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ABSTRACT

Chroma or pitch-class representations of audio recordings
are an essential tool in music information retrieval. Tra-
ditional chroma features relying on signal processing are
often influenced by timbral properties such as overtones
or vibrato and, thus, only roughly correspond to the pitch
classes indicated by a score. Deep learning provides a
promising possibility to overcome such problems but re-
quires large annotated datasets. Previous approaches there-
fore use either synthetic audio, MIDI-piano recordings, or
chord annotations for training. Since these strategies have
different limitations, we propose to learn transcription-like
pitch-class representations using pre-synchronized score–
audio pairs of classical music. We train several CNNs with
musically inspired architectures and evaluate their pitch-
class estimates for various instrumentations including or-
chestra, piano, chamber music, and singing. Moreover, we
illustrate the learned features’ behavior when used as in-
put to a chord recognition system. In all our experiments,
we compare cross-validation with cross-dataset evaluation.
Obtaining promising results, our strategy shows how to
leverage the power of deep learning for constructing robust
but interpretable tonal representations.

1. INTRODUCTION AND RELATED WORK

In the field of music information retrieval (MIR), many al-
gorithms rely on pitch-class or chroma representations for
analyzing audio recordings. Such representations capture
the signal’s energy distribution over the twelve chromatic
pitch classes (ignoring octave information) and, thus, al-
low for a direct musical interpretation. Chroma features
have been successfully used for different MIR tasks such
as chord recognition [1–4], key estimation [5], structure
analysis [6], or audio retrieval [7, 8] especially for West-
ern music. While traditional chroma features were de-
signed in a handcrafted fashion based on signal processing
techniques [9–12], such features exhibit several drawbacks
caused by audio-related artifacts such as timbral charac-
teristics, overtones, vibrato, or transients. Moreover, the
relative loudness of a note directly influences the feature
representation.

© C. Weiß, J. Zeitler, T. Zunner, F. Schuberth, and M.
Müller. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: C. Weiß, J. Zeitler, T. Zunner, F.
Schuberth, and M. Müller, “Learning Pitch-Class Representations from
Score–Audio Pairs of Classical Music”, in Proc. of the 22nd Int. Society
for Music Information Retrieval Conf., Online, 2021.

Figure 1. Illustration of the pitch-class training strategy
with an example from Schubert’s Winterreise [13]. (a)
Score. (b) Audio recording. (c) Pitch-class estimates of the
CNN. (d) Pitch-class labels derived from aligned score.

Over the years, a number of solutions for these prob-
lems were proposed involving spectral whitening [14],
peak picking [12], overtone removal [3, 15], or timbre ho-
mogenization [16]. Most of these techniques led to im-
proved results for tasks such as chord recognition [1–4] or
audio retrieval [7]. However, the problem remains chal-
lenging since improvements for one task may deteriorate
another—a good chroma for music synchronization [16]
might be worse for chord recognition [2], or removal of
harmonics might introduce sub-harmonic artifacts [3]. Fi-
nally, chroma features are often noisy compared to the
pitch classes in the score, limiting their interpretability by
musicologists as well as their potential for visualization
and cross-modal retrieval and analysis applications.

To overcome such problems, more recent strategies
make use of deep neural networks for learning chroma rep-
resentations from data [17–21]. For the successful train-
ing of high-capacity networks, large amounts of annotated
recordings are necessary. Since manual creation of pitch-
class annotations is tedious and requires expert knowl-
edge, there are several alternative strategies, all of which
have their benefits and limitations. Early approaches to a
“deep chroma” make use of chord labels to derive pitch-
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Table 1. Datasets and annotations used in this work (“Perf.”: number of performances per piece).
ID Dataset Name Instrumentation Pitch annotation type Chords Tracks Pieces Perf.1 hh:mm

