1

∑
n=0

x(n) exp(−2πikn/N)

for k ∈ [0 : N − 1]. The output vector X ∈ CN can be interpreted as a frequency represen-
tation of the time-domain signal x. The real (imaginary) part of a Fourier coefficient X(k)
can be interpreted as the inner product of the input signal x and a sampled version of the
cosine (sine) function of frequency k/N. In our notebook, we provide a concrete example
that illustrates how this inner product can be interpreted as the correlation between a signal
x and the cosine (sine) function. We recommend that students experiment with different
signals and frequency parameters k to deepen the intuition of these correlations. From a
computational view, the vector X can be expressed by the product of the matrix DFTN with
the vector x. Defining the complex number σN := exp(−2πi/N) (which is a specific root of
unity), one can express the DFT matrix in a very compact form given by DFTN(n, k) = σnk

N
for n, k ∈ [0 : N − 1]. Visualizing the real and imaginary parts of the DFT matrix reveals
its structural properties (see Figure 7). In particular, one can observe that the rows of the
DFT matrix correspond to sampled cosine (real part) and sine (imaginary part) functions.
The specific structure of the matrix DFTN (with its relation to DFTM for M = N/2) can
be exploited in a recursive fashion, yielding the famous fast Fourier transform (FFT). In
our notebook, we provide an explicit implementation of the FFT algorithm and present
some experiments, where we compare the running time of a naive implementation with
the FFT-based one. We think that implementing and experimenting with the FFT—an
algorithm of great beauty and high practical relevance—is a computational eye opener and
a must in every signal processing curriculum. Computing a DFT results in complex-valued
Fourier coefficients, where each such coefficient can be represented by a magnitude and a
phase component. In the FMP Notebook DFT: Phase, we provide a Python code example
that highlights the optimality property of the phase. Studying this property is the core of
understanding the role of the phase—a concept that is often difficult to access for students
new to the field.
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Figure 7. The matrix DFTN and a visualization of its real and imaginary parts for the case N = 32.

Another central topic of signal processing is the short-time Fourier transform (STFT),
which is covered in ([1], Section 2.5) for the analog and discrete case. In the FMP Notebook
Discrete Short-Time Fourier Transform (STFT), we implement a discrete version of the
STFT from scratch and discuss various options for visualizing the resulting spectrogram.
While the main idea of the STFT, where one applies a sliding window technique and
computes for each windowed section a DFT, seems simple, computing the discrete STFT
in practice can be tricky. In an applied signal processing course, it is essential to make
students aware of the different parameters and conventions when applying windowing.
Our notebooks provide Python implementations that allow students to experiment with the
STFT (applied to synthetic signals and real music recordings) and to gain an understanding
on how to physically interpret discrete objects such as samples, frames, and spectral
coefficients. In the FMP Notebook STFT: Influence of Window Function, we explore the
role of the window type and window size. Furthermore, in the FMP Notebook STFT:
Padding, we discuss various padding conventions that become crucial to correctly interpret
and visualize feature representations. This important topic, which is a typical source of
inaccuracies and errors in music processing pipelines, is illustrated by simple examples as
a basis for further exploration (see also Figure 8).

Figure 8. (a) Time-domain signal (using a sampling rate Fs = 256) and magnitude Fourier transform.
(b) STFT (N = 512, H = 128) without padding. (c) STFT (N = 512, H = 128) with zero-padding.

One main limitation of the discrete STFT is the linear frequency grid whose resolu-
tion is determined by the signal’s sampling rate and the STFT window size. In the FMP
Notebook STFT: Frequency Grid Density, we deepen the understanding on the connection
between the different parameters involved. In particular, we discuss how to make the
frequency grid denser by suitably padding the windowed sections in the STFT computation.
Often, one loosely says that this procedure increases the frequency resolution. This, how-
ever, is not true in a qualitative sense, as is explained in the notebook. As an alternative, we
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discuss in the FMP Notebook STFT: Frequency Interpolation another common procedure
to adjust the frequency resolution. On the way, we give a quick introduction to interpola-
tion and show how the Python package scipy can be applied for this task. Beside refining
the frequency grid, we then show how interpolation techniques can be used for a non-linear
deformation of the frequency grid, resulting in a log-frequency spectrogram. This topic
goes beyond the scope of the current part, but plays an important role in designing musical
features (see, e.g., [1], Section 3.1.1).

The matrix DFTN is invertible, and its inverse DFT−1
N coincides with the DFT matrix

up to some normalizing factor and complex conjugation. This algebraic property can be
proven using the properties of the roots of unity. In the FMP Notebook STFT: Inverse, we
show that the two matrices are indeed inverse to each other—up to some numerical issues
due to rounding in floating-point arithmetic. While inverting the DFT is straightforward,
the inversion of the discrete STFT is less obvious, since one needs to compensate for effects
introduced by the sliding window technique. In our notebook, we provide some basic
Python implementation of the inverse STFT since it sheds another light on the sliding
windowing concept and its effects. Furthermore, we discuss numerical issues as well as
typical errors that may creep into one’s source code when loosing sight of windowing and
padding conventions. At this point, we want to emphasize again that the STFT is one of
the most important tools in music and audio processing. Common software packages for
audio processing offer STFT implementations, including convenient presets and functions
for physically interpreting time, frequency, and magnitude parameters. From a teaching
perspective, we find it crucial to exactly understand the role of the STFT parameters and
the conventions made implicitly in black-box implementations. In the FMP Notebook
STFT: Conventions and Implementations, we summarize various variants for computing
and interpreting a discrete STFT, while fixing the conventions used throughout the FMP
notebooks (if not specified otherwise explicitly).

The FMP notebooks of Part 2 close with some experiments related to the digitization
of waveforms and its effects (see also [1], Section 2.2.2). In the FMP Notebook Digital
Signals: Sampling, we implement the concept of equidistant sampling and apply it to a
synthetic example. We then reconstruct the signal from its samples (using the interpolation
of the sampling theorem based on the sinc function) and compare the result with the
original signal. Based on the provided functions, one simple yet instructive experiment is
to successively decrease the sampling rate and to look at the properties of the reconstructed
signal Similarly, starting with a real music recording (e.g., in the notebook, we use a
C-major scale played on a piano), students may acoustically explore and understand
aliasing effects. We continue with the FMP Notebook Digital Signals: Quantization,
where we have a closer look at the effects resulting from quantization. We provide a
function for uniform quantization, which is then applied to a synthetic example and
visually explored using different quantization parameters. Furthermore, using again the
C-major scale recording, we reconstruct an analog signal from the quantized version, which
allows for understanding the distortions introduced by quantization (also referred to as
quantization noise). We finally introduce an approach for nonuniform quantization, where
quantization levels are spaced in a logarithmic fashion. Besides theoretical explanations,
we provide Python code that allows students to experiment, compare, and explore the
various quantization strategies and their properties (see Figure 9). In the subsequent FMP
Notebook Interference and Beating, we pick up the topic of interference, which occurs
when a wave is superimposed with another wave of similar frequency. In particular, we
present several experiments using sinusoidal as well as chirp functions to visually and
acoustically study the related effect of beating.
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Figure 9. Uniform and nonuniform quantization (based on µ-law encoding) using λ = 6 quantiza-
tion levels.

4.3. Music Synchronization (Part 3)

The objective of music synchronization is to identify and link semantically correspond-
ing events present in different versions of the same underlying musical work. Using this
task as a motivating scenario, two problems of fundamental importance to music process-
ing are discussed in ([1], Chapter 3): feature extraction and sequence alignment. In Part 3 of
the FMP notebooks, we provide and explain Python code examples of all the components
that are required to realize a basic music synchronization pipeline. In the first notebooks,
we consider fundamental feature design techniques such as frequency binning, logarithmic
compression, feature normalization, feature smoothing, tuning, and transposition. Then,
we provide an implementation of an important alignment algorithm known as dynamic
time warping (DTW), which was originally used for speech recognition [25], and introduce
several experiments for exploring this technique in further depth. Finally, we close Part 3
with a more comprehensive experiment on extracting tempo curves from music recordings,
which nicely illustrates the many design choices, their impact, and the pitfalls one has to
deal with in a complex audio processing task.

We start with the FMP Notebook Log-Frequency Spectrogram and Chromagram,
which provides a step-by-step implementation for computing the log-frequency spec-
trogram as described in ([1], Section 3.1.1). Even though logarithmic frequency pooling
as used in this approach has major drawbacks, it is instructive from an educational point
of view. First, students gain a better understanding on how to interpret the frequency
grid introduced by a discrete STFT. Second, the pooling strategy reveals the problems
associated with the insufficient frequency resolution for low pitches. In our notebook
we make this problem explicit by considering a log-frequency spectrogram with empty
pitch bins, leading to horizontal artifacts in our chromatic scale example. In the next step,
we convert a log-frequency spectrogram into a chromagram by identifying pitches that
share the same chroma. In a music processing course, it is an excellent exercise to let
students compute and analyze the properties of chromagrams for music recordings of their
own choice. This exploration can be done either visually, as demonstrated by our explicit
music examples, or acoustically using suitable sonification procedures as provided by the
FMP Notebook Sonification of Part B. We close this notebook by discussing alternative
variants of log-frequency spectrograms and chromagrams. In the subsequent notebooks,
we often employ more elaborate chromagram implementations as provided by the Python
package librosa.

