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ABSTRACT
Given a music recording, music structure analysis aims at identifying important 
structural elements and segmenting the recording according to these elements. In 
jazz music, a performance is often structured by repeating harmonic schemata (known 
as choruses), which lay the foundation for improvisation by soloists. Within the fields 
of music information retrieval (MIR) and computational musicology, the Weimar Jazz 
Database (WJD) has turned out to be an extremely valuable resource for jazz research. 
Containing high-quality solo transcriptions for 456 solo sections, the dataset opened 
up new avenues for the understanding of creative processes in jazz improvisation 
using computational methods. In this paper, we complement this dataset by 
introducing the Jazz Structure Dataset (JSD), which provides annotations on structure 
and instrumentation of entire recordings. The JSD comprises 340 recordings with more 
than 3000 annotated segments, along with a segment-wise encoding of the solo and 
accompanying instruments. These annotations provide the basis for training, testing, 
and evaluating models for various important MIR tasks, including structure analysis, 
solo detection, or instrument recognition. As an example application, we consider the 
task of structure boundary detection. Based on a traditional novelty-based as well as 
a more recent data-driven approach using deep learning, we indicate the potential of 
the JSD while critically reflecting on some evaluation aspects of structure analysis. In 
this context, we also demonstrate how the JSD annotations and analysis results can 
be made accessible in a user-friendly way via web-based interfaces for data inspection 
and visualization. All annotations, experimental results, and code for reproducibility 
are made publicly available for research purposes.
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1. INTRODUCTION

In the interdisciplinary research field of Music Information 
Retrieval (MIR), one central research area is commonly 
subsumed under the name of music structure analysis. 
The general objective is to segment an audio recording 
with regard to various musical aspects, for example 
by identifying recurrent themes or detecting temporal 
boundaries between contrasting musical parts (Müller, 
2015). One main challenge of structure analysis is that 
music is highly complex and diverse. Being organized in 
a hierarchical way, structure in music arises from various 
relationships between its basic constituent elements. 
The principles used to create such relationships include 
repetition, contrast, variation, and homogeneity (Paulus 
et al., 2010; Peeters, 2007). As a consequence, many 
different approaches to derive musical structures have 
been developed (see Dannenberg and Goto, 2008; 
Müller, 2015; Nieto et al., 2020; Paulus et al., 2010, for an 
overview). For evaluating the performance of automated 
procedures, one requires reference annotations typically 
generated by human experts. However, due to ambiguity 
and variety of musical structures, there may be 
significant cross-annotator differences, thus making the 
evaluation of automated procedures a research problem 
itself (Nieto et al., 2014; Smith et al., 2011; McFee and 
Kinnaird, 2019).

In jazz music, compared to other genres, higher-level 
musical structures are often less ambiguous as they are 
based on the succession of solo sections that follow the 
same characteristic harmonic schema of a certain length 
(known as the form). In the following, we call one full 
pass through the form a chorus. As a concrete example, 
Figure 1b shows the structure of the jazz recording 
“Jordu”1 by Clifford Brown. In the first section, which is 
also called the head or theme section, the ensemble 
introduces the main theme or melody of the piece 
and the accompanying harmonic progression. In the 
following sections, the ensemble’s musicians take turns 
playing solos, where they improvise on the repeating 
harmonic progression using different instruments such as 
a trumpet, saxophone, piano, and drums. At the end, the 
main theme is repeated, as presented in the first section. 
As for music structure analysis, central subtasks are to 
automatically segment the music recording according to 
these sections, to detect the sections’ functions (theme, 
solo), and to identify the solo as well as accompanying 
instruments. As one main contribution of this paper, we 
provide a novel collection of reference annotations on 
structure and instrumentation for jazz recordings (see 
Figure 1a).

In MIR, the availability of well-documented and 
freely available reference annotations is of crucial 
importance for the development and evaluation of 
computational music analysis methods (Serra, 2014). 
A prominent example is the dataset MedleyDB (Bittner 

et al., 2014), which has triggered significant research 
efforts in areas such as melody extraction and source 
separation. Similarly, the dataset SALAMI (Smith et al., 
2011) constitutes an excellent testbed for research in 
music structure analysis. As for jazz music, the Weimar 
Jazz Database (WJD) (Pfleiderer et al., 2017) has opened 
up new avenues for studying jazz improvisation using 
computational methods. Following these lines, we 
introduce in this paper the Jazz Structure Dataset (JSD), 
which provides more than 3000 annotated segments, 
along with a segment-wise encoding of the solo and 
accompanying instruments, for 340 jazz recordings. 
Being based on the same recordings, the JSD and the WJD 
provide in the initial version complementary annotations 
for the same underlying audio material.