SWD Schubert Winterreise [13] Piano, voice Aligned scores yes 216 24 9 10:50
BSD Beethoven Piano Sonatas [25]2 Piano Aligned scores yes 192 32 6 62:30
WaR Wagner Ring [26]2 Orchestra, voice Aligned scores no 33 11 3 43:13
MuN MusicNet [27] Piano, strings, winds Aligned scores no 330 330 1 34:08
SMD Saarland Music Data [22] Piano MIDI piano / Disklavier no 50 50 1 4:43

class annotations [17, 18]. As shown in [17], this leads
to a chroma extractor that has a strong bias towards the
chords’ pitch classes (in [17], these are triads) and does
not actually detect the pitch classes notated in the score,
thus limiting interpretability, generalization to other chord
vocabularies and genres, and applicability to other tasks.
As an alternative strategy for obtaining training data, sym-
bolic music representations were used to render synthetic
audio recordings together with the corresponding annota-
tions [19]. While this is pragmatic, systems trained on syn-
thetic data often show limited generalization to recorded
audio. Another strategy makes use of MIDI-fied instru-
ments (e. g., Disklaviers) for capturing pitch information,
which led to a number of comprehensive piano transcrip-
tion datasets [22–24]. However, these approaches are lim-
ited to piano or MIDI-fied instruments, and the use of the
sustain pedal constitutes a problem for determining the per-
ceptually relevant duration of a note.

In this paper, we target a pitch-class representation
that relates to the task of multi-pitch estimation (MPE)
or framewise transcription [28]. Concretely spoken, we
aim for detecting the framewise activity of all pitch classes
indicated by the score (multi-pitch-class estimation, see
Figure 1c). In an ideal scenario, such a representation
helps to close the gap between audio- and symbolic-based
MIR and, as a consequence, is well-interpretable and capa-
ble of generalizing to different music genres, instrumenta-
tions, and MIR tasks. For this purpose, we propose an al-
ternative training strategy using score–audio pairs of clas-
sical music that are pre-aligned using music synchroniza-
tion techniques [29]. As an alternative to this, weakly-
annotated score–audio pairs were recently used for train-
ing using an attention mechanism [30], the CTC loss [20],
or a multi-label CTC variant that can deal with polyphonic
pitch-class representations [21]. A (strong) aligment strat-
egy similar to ours was successfully applied for multi-
instrument music transcription with the MusicNet dataset
[27], which we include in this paper. We prepare three
further classical music datasets comprising several perfor-
mances of Schubert’s song cycle Winterreise [13], the first
movements of Beethoven’s piano sonatas [25], and Wag-
ner’s four-opera cycle Der Ring des Nibelungen [26]. We
generate pitch-class annotations for these datasets using
symbolic scores, manual measure annotations [26], and
music synchronization techniques [29]. The data com-
prises various styles and instrumentations including piano,
orchestra, chamber music, as well as singing voice.

As our first contribution, we use this data for supervised
learning of a transcription-like pitch-class representation
with a medium-sized, musically motivated convolutional

neural network (CNN) inspired by [20,31,32]. We test the
network’s pitch-class estimates using evaluation measures
from music transcription. Second, we compare this CNN
with other architectures such as wider and deeper net-
works, inception blocks, and residual connections. Third,
we test the benefit of the learned features for harmony anal-
ysis, specifically chord recognition for classical music. To
systematically assess the role of the input features, we em-
ploy a controlled and well-understood chord recognition
approach based on hidden Markov models (HMMs) [2, 4].
We compare the novel features with traditional chroma
features and idealized pitch-class representations derived
from the score. In all stages, we compare cross-validation
results on individual datasets with cross-dataset results to
systematically test generalization [33].

The remainder of paper is organized as follows. In
Section 2, we introduce the datasets used for our experi-
ments. Section 3 describes our CNN-based feature learn-
ing. In Section 4, we evaluate the learned pitch-class fea-
tures. Section 5 discusses chord recognition results using
the learned features. Section 6 concludes the paper.