Using spectrograms and chromagrams as instructive examples, we explore in the
subsequent notebooks the effect of standard feature processing techniques. In the FMP
Notebook Logarithmic Compression, the discrepancy between large and small magnitude
values is reduced by applying a suitable logarithmic function. To understand the effects of
logarithmic compression, it is instructive to experiment with sound mixtures that contain
several sources at different sound levels (e.g., a strong drum sound superimposed with a
soft violin sound). In the FMP Notebook Feature Normalization, we introduce different
strategies for normalizing a feature representation, including the Euclidean norm (`2), the
Manhattan norm (`1), the maximum norm (`max), and the standard score (using mean and

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_SpecLogFreq-Chromagram.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html
https://librosa.org/doc/main/feature.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_LogCompression.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_LogCompression.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_FeatureNormalization.html


Signals 2021, 2 259

variance). Furthermore, we discuss different strategies for how one may handle small
values (close to zero) in the normalization. This notebook is also well suited for practicing
the transition from mathematical formulas to implementations. While logarithmic compres-
sion and normalization increase the robustness to variations in timbre or sound intensity,
we study in the FMP Notebook Temporal Smoothing and Downsampling postprocessing
techniques that can be used for making a feature sequence more robust to variations in
aspects such as local tempo, articulation, and note execution. We consider two feature
smoothing techniques, one based on local averaging and the other on median filtering.
Using chroma representations of different recordings of Beethoven’s Fifth Symphony (one
of our favorite examples throughout the FMP notebooks), we study smoothing effects and
the role of the filter length. Finally, we introduce downsampling as a simple means to
decimate the feature rate of a smoothed representation.

The FMP Notebook Transposition and Tuning covers central aspects of great musical
and practical importance. As discussed in ([1], Section 3.1.2.2), a musical transposition
of one or several semitones can be simulated on the chroma level by a simple cyclic shift.
We demonstrate this in the notebook using a C-major scale played on a piano. While
transpositions are pitch shifts on the semitone level, we next discuss global frequency
deviations on the sub-semitone level. Such deviations may be the result of instruments
that are tuned lower or higher than the expected reference pitch A4 with center frequency
440 Hz. In the case that the tuning deviation is known, one can use this information
to adjust the center and cutoff frequencies of the MIDI pitches for computing the log-
frequency spectrogram and the chromagram. Estimating the tuning deviation, however,
can be quite tricky. One way to introduce this topic in a music processing class is to let
students perform, record, and analyze their own music. What is the effect when detuning a
guitar or violin? How does strong vibrato affect the perception of pitch and tuning? What
happens if the tuning changes throughout the performance? Having such issues in mind,
developing and implementing a tuning estimation system can be part of an exciting and
instructive student project. In this notebook, we present such a system that outputs a single
number θ between −50 and +50 yielding the global frequency deviation (given in cents)
on the sub-semitone level. In our approach, as illustrated by Figure 10, we first compute a
frequency distribution from the given music recording, where we use different techniques
such as the STFT, logarithmic compression, interpolation, local average subtraction, and
rectification. The resulting distribution is then compared with comb-like template vectors,
each representing a specific tuning. The template vector that maximizes the similarity
to the distribution yields the tuning estimate. Furthermore, we conduct in the notebook
various experiments that illustrate the benefits and limitations of our approach, while
confronting the student with the various challenges one encounters when dealing with real
music data.

In the next notebooks, closely following ([1], Section 3.2), we cover the second main
topic of Part 3, dealing with alignment techniques. In the FMP Notebook Dynamic Time
Warping (DTW), we provide an implementation of the basic DTW algorithm. This is a good
opportunity for pointing out an issue one often faces in programming. In mathematics
and some programming languages (e.g., MATLAB), one uses the convention that indexing
starts with the index 1. In other programming languages such as Python, however, index-
ing starts with the index 0. Neither convention is good or bad. In practice, one needs to
make adjustments in order to comply with the respective convention. Implementing the
DTW algorithm is a good exercise to make students aware of this issue, which is often a
source of programming errors. The FMP Notebook DTW Variants investigates the role of
the step size condition, local weights, and global constraints. Rather than implementing all
these variants from scratch, we employ a function from the Python package librosa and
discuss various parameter settings. Finally, in the FMP Notebook Music Synchronization,
we apply the DTW algorithm in the context of our music synchronization scenario. Con-
sidering two performances of the beginning of Beethoven’s Fifth Symphony (first twenty
measures), we first convert the music recordings into chromagrams, which are then used as
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input to the DTW algorithm. The resulting warping path constitutes our synchronization
result, as shown in Figure 11.

Figure 10. Tuning procedure using a comb-filter approach. Left: Similarity function with maximizing
tuning parameter at 13 cents. Right: Frequency distribution (with logarithmic frequency axis) and
maximizing comb template (shown as red vertical lines).

Figure 11. Music synchronization result obtained for two input chromagrams (obtained from two
recordings of the beginning of Beethoven’s Fifth Symphony).

Concluding Part 3 of the FMP notebooks, we provide additional material for some
music synchronization applications (see also [1], Section 3.3). In the FMP Notebook Ap-
plication: Music Navigation, one finds two videos that illustrate the main functionalities
of the Interpretation Switcher and Score Viewer Interface. Then, in the FMP Notebook
Application: Tempo Curves, we present an extensive experiment for extracting tempo
information from a given music recording. Besides the recorded performance, one requires
a score-based reference version, which we think of as a piano-roll representation with a
musical time axis (given in measures and beats). On the basis of chroma representations,
we apply DTW to compute a warping path between the performance and the score. Then,
the idea is to compute the slope of the warping path and to take its reciprocal to derive the
local tempo. In practice, however, this becomes problematic when the warping path runs
horizontally (slope is zero) or vertically (slope is infinite). In the notebook, we solve this
issue by thinning out the warping path to enforce strict monotonicity in both dimensions
and then continue as indicated before. To make the overall procedure more robust, we also
apply a local smoothing strategy in the processing pipeline. Our overall processing pipeline
not only involves many steps with a multitude of parameters, but is also questionable
from a musical point of view. Using the famous romantic piano piece “Träumerei” by
Robert Schumann as a concrete real-world example, we discuss two conflicting goals. On
the one hand, the tempo estimation procedure should be robust to local outliers that are
the result of computational artifacts (e.g., inaccuracies of the DTW alginment). On the
other hand, the procedure should be able to adapt to continuous tempo fluctuations and
sudden tempo changes, being characteristic features of expressive performances. Through
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studying tempo curves and the way they are computed, one can learn a lot about the music
as well as computational approaches. Furthermore, this topic leads students to challenging
and interdisciplinary research problems.

4.4. Music Structure Analysis (Part 4)

Music structure analysis is a central and well-researched area within MIR. The general
objective is to segment a symbolic music representation or an audio recording with regard
to various musical aspects, for example, identifying recurrent themes or detecting temporal
boundaries between contrasting musical parts. Being organized in a hierarchical way,
structure in music arises from various relationships between its basic constituent elements.
The principles used to create such relationships include repetition, contrast, variation,
and homogeneity [26]. In Part 4 of the FMP notebooks, we approach the core concepts
covered in ([1], Chapter 4) from a practical perspective, which are applicable beyond the
music domain. In particular, we have a detailed look at the properties and variants of
self-similarity matrices (SSMs). Then, considering some more specific music structure
analysis tasks, we provide and discuss implementations of—as we think—some beautiful
and instructive approaches for repetition and novelty detection. Using real-world music
examples, we draw attention to the algorithms’ strengths and weaknesses, while indicating
the problems that typically arise from violations of the underlying model assumptions. We
close Part 4 by implementing and discussing evaluation metrics, which we take up again
in other parts of the FMP notebooks.

We start with the FMP Notebook Music Structure Analysis: General Principles,
where we create the general context of the subsequent notebooks of this part. In par-
ticular, we introduce our primary example used throughout these notebooks: Brahms’
famous Hungarian Dance No. 5 (see also Figure 12). Based on this example, we introduce
implementations for parsing, adapting, and visualizing reference annotations for musical
structures. Furthermore, we provide some Python code examples for converting music
recordings into MFCC-, tempo-, and chroma-based feature representations. In a music pro-
cessing course, we consider it essential to make students aware that such representations
crucially depend on parameter settings and design choices. This fact can be made evident
by suitably visualizing the representations. In the FMP notebooks in general, we attach
great importance to a visual representation of results, which sharpens one’s intuition and
provides a powerful tool for questioning the results’ plausibility.

One general idea to study musical structures and their mutual relations is to convert
the music signal into a suitable feature sequence and compare each element of the feature
sequence with all other sequence elements. This results in an SSM, a tool that is of fun-
damental importance not only for music structure analysis but also for analyzing many
kinds of time series. Closely following ([1], Section 4.2), we cover this fundamental topic in
the subsequent notebooks. The FMP Notebook Self-Similarity Matrix (SSM) explains the
general ideas of SSMs and discusses basic notions such as paths and blocks. Furthermore,
continuing our Brahms example, we provide Python code examples for computing and
visualizing SSMs using different feature representations. It is an excellent exercise to turn
the tables and to start with a structural description of a piece of music and then to transform
this description into an SSM representation. This is what we do in the FMP Notebook SSM:
Synthetic Generation, where we provide a function for converting a reference annotation
of a music recording into an SSM. In this function, one can specify if the structural parts
fulfill path-like (being repetitive) or block-like (being homogeneous) relations. Further
parameters allow for modifying the SSM by applying a Gaussian smoothing filter or adding
Gaussian noise (see Figure 12 for examples). Synthetically generating and visualizing SSMs
is a very instructive way to gain a deeper understanding of these matrices’ structural prop-
erties and their relation to musical annotations. Furthermore, synthetic SSMs are useful
for debugging and testing automated procedures for music structure analysis. However,
synthetic SSMs should not replace an evaluation based on real music examples. In practice,
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SSMs computed from music and audio representations are typically far from being ideal—a
painful experience that every student should have.