The main contributions and the structure of this paper 
can be summarized as follows. In Section 2, we review 
prior work and discuss the relationship between JSD and 
existing datasets in more depth. Then, in Section 3, we 
cover aspects with regard to creation, organization, and 
accessibility of the JSD. In particular, we describe the 
annotations’ properties and statistics and show how 
these annotations can be accessed and studied via a 
user-friendly web-based interface (see also Figure 1). 
As another main contribution of this paper, we show 
how the JSD may serve as basis for training, testing, and 
evaluating MIR tasks. In Section 4, we consider the task 
of structure boundary detection as a concrete example 
scenario. In particular, we use two conceptually different 
approaches: a classical novelty-based approach (Foote, 
2000) and a more recent data-driven approach using 
deep learning (Grill and Schluter, 2015; Ullrich et al., 
2014). While indicating the potential of the JSD, these 
experiments also provide baseline implementations and 
results for future research. Furthermore, we demonstrate 
how our web-based interfaces enable fellow researchers 
to easily access and understand experimental results 
(see also Figure 8). We present conclusions and future 
work in Section 5. All annotations, experimental results, 
and code to reproduce the figures and experimental 
results (including the extracted audio features) are made 
publicly available for research purposes via an online 
repository.2

2. RELATED WORK

As already noted in the introduction, the availability 
of publicly available datasets along with well-
documented reference annotations is central for 
sustainable and reproducible research in MIR (McFee 
et al., 2019). The “Real World Computing” (RWC) 
database (Goto et al., 2002) is an early example of 
a systematic music database that was compiled 
specifically for research purposes. Besides the audio 
material, its main value lies in the availability of 
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various musical annotations (Goto, 2006). Another 
excellent example is MedleyDB, which is a dataset of 
royalty-free multitrack recordings and annotations for 
research in various areas including melody extraction, 
instrument recognition, and source separation (Bittner 
et al., 2014).

In recent years, several more specialized data 
collections have been released considering specific 
musical genres or addressing the needs of specific 
research directions and MIR tasks. For example, one 
of the most extensive databases for computational 
ethnomusicology was compiled within the CompMusic 

research project (Serra, 2014). The individual corpora 
(comprising Carnatic, Hindustani, Turkish, Chinese, 
and Andalusian music) along with annotations and 
metadata are well documented and hosted on the web-
platform Dunya.3 Other corpora have had a substantial 
impact on MIR research. For example, the Meertens Tune 
Collections4 have been the basis for research on melodic 
similarity (van Kranenburg et al., 2019). The COFLA 
dataset is fundamental for the computational study 
of Flamenco music (Kroher et al., 2016). The Ballroom 
dataset has been used widely for genre classification 
and rhythm analysis (Gouyon et al., 2004). The Beatles 

Figure 1: (a) Above: overview of the Jazz Structure dataset (JSD). (b) Below: running example “Jordu” by Clifford Brown. The figure 
shows a novelty function and structure annotations within a web-based interface (T = theme; the pictograms indicate the current 
soloist and the accompaniment).
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dataset is famous for its extensive usage in automatic 
chord recognition (Harte et al., 2005). The JAAH dataset 
comprises annotations for 113 selected tracks to apply 
chord recognition to jazz music (Eremenko et al., 2018). 
Many of these collections do not only contain data, 
but also tools for parsing, processing, and accessing 
the data. A recent example for such a collection is 
the Erkomaishvili Dataset (Rosenzweig et al., 2020), 
which not only contains historic tape recordings and 
various kinds of annotations of Georgian songs, but also 
web-based interfaces for conveniently accessing and 
understanding the data.

There are many more freely accessible datasets 
that have been of central importance for MIR and 
computational musicology. Giving a comprehensive 
overview is beyond the scope of this article, and we refer 
to the website of the International Society for Music 
Information Retrieval (ISMIR)5 for further links. In the 
following, we will have a closer look at two datasets that 
have a strong relationship with JSD.