2. DATASETS

As mentioned in Section 1, the limited availability of an-
notated data is a major issue for multi-pitch and pitch-class
estimation—a “key challenge” of music transcription [34].
Since manual annotation is tedious and requires expert
annotators, several workarounds were proposed [35]. A
common approach involves the use of MIDI-fied pianos
(Disklaviers) for simultaneously generating audio and an-
notations, leading to piano transcription datasets such as
SMD [22], MAPS [23], or MAESTRO [24].

Beyond the solo piano scenario, there are only few
and small datasets with pitch annotations such as Bach10
[36], TRIOS [37], or PHENICX-Anechoic [38] (all ≤10
pieces), which often involve multi-track recordings to sim-
plify the manual annotation process [36–38] or to automat-
ically generate annotations using a monophonic F0-tracker
as done for MedleyDB [39]. Since this leads to F0 annota-
tions following the performed frequencies rather than the
pitches in the score, we do not use MedleyDB here.

As a further strategy, score–audio pairs of classical mu-
sic can be exploited to generate pitch (class) annotations.
This requires score–audio synchronization methods [29].
A dataset created with this strategy is MusicNet (MuN)
[27], which comprises pitch annotations for 330 audio
recordings of piano and chamber music. For our experi-
ments, we reduce the pitch annotations to the pitch-class
level. As another score–audio dataset, we make use of
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Figure 2. Illustration of the CNN architecture (Basic).

the Schubert Winterreise Dataset (SWD) [13], which com-
prises recorded performances (two of nine freely avail-
able), scores, measure positions, and chord annotations.
We use the scores (MIDI files) and measure annotations
together with a synchronization algorithm [29] based on
dynamic time warping (DTW) to generate pitch-class an-
notations. 1 Using the same strategy, we create two fur-
ther private 2 datasets: The Beethoven Sonatas Dataset
(BSD) comprises the 32 first movements of Beethoven’s
piano sonatas in six versions. Using DTW-based align-
ment [29], we generate pitch-class annotations from cor-
responding scores and chord labels based on the annota-
tions by Chen and Su [25]. In a similar fashion, we create
pitch-class annotations for Wagner’s four-opera cycle Der
Ring des Nibelungen (WaR) based on manual measure an-
notations [26] and a full score (first act of Die Walküre)
or a piano-reduced score (remaining acts), respectively.
Table 1 gives an overview of the datasets used in this paper.

3. DEEP-LEARNING METHODS

In this section, we describe our CNN-based approach for
extracting pitch-class representations and discuss our de-
sign choices, motivated by related work. Previous deep-
learning approaches for pitch-class representations use a
variety of architectures including fully-connected [17, 40]
and convolutional neural networks (CNNs) [17, 19, 20],
where the latter often exhibit large kernels in the last lay-
ers to aggregate harmonic information. Due to the lower
number of parameters, we pursue a CNN-based approach
inspired by [20, 32], summarized in Figure 2 and Table 2.

Input representation. As network input, spectral rep-
resentations are used most frequently, either generated by
a short-time Fourier transform [17] or a constant-Q trans-
form (CQT) [40]. The CQT can be extended to a har-
monic CQT (HCQT) with CQTs in harmonic frequency
ratios stacked on top of each other, thus allowing for con-
volutions across harmonics (overtones) along the channel
axis [32]. As our input representation, we use such a
HCQT with five harmonics (no sub-harmonic). Based on
audio sampled at 22050 Hz, we use a CQT hopsize of 384
samples resulting in a feature rate of roughly 57.4 Hz. 3

Our HCQT spans 72 semitones (6 octaves) starting at C1
and a resolution of three bins per semitone. We choose a

1 With this paper, we publish pitch and pitch-class annotations for the
SWD, to be found at https://zenodo.org/record/5139893/.

2 These datasets cannot be published due to copyright issues.
3 As the only parameter, the CQT is determined by the hopsize, which

must be an integer multiple of powers of two.

Table 2. Musically informed CNN architecture (Basic).
Function Kernel size, # Stride Output Shape Activ.