Figure 12. (a) Structure annotation (given as a CSV file) for a recording of Brahms’ Hungarian
Dance No. 5. (b) Visualization of structure annotation (time axis given in seconds). (c) Visualization
of converted structure annotation (time axis given in frames). (d,e) Different SSMs generated
synthetically from the structure annotation.

Subsequently, we consider various strategies for enhancing the structural properties of
SSMs. In the FMP Notebook SSM: Feature Smoothing, we study how feature smoothing
affects structural properties of an SSM, using our Brahms example as an illustration. For
example, starting with a chroma representation and increasing the smoothing length, one
may observe an increase in homogeneity reflecting the rough harmonic content. As an
alternative to average filtering, we also discussed median filtering. In the FMP Notebook
SSM: Path Enhancement, we discuss a strategy for enhancing path structures in SSMs. We
show that simple filtering along the main diagonal works well if there are no relative tempo
differences between the segments to be compared. Rather than directly implementing this
procedure using nested loops, we provide a much faster matrix-based implementation,
which exploits efficient array computing concepts provided by the Python package numpy.
In a music processing course, this is an excellent opportunity for discussing efficiency and
implementation issues. In this context, one may also discuss Python packages such as
numba that translate specific Python code into fast machine code. After this little excursion
on efficiency, we come back to our Brahms example, where the shorter B2-section is
played much faster than the B1-section, leading to non-diagonal path structures (see
Figure 12). Here, diagonal smoothing fails, and we introduce a multiple filtering approach
that preserves specific non-diagonal structures [27]. Again, rather than implementing this
approach in a naive fashion, we employ a matrix-based implementation using a tricky
resampling strategy. Finally, we introduce a forward–backward smoothing approach that
attenuates fading artifact, in particular at the end of path structures.

In the song “In the Year 2525” by Zager and Evans, certain musical parts are repeated
in a transposed form. In the FMP Notebook SSM: Transposition Invariance, we provide
an implementation for computing a transposition invariant SSM [28]. In particular, we
show how the resulting transposition index matrix can be visualized. Such visualizations
are—as we think—aesthetically beautiful and say a lot about the harmonic relationships
within a song. We close our studies on SSMs with the FMP Notebook SSM: Thresholding,
where we discuss global and local thresholding strategies, which are applicable to a wide
range of matrix representations. The effect of different thresholding techniques can be
nicely illustrated by small toy examples, which can also be integrated well into a music
processing course in the form of small handwritten and programming exercises.
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We now turn our attention to more concrete subtasks of music structure analysis.
In the comprehensive FMP Notebook Audio Thumbnailing, we provide a step-by-step
implementation of the procedure described in ([1], Section 4.3). This is more of a notebook
for advanced students who want to see how the mathematically rigorous description
of an algorithm (in this case, the original procedure is presented in [29]), is put into
practice. By interleaving theory, implementation details, and immediate application to
a specific example, we hope that this notebook gives a positive example of making a
complex algorithm more accessible. As the result of our audio thumbailing approach, we
obtain a fitness measure that assigns to each possible segment a fitness value. The FMP
Notebook Scape Plot Representation introduces a concept for visualizing the fitness values of
all segments using a triangular image. This concept is an aesthetically pleasing and powerful
way to visualize segment properties in a compact and hierarchical form. Applied to our fitness
measure, we deepen the understanding of our thumbnailing procedure by providing scape
plot representations for the various measures involved (e.g., score, normalized score, coverage,
normalized coverage, and fitness). From a programming perspective, this notebook also
demonstrates how to create elaborate illustrations using the Python library matplotlib.

Next, following ([1], Section 4.4), we deal with the music structure analysis subtask
often referred to as novelty detection. In the FMP Notebook Novelty-Based Segmentation,
we cover the classical and widely used approach originally suggested by Foote [30]. We
provide Python code examples for generating box-like and Gaussian checkerboard kernels,
which are then shifted along the main diagonal of an SSM to detect 2D corner points. We
think that this simple, beautiful, explicit, and instructive approach should be used as a
baseline for any research in novelty-based segmentation before applying more intricate
approaches. Of course, as we also demonstrate in the notebook, the procedure crucially
depends on design choices and parameters such as the underlying SSM and the kernel size.

While most approaches for novelty detection use features that capture local character-
istics, we consider in the FMP Notebook Structure Feature the concept of structure features
that capture global structural properties [31]. These features are basically the columns of an
SSM’s cyclic time–lag representation. In the notebook, we provide an implementation for
converting an SSM into a time–lag representation. We also offer Python code examples that
students can use to explore this conversion by experimenting with explicit toy examples.
Again it is crucial to also apply the techniques to real-world music recordings, which
behave completely differently compared with synthetic examples. In practice, one often ob-
tains significant improvements by applying median filtering to remove undesired outliers
or by applying smoothing filters to make differentiation less vulnerable to small deviations.

We close Part 4 with the FMP Notebook Evaluation, where we discuss standard
metrics based on precision, recall, and F-measure. Even though there are Python libraries
such as mir_eval [18] that provide a multitude of metrics commonly used in MIR research,
it is essential to exactly understand how these metrics are defined. Furthermore, requir-
ing knowledge in basic data structures and data handling, students may improve their
programming skills when implementing, adapting, and applying some of these metrics.
In our notebook, one finds Python code examples for the standard precision, recall, and
F-measure as well as adaptions of these measures for labeling and boundary evaluation.
Again, we recommend using suitable toy examples and visualizations to get a feel for what
the metrics actually express.

4.5. Chord Recognition (Part 5)

Another essential and long-studied MIR task is the analysis of harmonic properties
of a piece of music by determining an explicit progression of chords from a given music
representation—a task often referred to as automatic chord recognition. Following ([1],
Chapter 5), we consider a simplified scenario, where only the minor and major triads as
occurring in Western music are considered. Assuming that the piece of music is given
in the form of an audio recording, the chord recognition task consists in splitting up the
recording into segments and assigning a chord label to each segment. The segmentation
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specifies the start and end time of a chord, and the chord label specifies which chord is
played during this time period (see Figure 13). In Part 5 of the FMP notebooks, we provide
and discuss Python code examples of all the components that are required to realize a
template-based and an HMM-based chord recognizer. Based on evaluation metrics and
suitable time–chord representations, we quantitatively and qualitatively discuss how the
various components and their parameters affect the chord recognition results. To this end,
we consider real-world music recordings, which expose the weaknesses of the automatic
procedures, the problem modeling, and the evaluation metrics.

The first notebooks of Part 5 mainly provide sound examples of basic musical no-
tions such as intervals, chords, and scales with a focus on Western tonal music. In the
FMP Notebook Intervals, we provide Python code examples for generating sinusoidal
sonifications of intervals. We then generate sound examples of the various music intervals
with respect to equal temperament, just intonation, and Pythagorean tuning. Besides a
mathematical specification of deviations (given in cents), the sound examples allow for
an acoustic comparison of intervals generated based on the different intonation schemes.
Similarly, in the FMP Notebook Chords, we give sound examples for different chords.
In particular, we provide a piano recording as well as a synthesized version of each of
the twelve major and minor triads. Finally, in the FMP Notebook Musical Scales and
Circle of Fifths, we cover the notions of musical scales and keys. In particular, we look at
diatonic scales, which are obtained from a chain of six successive perfect fifth intervals and
can be arranged along the circle of fifths. In summary, these three notebooks show how
simple sonifications may help to better understand musical concepts. In a music processing
course, one may develop small tools for ear training in basic harmony analysis as part of
student projects.

Figure 13. Chord recognition task illustrated by the first measures of the Beatles song “Let It Be.”
(a) Score of the first four measures. (b) Chromagram (visually superimposed with a reference
annotation) derived from an audio recording. (c) Chord recognition result shown as binary time–
chord representation (visually superimposed with a reference annotation). (d) Reference annotation.
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After the musical warm-up in the previous notebooks, we introduce in the FMP
Notebook Template-Based Chord Recognition a simple yet instructive chord recognizer.
For illustration, we use the first measures of the Beatles song “Let It Be” (see Figure 13),
which is converted into a chroma representation. As we already discussed in the context
of music synchronization, there are many different ways of computing chroma features.
As examples, we compute and visualize three different chroma variants as provided by
the Python package librosa. Furthermore, we provide Python code examples to generate
chord templates, compare the templates against the recording’s chroma vectors in a frame-
wise fashion, and visualize the resulting similarity values in the form of a time–chord
representation. By looking at the template that maximizes the similarity value, one obtains
the frame-wise chord estimate, which we visualize in the form of a binary time–chord
representation (see Figure 13c). Finally, we discuss these results by visually comparing
them with manually generated chord annotations. We recommend that students also use
the functionalities provided by the FMP Notebook Sonification of Part B to complement
the visual inspections by acoustic ones. We think that qualitative inspections—based on
explicit music examples and using visualizations and sonifications of all intermediate
results—are essential for students to understand the technical components, to become
aware of the model assumptions and their implications, and to sharpen their intuition of
what to expect from computational approaches.