2.1 SALAMI DATASET
The “Structural Analysis of Large Amounts of Musical 
Information” (SALAMI) database consists of over 2400 
human-made structure annotations of 1356 music 
recordings from various music genres (Smith et al., 
2011). Structure annotations are specified on three 
different levels, namely a functional, a large-scale, and 
a small-scale level. More than half of the tracks (65.9%) 
were independently annotated by two people, which 
allows for studying structural ambiguities and cross-
annotator differences (Flexer, 2014). In Section 4, we will 
use the SALAMI dataset for a cross-dataset experiment 
considering the large-scale annotations. Most recordings 
of the SALAMI dataset have a duration of 3–5 minutes, 
with a mean duration of 4.65 minutes. In total, SALAMI 
contains 12634 large-scale segments. Figure 2a 
shows the distribution of the number of segments per 
recording, and Figure 2b the distribution of the durations 
of recordings (given in seconds). Currently, SALAMI is 
one of the largest publicly available databases on music 

structure and is widely used for research in MIR. See 
Nieto et al. (2020) for an overview.

2.2 WJD DATASET
The Weimar Jazz Database (WJD) is a comprehensive and 
publicly available collection of jazz solo transcriptions 
(Pfleiderer et al., 2017). Spanning a wide range of 
renowned jazz musicians covering periods from 1925 
to 2009 (e.g., Louis Armstrong, Charlie Parker, or Chris 
Potter), the WJD is an invaluable resource for exploring 
the cognitive and cultural foundations of jazz solo 
improvisation. The core of the collection consists of 456 
transcriptions of instrumental solos extracted from 340 
tracks6 stemming from 197 different records. The solos 
were manually annotated by students of musicology 
and jazz at the University of Music Franz Liszt Weimar 
and stored as piano-roll-like representations, which 
are time-aligned to the original audio recordings. In 
addition, the database offers various music-related 
annotations such as chord sequences or beat positions. 
Thanks to its high-quality annotations, the WJD provides 
a controlled environment for systematic experiments in 
MIR. Among others, it has served for investigations on 
melodic phrasing (Frieler et al., 2016), tonal complexity 
(Weiß et al., 2018), intonation and pitch modulation 
analysis (Abeßer et al., 2017), solo voice enhancement 
(Balke et al., 2017), and swing analysis (Dittmar et al., 
2018).

A critical issue that the JSD shares with other 
datasets (e.g., Beatles, SALAMI, CompMusic) is the 
copyright protection of the audio recordings underlying 
the annotations. Therefore, while the annotations are 
publicly available, the audio material is not. This restricts 
the usefulness of datasets for audio-centered research, 
where both the annotations and the corresponding 
audio material are required. Since we decided to take 
the WJD as the basis for the JSD and thus were bound 
to the selected recordings, copyright-free music was 
not an alternative. However, in future versions of the 
JSD, alternative datasets where the audio recordings 
are available could become relevant, e.g., the Niven 

Figure 2: Statistics for the large-scale annotations of the SALAMI database. (a) Distribution of the number of segments per recording. 
The total number of segments is 12634. In average, each recording consists of 10.37 segments. (b) Distribution of segment durations 
(seconds). In average, a segment has a duration of 25.21 seconds.
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Jazz Collection, which in itself provides the potential 
for several research questions in MIR and musicology.7 
Exact specifications of the audio material by means of 
identifiers as provided by MusicBrainz8 allow researchers 
to purchase the recordings. In case of the WJD, many 
of the recordings are also available on video-sharing 
platforms such as YouTube. Balke et al. (2018) present a 
web-based approach to identify and link most of the jazz 
recordings underlying the WJD to corresponding videos 
on YouTube.9

2.3 POSITIONING OF JSD
We now want to place our novel jazz structure dataset 
(JSD) within the context of the previously described 
datasets. As for the underlying audio material, the JSD is 
based on the same recordings (audio tracks) as the WJD. 
While the WJD provides fine-grained melodic annotations 
for a selection of solo sections, the JSD comprises 
structural annotations of entire recordings. In this sense, 
the JSD complements the WJD. While covering structural 
aspects and being inspired by SALAMI, the JSD differs from 
SALAMI in several ways. First, the recordings of JSD are not 
contained in SALAMI, thus yielding an independent dataset 
for training and testing structure analysis algorithms. 
Second, the JSD contains structural annotations as well 
as segment-wise annotations of the instrumentation, 
including solo and accompaniment instruments. Finally, 
the JSD not only provides annotations, but also tools for 
parsing, analyzing, and accessing the data. In this respect, 
it resembles the approach described by Rosenzweig et al. 
(2020). In summary, the JSD builds bridges to several 
existing datasets, while complementing them in different 
ways.