Prefiltering (P):

LayerNorm 216×75×5
Conv2D 15×15, N0 (1, 1) 216×75×N0 LReLU
MaxPool (1, 2) 216×37×N0

Dropout

Binning to MIDI pitches (B):

Conv2D 3×3, N1 (3, 3) 72×12×N1 LReLU
MaxPool (1, 2) 72×6×N1

Dropout

Time reduction (T):

Conv2D 1×6, N2 (1, 1) 72×1×N2 LReLU
Dropout

Chroma reduction (C):

Conv2D 1×1, N3 (1, 1) 72×1×N3 LReLU
Dropout
Conv2D 61×1, 1 (1, 1) 12×1×1 Sigmoid

centering strategy with bins corresponding to integer MIDI
pitches placed between the two surrounding bins.

Context frames. To accurately predict a frame, a net-
work needs information about the context surrounding the
target frame. When using a single-stage system, this can be
done by feeding multiple time frames of the spectral repre-
sentation to the network [17, 19, 32]. For our network, we
feed the network with 75 context frames (37 to each side of
the target frame), corresponding to 1.3 sec at a frame rate
of 57.4 Hz. Thus, we feed the network with an input ten-
sor of shape 216×75×5 to predict a pitch-class activation
vector of size 12 (see Table 2).

Basic CNN architecture. Our proposed CNN filters
the input data in a musically meaningful way. Table 2 gives
detailed information about the proposed model; Figure 2
provides a schematic illustration. First, we perform layer
normalization to ensure zero mean and unit variance for
each input sample followed by a (trainable) linear transfor-
mation of the normalized input tensor. Next, N0 (default
20) feature maps are extracted in the Prefiltering layer (P).
Using a kernel size of 15×15 allows the network to de-
tect, e. g., vibrato for singing. The second convolutional
layer performs a Binning to MIDI pitches (B) by mov-
ing a 3×3 kernel with stride 3 and no padding along the
pitch axis, so that each output bin corresponds to an integer
MIDI pitch. We learn N1 (default 20) feature maps. Third,
a convolution across time performs a Time reduction (T),
resulting in N2 (default 10) feature maps with 72 bins each.
Fourth, we perform pitch-class or Chroma reduction (C):
After reducing the representation to N3 (default 1) chan-
nels with a 1×1 convolution, we move a kernel with length
72−11=61 along the pitch axis. In all convolutional lay-
ers, we use LeakyReLU activation (negative slope 0.3) to
prevent vanishing gradients. MaxPooling along time re-
duces the number of parameters and forces generalization.
Dropout (rate 0.2) hampers overfitting while retaining a
large amount of information. We use sigmoid activation
in the final layer and train with binary cross-entropy loss
between predicted pitch-class vectors p ∈ [0, 1]12 and bi-
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Figure 3. Pitch-class estimation results (Basicmodel) for different datasets (train/test subsets of each dataset are disjoint).

nary, multi-hot target vectors t ∈ {0, 1}12, obtained from
the score’s note occurrences without weighting (Figure 1).

Larger CNN architectures. In addition to this ba-
sic CNN architecture (denoted as Basic in the follow-
ing) with roughly 27k convolutional parameters (plus the
parameters of layer normalization), we test a number of
extended network architectures. A simple strategy is to
increase the number of learned feature maps (N0 . . . N3).
For the architecture BasicLast10, we increase the last
layer to N3=10 (28k conv. params.). For the architecture
Wide, we increase the number of channels in all layers by
a factor of five so that N0 =N1 =100, N2 =50, N3 =5
(233k conv. params.). Since the choice of the prefiltering
kernel size is difficult, we adopt the concept of inception
blocks [41], where the input is filtered by kernels with dif-
ferent sizes in parallel. For this WideInception archi-
tecture, we use kernel sizes 3×3, 9×9, 15×15, and 27×27,
leaving the total number of kernels as in Wide. As an al-
ternative, we test a Deep architecture with more hidden
layers, replicating the first layer (P) five times. All remain-
ing layers and parameters are identical to Basic. Since
training deep architectures is difficult due to vanishing gra-
dients, we test the DeepResNet architecture with resid-
ual connections [42]. We add shortcut connections to the
five P layers, leaving the remainder identical to Deep. 4

4. EVALUATING PITCH-CLASS ESTIMATION

In the following, we evaluate the pitch-class estimates of
different networks, trained and tested on various datasets.
We measure the frame-wise precision, recall, and F-
measure (F) using a threshold of 0.5 (motivated by the
sigmoid activation) as well as the cosine similarity (CS)
between targets and non-thresholded predictions.