Besides a qualitative investigation using explicit examples and visualizations, one also
requires quantitative methods to evaluate an automatic chord recognizer’s performance. To
this end, one typically compares the computed result against a reference annotation. Such
an evaluation, as we discuss in the FMP Notebook Chord Recognition Evaluation, gives
rise to several questions. How should the agreement between the computed result and the
reference annotation be quantified? Is the reference annotation reliable? Are the model
assumptions appropriate? To what extent do violations of these assumptions influence the
final result? Such issues should be kept in mind before turning to specific metrics. Our
evaluation focuses on some simple metrics based on precision, recall, and F-measure, as
we already encountered in the FMP Notebook Evaluation of Part 4. Before the evaluation,
one needs to convert the reference annotation into a suitable format that conforms with
the respective metric and the automatic approach’s format. Our notebook demonstrates
how one may convert a segment-wise reference annotation (where segment boundaries
are specified in seconds) into a frame-wise format. Furthermore, one may need to adjust
the chords and naming conventions. All these conversion steps are, by far, not trivial
and often require simplifying design choices (similar to the ones illustrated by Figure 12).
Continuing our Beatles example, we discuss such issues and make them explicit using
suitable visualizations. Furthermore, we address some of the typical evaluation problems
that stem from chord ambiguities (e.g., due to an oversimplification of the chord models)
or segmentation ambiguities (e.g., due to broken chords). We hope that this notebook is a
source of inspiration for students to conduct experiments with their own music examples.

Motivated by the chord recognition problem, the FMP Notebook Hidden Markov
Model (HMM) deepens the understanding of this important sequence analysis technique,
which was originally applied to speech recognition [32]. Closely following ([1], Section 5.3),
we start by providing a Python function that generates a state and observation sequence
from a given discrete HMM. Conversely, knowing an observation sequence as well as the
underlying state sequence it was generated from (which is normally hidden), we show how
one can estimate the state transition and output probability matrices. The general problem
of estimating HMM parameters only on the basis of observation sequences is much harder.
An iterative procedure that finds a locally optimal solution is known as the Baum–Welch
Algorithm—a topic beyond the scope of the FMP notebooks. The uncovering problem
of HMMs is discussed in the FMP Notebook Viterbi Algorithm. We first provide an
implementation of the Viterbi algorithm closely following the theory. In practice, however,
this multiplicative version of the algorithm is problematic since the product of probability
values decreases exponentially with the number of factors, which may finally lead to a
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numerical underflow. To remedy this problem, one applies a logarithm to all probability
values and replaces multiplication by summation. Our notebook also provides this log-
variant implementation of the Viterbi algorithm and compares it against the original version
using a toy example.

In the FMP Notebook HMM-Based Chord Recognition, we apply the HMM concept
to chord recognition. Rather than learning the HMM parameters from training examples,
we fix all the HMM parameters using musical knowledge. In this way, besides keeping
the technical requirements low (not to speak of the massive training data required for
the learning procedure), the HMM-based chord recognizer can be regarded as a direct
extension of the template-based procedure. In ([1], Section 5.3.2), only the case of discrete
HMMs is considered, where the observations are discrete symbols coming from a finite
output space. In our application, however, the observations are real-valued chroma vectors.
Therefore, in our notebook, we use an HMM variant where the discrete output space
is replaced by a continuous feature space R12. Furthermore, we replace a given state’s
emission probability by a normalized similarity value defined as the inner product of
a state-dependent normalized template and a normalized observation (chroma) vector.
As for the transition probabilities, we use a simple model based on a uniform transition
probability matrix. In this model, there is one parameter that determines the probability
for self transitions (the value on the main diagonal), whereas the probabilities on the
remaining positions are set uniformly such that the resulting matrix is a probability matrix
(i.e., all the rows and columns sum to one). Based on this HMM variant, we implement an
adapted Viterbi algorithm using a numerically stable log version. Considering real-world
music examples, we finally compare the resulting HMM-based chord recognizer with
the template-based approach, showing the evaluation results in the form of time–chord
visualizations, respectively.

As said before, chord recognition has always been and still is one of the central tasks in
MIR. Besides chords being a central concept in particular for Western music, another reason
for the topic’s popularity is the availability of a dataset known as the Beatles Collection.
This dataset is based on twelve Beatles albums comprising 180 audio tracks. While being
a well-defined, medium-sized collection of musical relevance, the primary value of the
dataset lies in the availability of high-quality reference annotations for chords, beats,
key changes, and music structures [33,34]. In the FMP Notebook Experiments: Beatles
Collection, we take the opportunity to present a few systematic studies in the context of
chord recognition. To keep the notebook slim and efficient, we only use the following four
representative Beatles songs from the collection: “Let It Be” (LetItB), “Here Comes the
Sun” (HereCo), “Ob-La-Di, Ob-La-Da” (ObLaDi), and “Penny Lane” (PennyL). The provided
experimental setup and implementation can be easily extended to an arbitrary number
of examples. We provide the full processing pipeline in the notebook, starting with raw
audio and annotation files and ending with parameter sweeps and quantitative evaluations.
First, the reference annotations are converted into a suitable format. Then, the audio files
are transformed into chroma representations, where we consider three different chroma
types (STFT, CQT, IIR). All these data are computed in a preprocessing step and stored for
later usage. In our experiments, we consider two different pattern matching techniques (a
template-based and an HMM-based approach) to map the chroma features to chord labels
that correspond to the 24 major and minor triads. As for the quantitative evaluation, we use
the standard precision, recall, and F-measure. After looking at some individual results using
time–chord representations, we conduct a first comprehensive experiment to study the
role of prefiltering. To this end, we consider a parameter L ∈ {1, 3, . . . , 63} that determines
the smoothing length in frames (applied to the input chromagram) and report on the
resulting F-measure for each of the four songs and its mean over the four songs. The overall
result is shown in Figure 14 for different chroma types and pattern matching techniques.
Similarly, we conduct an experiment to study the role of self-transition probabilities used
in HMM-based chord recognizers. Finally, we present two small experiments where we
question the musical relevance of the results achieved. First, we discuss a problem related
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to an imbalance in the class distribution. As a concrete example, we consider a rather
dull chord recognizer that, based on some global statistics of the song, decides on a single
major or minor triad and outputs the corresponding chord label for all time frames. In
the case of the song “Ob-La-Di, Ob-La-Da,” this dull procedure achieves an F-measure of
F = 0.551—which does not seem bad for a classification problem with 24 classes. Second,
we discuss a problem that comes from the reduction to only 24 chords and illustrates the
role of the non-chord model. While these experiments nicely demonstrate some of the
obstacles and limitations in chord estimation (as also mentioned by [35]), we see another
main value of this notebook from an educational perspective. Giving concrete examples for
larger-scale experiments, we hope that students get some inspiration from this notebook
for conducting similar experiments in the context of other music processing tasks.

Figure 14. Prefiltering experiments for a template-based and an HMM-based chord recognizer
applied to three different input chroma representations (STFT, CQT, IIR). The evaluation is performed
on the basis of four Beatles songs (LetItB, HereCo, ObLaDi, PennyL).

4.6. Tempo and Beat Tracking (Part 6)

It is the beat that drives music forward and makes people move or tap along with
the music. Thus, the extraction of beat and tempo information from audio recordings
constitutes a natural entry point into music processing and yields an exciting application
for teaching and learning signal processing. Following ([1], Chapter 6), we study in Part 6
a number of key techniques and important principles that are used in this vibrant and
well-studied area of research. A first task, known as onset detection, aims at locating
note onset information by detecting changes in energy and spectral content. The FMP
notebooks not only introduce the theory but also provide code for implementing and
comparing different onset detectors. To derive tempo and beat information, note onset
candidates are analyzed concerning quasiperiodic patterns. This second step leads us to
the study of general methods for local periodicity analysis of time series. In particular, we
introduce two conceptually different methods: one based on Fourier analysis and the other
one based on autocorrelation. Furthermore, the notebooks provide code for visualizing
time-tempo representations, which deepen the understanding of musical and algorithmic
aspects. Finally, the FMP notebooks cover fundamental procedures for predominant local
pulse estimation and global beat tracking. The automated extraction of onset, beat, and
tempo information is one of the central tasks in music signal processing and constitutes a
key element for a number of music analysis and retrieval applications. We demonstrate

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6.html
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that tempo and beat are not only expressive descriptors per se but also induce natural and
musically meaningful segmentations of the underlying audio signals.

As discussed in ([1], Chapter 6), most approaches to beat tracking are based on two
assumptions: first, the beat positions correspond to note onsets (often percussive in nature),
and, second, beats are periodically spaced in time. In the first notebooks, starting with
the FMP Notebook Onset Detection, we consider the problem of determining the starting
times of notes or other musical events as they occur in a music recording [36,37]. To get a
feeling for this seemingly simple task, we look at various sound examples of increasing
complexity, including a click sound, an isolated piano sound, an isolated violin sound, and a
section of a complex string quartet recording. It is very instructive to look at such examples
to demonstrate that the detection of individual note onsets can become quite tricky for soft
onsets in the presence of vibrato, not to speak of complex polyphonic music. Furthermore,
we introduce an excerpt of the song “Another One Bites the Dust” by Queen, which will
serve as our running example throughout the subsequent notebooks (see Figure 15a). For
later usage, we introduce some Python code for parsing onset and beat annotations and
show how such annotations can be sonified via click tracks using a function from the
Python package librosa.

Figure 15. Excerpt of “Another One Bites the Dust” by Queen. (a) Waveform representation and
annotated note onsets (from [1], Figure 6.1a) (b) Comparison of novelty detectors using a matrix-
based visualization.