3 JAZZ STRUCTURE DATASET (JSD)

In this section, we describe the Jazz Structure 
Dataset including its organization and characteristics. 
Furthermore, we introduce web-based interfaces that 
yield a direct and intuitive access to the data.

3.1 STRUCTURE ENCODING
Many jazz recordings follow a particular fixed structure. 
In case of JSD, we make the assumption that a jazz 
performance is built on a characteristic harmonic schema, 
which stems from the harmonic accompaniment of 
the main melody (theme) and often comprises several 
structural parts (possibly including a modulation to a 
different key). A full cycle of the harmonic schema (form) 
is called a chorus and often comprises 16 or (far) more 
musical measures. In the first chorus, the ensemble 
introduces the main melody (theme) of the song. In the 
following choruses, the ensemble’s musicians alternate 
in playing solos, where they improvise over the harmonic 
schema (also reflecting on melodic material of the 
theme). At the end, the main theme is repeated in its 
original form, as presented in the first time through the 
form. Possibly, there is also an additional intro and outro 
(Sikora, 2019).

Figure 3 visualizes the structure of two examples, 
where the labels T, I, and O denote the theme, intro, 
and outro sections, respectively. The solo choruses are 
indicated by icons of the solo instrument. As can be seen 
in our running example “Jordu” by Clifford Brown, the 
trumpet solo comprises two choruses. In general, a solo 
may consist of one or several choruses. Also, the original 
theme at the beginning and end of a jazz performance 
may be repeated. For example, this is the case for 
the song “Juju”10 by Wayne Shorter, where the initial 
theme occurs twice in a row and the first saxophone 
solo consists of six choruses. Also, this example shows 
that the overall musical structure may deviate from the 
prototype pattern described above.

As indicated by Figure 3, we consider musical 
structures on two different levels: the chorus level 
and the solo level. The chorus level is a refinement of 
the solo level, where a solo consists of one or several 
choruses. Intuitively, the choruses correspond more 
to the repetition properties (in terms of the underlying 
characteristic harmonic schema), whereas the solo 
sections to homogeneity properties (in terms of the solo 
and accompanying instruments).

Figure 3: Examples of structure annotations on the chorus and solo level.
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In our encoding, both levels are considered 
simultaneously. To better understand our conventions, we 
consider the encoding of our running example (see Figure 4). 
We represent the musical structure of a jazz recording by 
a list of labeled segments. Each segment is specified by its 
start time and end time (given in seconds). Motivated by 
the fact that a theme or solo section may consist of one 
or several contiguous choruses, we use extended segment 
labels that contain a solo identifier (enumerating theme 
and solo sections) and a chorus identifier (enumerating 
choruses within a theme or solo section). For example, the 
first solo in “Jordu” (played by the trumpet) lasts for two 
choruses. We use the label solo_01_01 to denote the first 
chorus of the first solo. The label solo_01_02 then denotes 
the second chorus of the first solo. The second solo (played 
by saxophone) corresponds to only one chorus, which 
goes with the label solo_02_01, and so on. Similarly, the 
starting and ending theme sections may last one or even 
several choruses. Here, we use labels such as theme_01_01 
(as for the first chorus in “Jordu”) and theme_02_01 (as for 
the last chorus in “Jordu”). In case there is an intro or outro 
section, we use the labels intro and outro, respectively. 
Note that, at the beginning and end of a music recording, 
there is typically a short duration of silence (or other 
non-musical events such as applause). Even though not 
being sections from a musical point of view, we encode 
these non-musical aspects by two (possibly very short) 
additional segments labeled as silence.11 The instrument 
labels will be discussed in Section 3.3.