Evaluating general settings. We start with several ex-
periments in a cross-validation on SWD (train on seven,
test on two performances i. e., a version split [33]), which
serves as our development set to decide on general settings.
We train all networks with Adam [43] on mini-batches of
size 25 using learning rate scheduling and early stopping.
For the Basic architecture (as described in Section 3), we
obtain F=0.832 and CS=0.836 on the test versions of SWD,
which is already a promising result. Precision (0.850) is
slightly higher than recall (0.814). Since the choice of the
input HCQT’s frame rate is important, we compare this re-
sult (with a frame rate of 57.4 Hz) to the use of a smaller

4 Our source code (Keras) and pre-trained models are available under
https://github.com/christofw/pitchclass_cnn/.

rate (10.1 Hz) while holding the (physical) amount of con-
text constant by adjusting CNN kernel shapes accordingly.
With this smaller frame rate, we obtain slightly worse re-
sults of F=0.820 and CS=0.833. Thus, we use the finer
resolution of 57.4 Hz in the following. Next, we test the
influence of context frames: Reducing the original context
of 75 frames (roughly 1.3 sec) to 51 frames (0.9 sec) leads
to decreased results of F=0.827, with 25 frames to a further
decrease of F=0.823. We thus opt for the larger context of
75 frames. Finally, we test different kernel sizes in the first
layer (prefiltering P). Compared to Basic with 15×15
kernels, 9×9 kernels lead to F=0.835, and 5×5 kernels to
F=0.824. Though the 9×9 kernels perform slightly bet-
ter than the 15×15 kernels, we choose the larger kernel
size since it spans a larger pitch range and may be better
capable of, e. g., detecting vibrato.

Evaluating different datasets. With these parameter
choices, we now perform a cross-dataset experiment. In
addition to the SWD dataset (two versions for test), we use
MuN (50 pieces test, 280 pieces train/val), BSD (two ver-
sions test, four versions train/val), and WaR (test on Die
Walküre, 1st act, train/val on all other acts). We further
compile a Mix train set, which encompasses the train sub-
sets from MuN, BSD, and WaR to equal parts (using sub-
sampling). Note that train subsets of a dataset are never
used for testing (and vice versa) even for cross-dataset
splits. Figure 3 shows the pitch-class estimation results for
all train/test combinations. Using the same source for train
and test set (MuN–MuN, BSD–BSD, WaR–WaR), the respec-
tive combination yields best results. In those cases, the
Mix train set always achieves second-best results. In the
case of a completely unknown test set (SWD), the diverse
train data in Mix yields best results, slightly worse than the
cross-validation results in the previous paragraph.

Evaluating CNN architectures. We now compare the
Basic model to the larger architectures introduced in
Section 3. Figure 4 illustrates the respective results using
the same test datasets as for the previous experiment and
the Mix training set. Compared to the Basic architec-
ture, BasicLast10 has an increased number of channels
in the final layer (N3=10), which yields slightly better re-
sults than Basic with only about 600 more parameters.
In comparison, the Wide, WideInception, Deep, and
DeepResNet architectures increase the number of pa-
rameters by a factor of roughly ten. All of them yield better
results than Basic, except for the WaR test set. Although
we can achieve minor improvements by the use of incep-
tion blocks and skip connections, the performance metrics
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Figure 4. Pitch-class estimation results for different architectures trained on Mix dataset (subsets of BSD, MuN, WaR).