In the subsequent notebooks, we implement step by step four different onset detectors
closely following ([1], Section 6.1). The procedure of the FMP Notebook Energy-Based
Novelty derives a novelty function by computing a local energy function, taking a discrete
derivative, and applying half-wave rectification. In doing so, we explain the role of the
window function used in the first step and apply logarithmic compression as a way to
enhance small energy values. Involving basic signal processing elements, this simple
procedure is instructive from an educational point of view. However, for non-percussive
sounds, the approach has significant weaknesses. This naturally leads us to the FMP
Notebook Spectral-Based Novelty, where we discuss a novelty representation that is com-
monly known as spectral flux. The idea is to convert the signal into a spectrogram and then
measure spectral changes by taking the distance between subsequent spectral vectors. This
technique is suited to recall a phenomenon from Fourier analysis: the energy of transient
events is spread across the entire spectrum of frequencies, thus yielding broadband spectral
structures. These structures can be detected well by the spectral-based novelty detection
approach. Again, we highlight the role of logarithmic compression and further enhance the

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_OnsetDetection.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyEnergy.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyEnergy.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltySpectral.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltySpectral.html
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novelty function by subtracting its local average. As an alternative to the spectral flux, we
introduce in the FMP Notebook Phase-Based Novelty an approach that is well suited to
study the role of the STFT’s phase. We use this opportunity to discuss phase unwrapping
and introduce the principal argument function—topics that beginners in signal processing
often find tricky. In the onset detection context, the importance of the phase is highlighted
by the fact that slight signal changes (e.g., caused by a weak onset) can hardly be seen in
the STFT’s magnitude, but may already introduce significant phase distortions. In the FMP
Notebook Complex-Domain Novelty, we discuss how phase and magnitude information
can be combined. Each novelty detection procedure has its benefits and limitations, as
demonstrated in the FMP Notebook Novelty: Comparison of Approaches. Different ap-
proaches may lead to novelty functions with different feature rates. Therefore, we show
how one may adjust the feature rate using a resampling approach. Furthermore, we in-
troduce a matrix-based visualization that allows for easy comparison and averaging of
different novelty functions (see Figure 15b). In summary, the notebooks on onset detection
constitute an instructive playground for students to learn and explore fundamental signal
processing techniques while gaining a deeper understanding of essential onset-related
properties of music signals.

The novelty functions introduced so far serve as the basis for onset detection. The
underlying assumption is that the positions of peaks (revealed by well-defined local
maxima) of the novelty function are good indicators for onset positions. Similarly, in the
context of music structure analysis, the peak positions of a novelty function were used
to derive segment boundaries between musical parts (see also [1], Section 4.4). If the
novelty function has a clear peak structure with impulse-like and well-separated peaks,
the peaks’ selection is a simple problem. However, in practice, one often has to deal with
rather noisy novelty functions with many spurious peaks. In such situations, the strategy
used for peak picking may substantially influence the quality of the final detection or
segmentation result. In the FMP Notebook Peak Picking, we cover this important, yet
often underestimated topic. In particular, we present and discuss Python code examples
that demonstrate how to use and adapt existing implementations of various peak picking
strategies. Instead of advocating a specific procedure, we discuss various heuristics that
are often applied in practice. For example, simple smoothing operations may reduce the
effect of noise-like fluctuations in the novelty function. Furthermore, adaptive thresholding
strategies, where a peak is only selected when its value exceeds a local average of the
novelty function, can be applied. Another strategy is to impose a constraint on the minimal
distance between two subsequent peak positions to reduce the number of spurious peaks
further. In a music processing class, it is essential to note that there is no best peak picking
strategy per se—the suitability of a peak picking strategy depends on the requirements of
the application. On the one hand, unsuitable heuristics and parameter choices may lead
to surprising and unwanted results. On the other hand, exploiting specific data statistics
(e.g., minimum distance of two subsequent peaks) at the peak picking stage can lead to
substantial improvements. Therefore, knowing the details of peak picking strategies and
the often delicate interplay of their parameters is essential when building MIR systems.

While novelty and onset detection are in themselves important tasks, they also consti-
tute the basis for other music processing problems such as tempo estimation, beat tracking,
and rhythmic analysis. When designing processing pipelines, a general principle is to avoid
intermediate steps based on hard and error-prone decisions. In the following notebooks,
we apply this principle for tempo estimation, where we avoid the explicit extraction of
note onset positions by directly analyzing a novelty representation concerning periodic
patterns. We start with the introductory FMP Notebook Tempo and Beat, where we dis-
cuss basic notions and assumptions on which most tempo and beat tracking procedures
are based. As already noted before, one first assumption is that beat positions occur at note
onset positions, and a second assumption is that beat positions are more or less equally
spaced—at least for a certain period. These assumptions may be questionable for certain
types of music, and we provide some concrete music examples that illustrate this. For

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyPhase.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyComplex.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyComplex.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyComparison.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_PeakPicking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempoBeat.html
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example, in passages with syncopation, beat positions may not go along with any onsets,
or the periodicity assumption may be violated for romantic piano music with strong tempo
fluctuations. We think that the explicit discussion of such simplifying assumptions is at
the core of researching and teaching music processing. In our notebook, we also intro-
duce the notion of pulse levels (e.g., measure, tactus, and tatum level) and give audio
examples to illustrate these concepts. Furthermore, we use the concept of tempograms
(time–tempo representations) to illustrate tempo phenomena over time. To further deepen
the understanding of beat tracking and its challenges, we sonify the beat positions with
click sounds and mix them into the original audio recording—a procedure also described in
the FMP Notebook Sonification of Part B. At this point, we again advocate the importance
of visualization and sonification methods to make teaching and learning signal processing
an interactive pursuit.

Closely following the theory of ([1], Section 6.2), we study in the next notebooks the
concept of tempograms, which reveal tempo-related phenomena. In the FMP Notebook
Fourier Tempogram, the basic idea is to analyze a novelty function using an STFT and
to reinterpret frequency (given in Hertz) as tempo (given in BPM). The resulting spec-
trogram is then also called tempogram, which is shown in Figure 16b using a click track
of increasing tempo as the input signal. In our implementation, we adopt a centered
view where the novelty function is zero-padded by half the window length. The Fourier
coefficients are computed frequency by frequency, allowing us to explicitly specify the
tempo values and tempo resolution (typically corresponding to a non-linear frequency
spacing). Even though losing the FFT algorithm’s efficiency, the computational complexity
may still be reasonable when considering a relatively small number of tempo values. In the
FMP Notebook Autocorrelation Tempogram, we cover a second approach for capturing
local periodicities of the novelty function. After a general introduction of autocorrelation
and its short-time variant, we provide an implementation for computing the time–lag
representation and visualization of its interpretation. Furthermore, we show how to apply
interpolation for converting the lag axis into a tempo axis (see Figure 16c). Next, in the
FMP Notebook Cyclic Tempogram, we provide an implementation of the procedure de-
scribed in ([1], Section 6.2.4). Again we apply interpolation to convert the linear tempo
axis into a logarithmic axis before identifying tempo octaves—similar to the approach
for computing chroma features. The resulting cyclic tempograms are shown in Figure 16f
using the Fourier-based and in Figure 16g using autocorrelation-based method. We then
study the properties of cyclic tempograms, focusing on the tempo discretization parameter.
Finally, using real music recordings with tempo changes, we demonstrate the potential of
tempogram features for music segmentation applications.

The task of beat and pulse tracking extends tempo estimation in the sense that, addi-
tionally to the rate, it also considers the phase of the pulses. Starting with a Fourier-based
tempogram along with its phase, one can deriving a pulse representation [38]. Closely
following ([1], Section 6.3), we highlight in our notebooks the main ideas of this procedure
and provide a step-by-stop implementation. In the FMP Notebook Fourier Tempogram,
we give Python code examples to compute and visualize the optimal windowed sinusoids
underlying the idea of Fourier analysis. Then, in the FMP Notebook Predominant Local
Pulse (PLP), we apply an overlap-add technique, where such optimal windowed sinusoids
are accumulated over time, yielding the PLP function. This function, can be regarded as a
kind of of mid-level representation that captures the locally predominant pulse occurring
in the input novelty function. Considering challenging music examples with continuous
and sudden tempo changes, we explore the role of various parameters, including the
sinusoidal length and tempo range. Although the techniques and their implementation
are sophisticated, the results (presented in the form of visualizations and sonifications) are
highly instructive and, as we find, aesthetically pleasing.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramFourier.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramFourier.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramAutocorrelation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramCyclic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramCyclic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramFourier.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_PredominantLocalPulse.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_PredominantLocalPulse.html
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Figure 16. Different tempogram representations of a click track with increasing tempo (110 to 130 BPM).
(a) Novelty function of click track. (b,d,f) Fourier tempogram with linear/logarithmic/cyclic tempo axis.
(c,e,g) Autocorrelation tempogram with linear/logarithmic/cyclic tempo axis.

Rather than being a beat tracker per se, the PLP concept should be seen as a tool for
bringing out a locally predominant pulse track within a specific tempo range. Following
([1], Section 6.3.2), we introduce in the FMP Notebook Beat Tracking by Dynamic Pro-
gramming a genuine beat tracking algorithm that aims at extracting a stable pulse track
from a novelty function, given an estimate of the expected tempo. In particular, we pro-
vide an implementation of this instructive algorithm (originally introduced by Ellis [39]),
which can be solved using dynamic programming. We apply this algorithm to a small
toy example, which is something that is not only helpful for understanding the algorithm
but should always be done to test one’s implementation. We then move on to real music
recordings to indicate the algorithm’s potential and limitations.

Finally, in the FMP Notebook Adaptive Windowing, we discuss another important
application of beat and pulse tracking, following ([1], Section 6.3.3). Our algorithm’s
input is a feature representation based on fixed-size windowing and an arbitrary (typically
nonuniform) time grid, e.g., consisting of previously extracted onset and beat positions.
The output is a feature representation adapted according to the input time grid. In our
implementation, an additional parameter allows for excluding a certain neighborhood
around each time grid position (see Figure 17). This strategy may be beneficial when
expecting signal artifacts (e.g., transients) around these positions, which may have a
negative impact on the features to be extracted (e.g., chroma features).

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_BeatTracking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_BeatTracking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_AdaptiveWindowing.html
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Figure 17. Example of adaptive windowing using a parameter λ ∈ R to control the neighborhood’s
relative size to be excluded. (Top): Waveform and nonuniform time grid (indicated by red verti-
cal lines). (Bottom): Adaptive feature representation (obtained from a spectrogram) with frames
corresponding to the shaded segments of the signal.

4.7. Content-Based Audio Retrieval (Part 7)

A central topic in MIR is concerned with the development of search engines that enable
users to explore music collections in a flexible and intuitive way. In ([1], Chapter 7), various
content-based audio retrieval scenarios that follow the query-by-example paradigm are
discussed. Given an audio recording or a fragment of it (used as a query), the task is to au-
tomatically retrieve documents from an audio database containing parts or aspects similar
to the query. Retrieval systems based on this paradigm do not require any textual descrip-
tions in the form of metadata or tags. However, the notion of similarity used to compare
different audio recordings (or fragments) is of great importance and largely depends on the
respective application as well as the user requirements. Motivated by content-based audio
retrieval tasks, we study in Part 7 fundamental concepts for comparing music documents
based on local similarity cues. In particular, we introduce efficient algorithms for globally
and locally aligning feature sequences—concepts useful for handling temporal deforma-
tions in general time series. We provide Python implementations of the core algorithms and
explain how they work using instructive and explicit toy examples. Furthermore, using
real music recordings, we show how the algorithms are used in the respective retrieval
application. Finally, we close Part 7 with an implementation and discussion of metrics for
evaluating retrieval results given in the form of ranked lists.

While giving a brief outline of the various music retrieval aspects considered in this
part (see also [40]), the primary purpose of the FMP Notebook Content-Based Audio Re-
trieval is to provide concrete music examples that highlight typical variations encountered.
In particular, we work out the differences in the objectives of audio identification, au-
dio matching, and version identification by looking at different versions of Beethoven’s
Fifth Symphony. Furthermore, providing cover song excerpts of the song “Knockin’ On
Heaven’s Door” by Bob Dylan, we indicate some of the most common modifications as
they appear in different versions of the original song [41]. In a lecture, we consider it
essential to let students listen to, discuss, and find their own music examples, which they
can then use as a basis for subsequent experiments.

In the FMP Notebook Audio Identification, we discuss the requirements placed on a
fingerprinting system by looking at specific audio examples. In particular, using a short
excerpt from the Beatles song “Act Naturally,” we provide audio examples with typical
distortions a fingerprinting system needs to deal with. Then, we introduce the main ideas
of an early fingerprinting approach originally developed by Wang [42] and successfully
used in the commercial Shazam music identification service. In this system, the fingerprints
are based on spectral peaks and the matching is performed using constellation maps that
encode peak coordinates (see Figure 18). Closely following ([1], Section 7.1.2), we provide
a naive Python implementation for computing a constellation map by iteratively extracting

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7_ContentBasedAudioRetrieval.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7_ContentBasedAudioRetrieval.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S1_AudioIdentification.html
www.shazam.com
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spectral peaks. While being instructive, looping over the frequency and time axis of a 2D
spectrogram representation is inefficient in practice—even when using a high-performance
Python compiler as provided by the numba package. As an alternative, we provide a
much faster implementation using 2D filtering techniques from image processing (with
functions provided by scipy). Comparing running times of different implementations
should leave a deep impression on students—an essential experience everyone should
have in a computer science lecture. We test the robustness of constellation maps towards
signal degradations by considering our Beatles example. To this end, we introduce overlay
visualizations of constellation maps for qualitative analysis and metrics for quantitative
analysis (see Figure 18 for an example). Furthermore, we provide an implementation of a
matching function with tolerance parameters to account for small deviations of spectral
peak positions. Again we use our modified Beatles excerpts to illustrate the behavior of the
matching function under signal distortions. In particular, we demonstrate that the overall
fingerprinting procedure is robust to adding noise or other sources while breaking down
when changing the signal using time-scale modification or pitch shifting. The concept of
indexing, as discussed in ([1], Section 7.1.4), is not covered in our FMP notebooks. For a
Python implementation of a full-fledged fingerprinting system, we refer to [43].

Figure 18. Evaluation measures that indicate the agreement between two constellation maps com-
puted for an original version (Reference) and a noisy version (Estimation).

While significant progress has been made for highly specific retrieval scenarios such
as audio identification, retrieval scenarios of lower specificity still pose many challenges.
Following ([1], Section 7.2), we address in the subsequent notebooks a retrieval task referred
to as audio matching: given a short query audio clip, the goal is to automatically retrieve
all excerpts from all recordings within a given audio database that musically correspond to
the query. In this matching scenario, as opposed to classic audio identification, one allows
semantically motivated variations as they typically appear in different performances and
arrangements of a piece of music. Rather then using abstract features such as spectral
peaks, audio matching requires features that capture musical (e.g., tonal, harmonic, melodic)
properties. In the FMP Notebook Feature Design (Chroma, CENS), we consider a family
of scalable and robust chroma-related audio features (called CENS), originally proposed
in [44]. Using different performances of Beethoven’s Fifth Symphony, we study the effects
introduced by the quantization, smoothing, normalization, and downsampling operations
used in the CENS computation. The CENS concept can be applied to various chromagram
implementations as introduced in the FMP Notebook Log-Frequency Spectrogram and
Chromagram of Part 3 and the FMP Notebook Template-Based Chord Recognition of
Part 5. From an educational viewpoint, these notebooks should make students aware that
one may change a feature’s properties considerably by applying a little postprocessing.
When trying out some complicated techniques, one should keep an eye on the simple and
straightforward approaches (which often yield profound insights into the task and data at
hand and may serve as baselines to compare against).

https://numba.pydata.org/
https://www.scipy.org/
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_CENS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_SpecLogFreq-Chromagram.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_SpecLogFreq-Chromagram.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S2_ChordRec_Templates.html
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Next, the FMP Notebook Diagonal Matching provides a step-by-step implementa-
tion of the retrieval procedure described in ([1], Section 7.2.2). Using a toy example, we
discuss the matching function’s behavior under signal distortions (including stretching and
compressing). We then introduce a function that iteratively extracts local minima under
certain neighborhood constraints. In some sense, this procedure can be regarded as a simple
peak picking strategy, which should be compared with the more involved alternatives, as
discussed in the FMP Notebook Peak Picking of Part 6. Finally, we cover a multiple-query
strategy, where we generate multiple versions of a query by applying scaling operations
that simulate different tempi [45]. We illustrate the effect of this procedure by continuing
our toy example from above. Providing suitable functions for visualizing the results of all
intermediate steps (including feature representations, cost matrices, matching functions,
and retrieved matches) is a central feature of the notebook, which allows students to
analyze the results and create their own illustrations.

As an alternative to diagonal matching, we study in the FMP Notebook Subsequence
DTW a matching approach based on a DTW variant (following [1], Section 7.2.3). The
Python code of the subsequence DTW algorithm closely follows the original DTW imple-
mentation of the FMP Notebook Dynamic Time Warping (DTW) of Part 3, which allows
students to recognize the differences between the two approaches immediately. Again
we draw attention to indexing conventions used in Python (where indexing starts with
the index 0) and go through easy-to-understand toy examples. Furthermore, we highlight
conceptual differences between the matching functions obtained by diagonal matching
and subsequence DTW and discuss their relation to different step size conditions. Finally,
we compare our implementation with the one provided by the Python package librosa
and discuss various parameter settings.

In the FMP Notebook Audio Matching, we put the individual components together
to create a complete audio matching system [45]. We apply our implementation to several
real-world music examples starting with three performances (two orchestral and one piano
version) of Beethoven’s Fifth Symphony. Then, we consider two performances of the
second waltz of Shostakovich’s Jazz Suite No. 2, which contains repeating parts with
different instrumentation. This example is very instructive when using one of these parts as
a query since it illustrates to what extent the matching procedure is capable of identifying
the other parts across different instrumentations and performances. We also present an
experiment, which shows how the matching results’ quality crucially depends on the
length of the query: queries of short duration (having low specificity) will generally lead to
a large number of spurious matches while enlarging the query length (thus increasing its
specificity) will generally reduce the number of such matches. Finally, using the song “In
the Year 2525” by Zager and Evans, we implement the transposition-invariant matching
function and provide a visualization function that produces Figure 19.