of the four most complex architectures are quite similar.
Comparing these networks’ results on SWD (cross-dataset)
with our first experiment—a cross-validation on SWD with
F=0.832 and CS=0.836—, we notice almost identical re-
sults. From this, we draw the important conclusion that
a larger, diverse training set (e. g., Mix) together with a
high-capacity network (e. g., Wide) can compensate for
not “knowing” the particular dataset (here the style of Win-
terreise and the combination of piano and singing). We
therefore use the Wide network trained on mixed datasets
for the following chord recognition experiment. 5

5. APPLICATION FOR CHORD RECOGNITION

Besides visualization purposes, pitch-class representations
serve as front-end features for various MIR applications.
To examine the effectiveness of our learned features for the
important task of chord recognition, we present systematic
experiments using the chord annotations of SWD and BSD.
Rather than optimizing the chord recognition performance,
we want to analyze the features’ influence and test the hy-
pothesis that our learned features behave similar to features
derived from the score (the training targets for our CNNs).
To gain these insights, we do not use an end-to-end chord-
recognition approach but opt for a traditional yet effective
method based on HMMs and Gaussian chord models [4].
For train/test of the HMM, we again compare cross-dataset
results with cross-validation results on each dataset, mak-
ing sure that neither a specific song nor a specific perfor-
mance are seen during training (neither split) to avoid the
kind of “musical overfitting” observed in [33].

Chord recognition method. On the training set, we
learn multivariate Gaussian chord models in the pitch-class
space R12. We cyclically shift and average the models of
each chord type in order to obtain transposition-invariant
models, which we use for generating the HMM’s emission
probabilities. Inspired by [4], we apply a uniform transi-
tion matrix with a high self-transition probability, which
we optimize on the validation set together with other hy-
perparameters (log compression strength and pre-filtering
length for the input features). We simplify the chord an-
notations of SWD and BSD to three common chord vocabu-

5 For training large networks, a sufficient amount of data is necessary
to prevent overfitting. Our largest model has roughly 550k parameters
(including layer normalization). As a comparison, 550k frames of train-
ing data sampled at 50 Hz give a dataset of about three hours. The amount
of data in MuN (34 hours), for example, is large compared to the number
of parameters, which is even more the case for the larger Mix dataset.

laries: MajMin comprises the 24 major and minor triads,
Triads adds the 12 diminished and 4 augmented triads
resulting in 40 chords, and Sevenths further adds five
types of seventh chords (dom7, maj7, min7, half-dim7,
dim7) amounting to 91 chords. 6

Evaluating feature variants. First, we assess the ef-
fectiveness of our pitch-class features (denoted as PCNN)
and compare those with other feature variants. To ob-
tain PCNN, we train the Wide model in a cross-dataset
split (train data similar to Mix but leaving out the target
dataset): For SWD, we train on BSD, MuN, and WaR; for
BSD, we train on SMD, MuN, and WaR (we replace BSD
with SMD to include a piano dataset). The resulting fea-
tures are re-sampled to 10 Hz. For comparison, we con-
sider three traditional chroma variants based on a CQT
(PCQT), an STFT (PSTFT), and an IIR filterbank (PIIR),
respectively. 7 As baseline, we use an idealized binary fea-
ture (PScore) derived from the aligned score (the CNN’s
training targets). We train and validate the HMM in a
cross-validation setting, making sure that neither test per-
formances nor pieces are seen during training [33].
Figure 5 shows the results, reporting chord-symbol recall
(which equals the F-measure and accuracy when ignor-
ing no-chord frames). Looking at the traditional feature
variants (PCQT, PSTFT, PIIR), we observe varying perfor-
mance, with best results for PCQT on SWD and for PSTFT

on BSD. Over all datasets, our CNN-based feature PCNN

systematically outperforms the traditional variants with
substantial improvements for the more complex vocabu-
laries Triads and Sevenths. Most remarkably, PCNN

almost reaches the performance of the idealized chroma
PScore. This is a promising result, indicating that for the
task of chord recognition, the signal-processing challenge
of extracting pitch-class information from audio record-
ings can be approached in a suitable way using deep learn-
ing, while the remaining challenge mainly lies in the map-
ping of pitch-class information to chord labels.