Turning to the task of version identification, we introduce in the FMP Notebook Com-
mon Subsequence Matching another sequence alignment variant that drops the boundary
condition for both sequences. In our implementation, we follow the same line as with
the original DTW and subsequence DTW, thus facilitating an easy comparison of the
different algorithms. Furthermore, to round off the alignment topic, we also provide an
implementation of the partial matching algorithm, which replaces the step size with a
weaker monotonicity condition. In the FMP Notebook Version Identification, we present
a baseline system that integrates common subsequence matching as a main algorithmic
component (similar to [41,46]). We illustrate how the system works by using the original
recording and a cover version of the Beatles song “Day Tripper” as input documents. Using
chromagrams of the two recordings, we first create a score matrix that encodes potential
relations between the two input sequences. In the notebook, we provide an implementation
for computing such a score matrix using path-enhancement and thresholding techniques,
as introduced in the FMP Notebook Audio Thumbnailing of Part 4. We then apply com-
mon subsequence matching for computing a potentially long path of high similarity, show
this path for our Beatles example, and provide the audio excerpts that correspond to the

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_DiagonalMatching.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_PeakPicking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_SubsequenceDTW.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_SubsequenceDTW.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S2_DTWbasic.html
https://librosa.org
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_AudioMatching.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_CommonSubsequence.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_CommonSubsequence.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_VersionIdentification.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S3_AudioThumbnailing.html
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two induced segments. The Python functions provided in this notebook may serve as
a suitable basis for mini projects within a music processing curriculum. Understanding
the influence of the feature representation, the score matrix, and the matching strategy is
crucial before students move on with more involved techniques such as supervised deep
learning technique [47,48]. In particular, listening to the audio excerpts encoded by the
alignment path says a lot about the versions’ musical relationships.

Figure 19. Transposition-invariant matching function illustrated by Zager and Evans’ song “In
the Year 2525.” The song has the musical structure IV1V2V3V4V5V6V7BV8O, with some verses being
transposed. Using a chroma-based representation of V1 and cyclically shifted versions as queries leads
to several matching functions (∆0, ∆1, ∆2, . . .), which are combined to form a transposition-invariant
matching function ∆TI (thick black curve).

In the final FMP Notebook Evaluation Measures, we provide an implementation of
some evaluation metrics that are useful for document-level retrieval scenarios (see [1],
Section 7.3.3). This continues our discussion of general evaluation metrics from the FMP
Notebook Evaluation of Part 4. We start with an implementation for computing and
visualizing a PR curve and its characteristic points (see Figure 20). Then, we turn to the
average precision and mean average precision. We test our implementations using toy
example, where the evaluation measures can be computed manually. We strongly advise
students to perform such sanity checks to verify the correctness of implementations and
to deepen their understanding of the metrics. The notebook also provides Python scripts
(e.g., based on Python data manipulation tools such as pandas) that show how one may
generate nice-looking tables and figures of evaluation results. One such example is shown
in Figure 20.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_Evaluation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S5_Evaluation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S5_Evaluation.html
https://pandas.pydata.org/
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Figure 20. Evaluation metrics from the FMP Notebook Evaluation Measures applied to a toy example.

4.8. Musically Informed Audio Decomposition (Part 8)

In the last part of the FMP notebooks, we devote ourselves to techniques for decom-
posing a music signal into its constituent components—a task closely related to what is
generally referred to as source separation. Given a mixture signal containing different
combinations of sources (e.g., vocals, drums, bass, and guitar), source separation aims
to recover the individual source signals as if they were played in isolation [49]. Musi-
cal sources often follow the same rhythmic patterns or play harmonically related notes.
These strong correlations make music source separation a particularly challenging area of
research. Within this wide research area, the following subproblems are covered in ([1],
Chapter 8): harmonic–percussive separation, main melody extraction, and score-informed
audio decomposition. Using these tasks as motivation, the notebooks of Part 8 offer de-
tailed explanations and implementations of fundamental signal processing techniques,
including signal reconstruction, STFT inversion, instantaneous frequency estimation, har-
monic summation, and nonnegative matrix factorization (NMF). These techniques are
useful for a variety of general multimedia processing tasks beyond source separation and
music processing. Besides algorithmic and computational aspects, we again encounter in
this part a variety of acoustic and musical properties of audio recordings. Providing tools
and instructive scenarios for gaining a good understanding of such properties is a central
and overarching objective of the FMP notebooks.

The task of decomposing an audio signal into a harmonic and a percussive component
has received much research interest. In the FMP Notebook Harmonic–Percussive Sepa-
ration (HPS), we provide an implementation of the simple yet beautiful decomposition
approach originally suggested by Fitzgerald [50]. The approach is based on the observa-
tion that harmonic sounds reveal horizontal time–frequency structures, while percussive
sounds reveal vertical ones. Closely following ([1], Section 8.1.1), we cover the required
mathematical concepts such as median filtering, binary masking, and soft masking. Ap-
plied to spectrograms, the effects of these techniques immediately become clear when
visualizing the processed matrices. The main parameters of the HPS implementation are
the STFT’s window length and the hop size as well as the length parameters of the median
filters applied in the horizontal (time) and in vertical (frequency) direction, respectively. To
illustrate the role of the different parameters, we conduct a systematic experiment where
one can listing to the resulting harmonic and percussive sound components for various
real-world music recordings. In general, due to the interplay of the four parameters, it
is not easy to predict the sound quality of the resulting components and finding suitable
parameters often involves a delicate trade-off between leakage in one or the other direc-
tion. Furthermore, there are many sounds (e.g., white noise or applause) that are neither
harmonic nor percussive. In the FMP Notebook Harmonic–Residual–Percussive Separa-
tion (HRPS), we provide an implementation of the extended HPS approach as originally
suggested by [51]. The idea is to introduce a third, residual component that captures all
sounds that are neither harmonic nor percussive. Again, students are encouraged to listen
to the separated sound components computed for various music recordings.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_Evaluation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HPS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HPS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HRPS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HRPS.html
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In the HPS procedure, we need to reconstruct the time-domain signals for the har-
monic and percussive sound components from modified STFTs. However, as discussed
in ([1], Section 8.1.2.2), modified STFTs are typically not valid in the sense that there is no
time-domain signal whose STFT coincides with the specified modified STFT. Intuitively, the
problem arises from the STFT’s overlapping windows, which reintroduce in the reconstruc-
tion some information from the previous and subsequent frames into the current frame.
This fact, which is not easy to understand and often overlooked when employing black-box
implementations for STFT inversion, may lead to unexpected signal artifacts. In the FMP
Notebook Signal Reconstruction, we provide Python code that yields such an example.
We strongly recommend that students experiment with such examples to gain a feeling
on the intricacies of STFT inversion. As we already indicated in the FMP Notebook STFT:
Inverse of Part 2, signal reconstruction needs to be regarded as an optimization problem,
where the objective is to estimate a signal whose STFT is at least as close as possible to the
modified STFT with regard to a suitably defined distance measure. Using a measure based
on the mean square error leads to the famous approach originally introduced by Griffin
and Lim [52]. This approach is often used as default in implementations of the inverse
STFT, as, e.g., provided by the Python package librosa.

In the FMP Notebook Applications of HPS and HRPS, we cover Python implemen-
tations for the applications sketched in ([1], Section 8.1.3). In particular, we show how
to enhance a chroma representation by considering only a signal’s harmonic component
and how to enhance a novelty representation by considering only a signal’s percussive
component. While these simple applications should by seen only as an illustration of the
HPS decomposition’s potential, we also sktech a more serious application in the context
of time–scale modification (TSM), where the task is to speed up or slow down an audio
signal’s playback speed without changing its pitch. The main idea of the TSM approach by
Driedger et al. [53] is to first split up the signal into a harmonic and percussive component
using HPS. The two components are then processed separately using specialized TSM
approaches—one that is specialized to stretch tonal elements of music and one that is
specialized to preserve transients. The final TSM result is then obtained by superimposing
the two modified components (see Figure 21). For an implementation of this procedure,
which goes beyond the scope of the FMP notebooks, we refer to [12].

In the next notebooks, we turn to the topic of melody extraction [54,55], which serves
as a motivating scenario for studying several important signal processing techniques. In the
FMP Notebook Instantaneous Frequency Estimation, we show how one can improve the
frequency resolution of the discrete STFT by exploiting the information hidden in its phase.
Looking at the phases of subsequent frames, as described in ([1], Section 8.2.1), allows for
adjusting the STFT’s frame-independent grid frequency Fcoef(k) (see [1], Equation 8.30)
to obtain a frame-dependent instantaneous frequency FIF

coef(k, n) (see [1], Equation 8.44).
Besides providing an implementation, the notebook introduces visualizations that yield
deeper insights into the IF estimation procedure. In particular, we look at a piano recording
of the note C4 with fundamental frequency 261.5 Hz as an example (see Figure 22). The
resulting visualization indicates that the IF estimation procedure assigns all frequency
coefficients in a neighborhood of 261.5 Hz to exactly that frequency (see FIF

coef of Figure 22).
Furthermore, the difference FIF

coef − Fcoef, which corresponds to the bin offset computed in
([1], Equation 8.45), is shown. The notebook closes with an experiment that indicates how
the quality of the estimated instantaneous frequency depends on the hop-size parameter
(with small hop sizes improving the IF estimate). In conclusion, an overall aim of the
notebook is to emphasize the potential of the phase information—an aspect that is often
neglected in a signal processing course.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_SignalReconstruction.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_SignalReconstruction.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Inverse.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Inverse.html
https://librosa.org/doc/main/generated/librosa.griffinlim.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HPS-Application.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_InstantFreqEstimation.html
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Figure 21. Application of HPS for time–scale modification (TSM), where TSM based on the phase
vocoder is used for the harmonic component and TSM based on OLA (overlap-add techniques) is
used for the percussive component (see [53]).

Figure 22. Interpretation of time–frequency bins of an STFT as specified by the (frame-independent)
frequency values Fcoef(k) and the (frame-dependent) instantaneous frequency values FIF

coef(k, n). The
bin offset (specified in Hertz) is given by FIF

coef − Fcoef.

As a second concept central to melody extraction, we introduce in the FMP Notebook
Salience Representation a time–frequency representation that emphasizes the predominant
frequency information [54]. Closely following the explanations of ([1], Section 8.2.2), we
provide a step-by-step implementation of the procedure. As our running example, we
use a short excerpt of an aria from the opera “Der Freischütz” by Carl Maria von Weber.
We first examine the shortcomings of logarithmic binning methods based on the STFT’s
linearly spaced frequency grid and then discuss the benefits when using the IF-based
frequency refinement. Next, we introduce a Python function for harmonic summation,
which accounts for the fact that a tone’s energy is not only contained in the fundamental
frequency, but spread over the entire harmonic spectrum. Applied to our Weber example,
the effect of harmonic summation does not seem to be huge—a disappointment that
students often encounter when they put theory into practice. In our case, as we discuss in
this notebook, a high frequency resolution in combination with the IF-based sharpening
leads to small deviations across harmonically related frequency bins. To balance out these
deviations, we introduce a simple method by introducing a smoothing step along the
frequency axis. Continuing our Weber example, we show that this small modification
increases the robustness of the harmonic summation, leading to significant improvements
in the resulting salience representation. In general, when applying local operations to data
that is sampled with high resolution, small deviations or outliers in the data may lead to
considerable degradations. In such situations, additional filtering steps (e.g., convolution
with a Gaussian kernel or median filtering) may help to alleviate some of the problems.
Besides providing reference implementations, it is at the core of the FMP notebooks to also
bring up practical issues and introduce small engineering tricks that may help in practice.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_SalienceRepresentation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_SalienceRepresentation.html
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Assuming that the main melody corresponds to the strongest harmonic frequency
component at each time point motivates the next topic covered by the FMP Notebook
Fundamental Frequency Tracking. Continuing our Weber example, we start by providing
Python code for the visualization and sonification (using sinusoidal models) of frequency
trajectories. In particular, listening to a trajectory’s sonification superimposed with the
original music recordings yields an excellent acoustic feedback on the trajectory’s accuracy.
Then, following ([1], Section 8.2.3), we provide implementations of different frequency
tracking procedures, including a frame-wise approach, an approach using continuity con-
straints, and a score-informed approach (see Figure 23). Again, the benefits and limitations
of these approaches are made tangible through visualizations and sonifications of con-
crete examples. This again highlights the main purpose of the FMP notebooks. Instead
of just passively following the concepts, the notebooks enable students to deepen their
understanding by conducting experiments using their own examples.

Figure 23. Salience representation with trajectories computed by (a) a frame-wise approach, (b) an
approach using continuity constraints, and (c) a score-informed approach.

Finally, in the FMP Notebook Melody Extraction and Separation, we show how to
integrate the algorithmic components learned in the previous notebooks to build a com-
plete system. Based on the assumption that the melody correlates to the predominant
fundamental frequency trajectory, we show how this information can be used for decom-
posing a music signal into a melody component that captures the main melodic voice and
an accompaniment component that captures the remaining acoustic events. To this end,
given a (previously estimated) predominant frequency trajectory, we construct a binary
mask that takes harmonics into account (see [1], Section 8.2.3.3). In our implementation,
we consider two variants, one based on a fixed size around each frequency bin and one
based on a frequency-dependent size (where the neighborhood size increases linearly with
the center frequency). Using such a binary mask and its complement, we apply the same
signal reconstruction techniques as introduced in ([1], Section 8.1.2) to obtain component
signals for the trajectory (i.e., the melody) and the rest (i.e., the accompaniment). Admit-
tedly, the overall procedure is too simplistic to obtain state-of-the-art results in source
separation. However, providing a full pipeline along with visual and acoustic analysis
tools should invite students to explore the role of the various components and to start
with their own research (e.g., using more advanced methods based on deep learning as
provided by [17,22]).

In the final three notebooks, we turn to nonnegative matrix factorization (NMF), which
is a powerful and beautiful machine learning technique that is applicable for general data
analysis far beyond the considered music scenario. The objective of NMF is to represent a
give nonnegative matrix V as a product of two low-rank nonnegative matrices W (called
template matrix) and H (called activation matrix) such that V ≈ W · H (see Figure 24b).
Closely following the theory of ([1], Section 8.3.1), we provide in the FMP Notebook
Nonnegative Matrix Factorization (NMF) an implementation of the basic NMF algorithm
based on multiplicative update rules (originally suggested in [56]). There are several
practical issues one needs to consider. First, for efficiency reasons, we use matrix-based
operations for implementing the multiplicative update rules. Second, to avoid division by
zero, a small value (machine epsilon) is added to the denominators in the multiplicative

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_FundFreqTracking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_FundFreqTracking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_MelodyExtractSep.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFbasic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFbasic.html
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update rules. Third, we provide a parameter for controlling certain normalization con-
straints (e.g., enforcing that template vectors are normalized). Fourth, the implementation
allows for specifying matrices used for initialization. Finally, different criteria may be used
to terminate the iterative optimization procedure. Using explicit toy examples, we present
some experiments that illustrate the functioning of the NMF procedure and discuss the
role of the rank parameter (see also Figure 24). For further extensions, implementations,
and applications of NMF, we refer to the NMF toolbox [14].

Figure 24. NMF procedure applied to a toy example. (a) Matrix V and randomly initialized matrices
W and H. (b) Matrix V and matrices W and H after training. (c) Error terms over iterations.

The FMP Notebook NMF-Based Spectrogram Factorization yields an application of
NMF to decompose a magnitude spectrogram into template and activation matrices that
possess an explicit musical meaning. As in ([1], Section 8.3.2), we use the first measures of
Chopin’s Prélude Op. 28, No. 4 to demonstrate how one may integrate musical knowledge
to guide the decomposition. In particular, we provide complete Python implementations
for various initialization strategies using pitch-informed template constraints and score-
informed activation constraints. Furthermore, to also account for percussive properties
such as onsets, we implement the NMF model with additional onset templates. This
extended NMF model is then applied in the FMP Notebook NMF-Based Audio Decom-
position for score-informed spectrogram factorization. In particular, we provide a full
pipeline for decomposing a music recording into note-based sound events. Continuing our
Chopin example, we decompose the recording into two components, where one component
corresponds to the notes of the lower staff and the other to the notes of the upper staff.
Providing the code and all the data required, this implementation reproduces the results
originally introduced in [57]. Furthermore, we sketch the audio editing application based
on notewise audio decomposition showing a video as presented in [58].

5. Conclusions

In this paper, we provided a guide through the FMP notebooks, which form a col-
lection of educational material for studying central techniques in music processing and
music information retrieval. Complementing the textbook [1], the notebooks provide audio-
visual material and Python code examples that implement the textbook’s computational
approaches, thus bridging the gap between theory and practice. Additionally, the FMP
notebooks yield an interactive framework that allows students to experiment with music
examples of their own choice, explore the effect of parameter settings, and understand
the computed results by suitable visualizations and sonifications. When teaching and
learning music processing, it is essential to have a holistic view of the MIR task at hand,

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFSpecFac.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFAudioDecomp.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFAudioDecomp.html
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the algorithmic approach, and its practical implementation. Looking at all the processing
pipeline steps sheds light on the input data and its biases, possible violations of model
assumptions, and the shortcoming of quantitative evaluation measures. Only by an inter-
active examination of all these aspects will students acquire a deeper understanding of
the concepts, transitioning from merely understanding concepts to applying them in the
context of practical applications.

Besides providing educational material for teaching and learning music processing,
the FMP notebooks also comprise a core library of implementations for many previously
published MIR methods. Employing and providing Python and Jupyter-based tools,
which have been made publicly available for research purposes, the FMP notebooks make a
contribution to reproducible research. As emphasized in [59], open source and reproducible
research, which comprises both reproducibility (sharing code) and replicability (easily
reconstructing a method), are at the core of fundamental research. As such, these topics
should be addressed in any curriculum when training advanced students and beginning
researchers. In this context, we hope that the FMP notebooks provide an example for
best practices.

As in general multimedia processing, many recent advances in music processing have
been driven by techniques based on deep learning (DL) [60,61]. For example, DL-based
techniques have led to significant improvements for tasks such as music source separa-
tion [49,62–64], music transcription [65,66], chord recognition [35,67–69], melody estima-
tion [70,71], beat tracking [72–74], tempo estimation [75,76], version identification [47,48],
cross-modal retrieval and alignment tasks [77–79], just to name a few. A particular strength
of DL-based approaches is their ability to extract complex features directly from raw audio
data, which can then be used to make predictions based on hidden structures and rela-
tions. Furthermore, powerful software packages (e.g., [80]) allow for easily designing,
implementing, and experimenting with machine learning algorithms based on deep neural
networks. However, music turns out to be a particularly hard domain due to its high
complexity and diversity, which requires vast amounts of training data to account for the
many different musical and acoustic variations occurring in real-world settings.

Covering the fast-growing and dynamic field of deep learning goes beyond the scope
of the FMP notebooks. Instead, the notebooks focus on classical signal and music process-
ing techniques, yielding fundamental insights into the problem at hand and providing
explicit baseline approaches one may (and should) compare against when exploring more
powerful yet often difficult-to-interpret DL-based learning approaches. Even though being
only a small selection of recent DL-based MIR approaches, we hope that the provided
references are useful entry points for further reading. Furthermore, we hope that the
FMP notebooks yield a sound foundation for students and researchers to transition from
classical engineering approaches to the world of deep learning applied to challenging
music processing tasks.
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