Evaluating train/test splits. Next, we test the gen-
eralization behavior of the chord recognition system
(Figure 6). To this end, we compare the cross-validation
of the previous experiment with cross-dataset evaluation
where we train and test on the other dataset, respectively
(note that we speak of training chord recognition—the fea-

6 We do not discriminate between chords that are identical on the pitch-
class level, e. g., C aug and E aug or C dim7 and E♭ dim7.

7 For implementation details, please see https://librosa.org/.
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Figure 6. Chord recognition results using features PCQT and PCNN for SWD (left) and BSD (right), trained/tested with
cross-validation (blue) and cross-dataset evaluation (red).

tures PCNN are always trained in a cross-dataset split).
Using the traditional feature PCQT (left), we observe a
clearly worse performance for the cross-dataset experi-
ment (red), which is musically more challenging. When
using PCNN (second plot), this drop does not occur—we
observe almost identical results for cross-validation and
cross-dataset. Testing on BSD (right plots), this tendency
is weaker. Still, we conclude that our score-based feature
PCNN not only leads to better but also to more robust chord
recognition systems, which are widely capable of general-
izing to unseen music.

Comparing score- and chord-based pitch classes.
Overall, our chord recognition results are not as high com-
pared to, e. g., recent results for pop music [17–19]—even
for our baseline feature PScore. On the one hand, this
might be due to the simpler system (HMM) we use com-
pared to recent approaches. As a main difference, how-
ever, the methods of [17, 18] directly use the chord labels
to train a chord-related pitch-class representation (instead
of a score-oriented one). To test the potential of this strat-
egy, we use another baseline feature (PChord) derived from
the chord annotations (without any reduction to a smaller
vocabulary), thus capturing idealized, binary activities of
the chords’ pitch classes. As Figure 7 indicates, we ob-
serve a large increase for both datasets. This is of course
expected (confirming a similar baseline experiment for pop
music in [17]). The comparison of PChord with PScore and
PCNN tells us that the main challenge of chord recogni-
tion (at least for our datasets) is a musical one: Even when
knowing the pitches from the score, it is difficult to de-
cide on which pitches are relevant for the annotated chords.
This is of course not trivial and touches questions of mu-
sical style, music theory concepts, and annotator subjec-
tivity [33,44,45]. Therefore, deep-learning approaches for
mapping score information to chord labels such as [17,18]
are promising. We think that such methods could benefit
from using our score-based features as input, thus helping
to improve generalization. Beyond that, we want to again
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Figure 7. Chord recognition based on PCNN compared
with score (PScore) and chord-label (PChord) baselines.

emphasize that our aim is not to improve chord recognition
itself but to obtain a pitch-class representation that helps
to close the gap between audio- and symbolic-based ap-
proaches to, e. g., harmony analysis and generalizes to un-
seen recordings. As our experiments indicate, deep learn-
ing allows us to take a crucial step towards this goal.

6. CONCLUSIONS

We presented a CNN-based approach for extracting
transcription-like pitch-class representations from music
audio recordings. As our main contribution, we proposed
a novel strategy for training CNNs with pre-aligned score–
audio pairs of classical music. We tested the effectiveness
of this approach for pitch-class estimation by comparing
different CNN architectures and dataset splits. Using the
features as input to a traditional chord recognition sys-
tem led to improved results and generalization compared
to traditional features and is almost on par with symbolic
pitch-class features. We conclude that the signal process-
ing challenge of extracting pitch-class information from
audio recordings can be successfully approached with deep
learning, thus serving as an excellent basis to approach the
musical challenge of finding the relevant pitch classes for
chords and other harmonic structures—an interesting ob-
servation that should be verified for genres beyond Western
classical music in future work.
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