3.2 STRUCTURE ANNOTATIONS
The JSD annotations were generated in a manual process 
by a group of three semi-professional musicians with a 
background in jazz music listening and performance. At 
first, the annotation process was defined by the main 
author (trumpet player, several years of experience in jazz 
combo playing) and given to the annotators, including 
the selection of pieces, the choice of the annotation tool, 
and the definition of the task (what is a boundary). While 
listening to each of the 340 recordings and relying on a 
leadsheet, the annotators marked the start time of each 
segment on the chorus level. To this end, the program 
Sonic Visualiser12 was used for playback, synchronous 
display of a recording’s spectrogram representation, and 
segment annotation. A segment’s end time (except for the 

last silence segment) is given by the next segment’s start 
time. Note that segments on the solo level can be easily 
derived from the label conventions described in Section 3.1.

The resulting temporal annotations were then cross-
checked and refined by the main author. While there is 
high agreement about the order and the overall start 
position of the choruses, determining the exact location 
of the boundaries involves a higher degree of subjectivity. 
Here, we aimed for annotating the first downbeat in the 
harmonic schema of the chorus, which implies that the 
theme or solo melody may start earlier (due to pickups) 
or later (after the downbeat). In the annotation process, 
we identified two major sources of ambiguity. First, the 
identification of the downbeat within complex rhythmic 
situations may be difficult (metrical ambiguity). Second, 
the exact downbeat position is challenging (onset 
ambiguity). To evaluate this ambiguity, we took a subset 
of six recordings and let another expert annotator, who 
was not involved in the previous annotation process, 
refine the structural boundaries. From the 57 boundaries 
in these recordings, 37 were refined (64%). Among these, 
24 were changed by at least 0.1 seconds pointing to a 
metrical ambiguity, However, only 13 boundaries (23%) 
were adjusted by more than 0.5 seconds and none of 
them by more than two seconds. From this, we conclude 
that metrical ambiguity of the chorus boundaries is 
less relevant for structure analysis tasks. In particular, 
our evaluation with the larger tolerance threshold of 3 
seconds (Section 4.3) is insensitive to this problem.

Table 1 shows the number of occurrences and the 
total duration of different segment types. In total, 

Figure 4: Raw annotation format for “Jordu” as contained in the JSD. Each row of the CSV file corresponds to a segment. The columns 
indicate the start time, the end time, the label, and the instrumentation of each segment.

Type # Segments Total duration (min)

Intro 229 59.76

Theme 813 546.74

Solo 2223 1325.31

Outro 80 35.15

Silence 680 36.93

Σ 4025 2003.89

Table 1: Overview of annotated (chorus-level) segments for the 
340 recordings. From the segments, we derive 4365 segment 
boundaries (these include the 4025 start positions of each 
segment plus the 340 end positions of the last segments) from 
which 3005 are musical and 1360 non-musical.
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there are 3345 musical (non-silence) segments (Intro, 
Theme, Solo, Outro) and 680 (two per recording) silence 
segments. Among the musical segments, there are 
2223 segments corresponding to solo choruses, 813 
corresponding to themes, 229 intros, and 80 outros. 
Every recording in JSD consists of at least one theme 
and one solo segment, while 67.35% of the recordings 
contain an intro and 23.53% an outro.

For example, in Figure 4 the annotations of “Jordu” 
are shown. On the chorus level, this recording consists 
of 10 segments, of which 8 are musical and 2 non-
musical (the small silence segments at the beginning 
and at the end). Furthermore, including the start and 
end positions of the recording, the example counts 11 
segment boundaries. We further distinguish between 
musical and non-musical boundaries. A “musical 
boundary” is a boundary between two musical 
segments. The other boundaries are called “non-
musical boundaries”. In the example, out of the 11 
boundaries, 7 are considered “musical” and 4 “non-
musical” (start of the recording, transition from silence 
segment to theme, transition from theme to silence at 
the end, end of the recording).

Figure 5a gives an overview of the number of musical 
(i.e., non-silence) segments of the JSD recordings. In 
particular, each recording consists of at least three 
musical segments, while some recordings contain up to 
45 musical segments. The average number of musical 
segments per recording is 9.84. The distribution of the 
segment durations is displayed in Figure 5b. The mean 
segment duration is 35 seconds, which is roughly 
ten seconds longer than for the SALAMI dataset (cf. 
Figure 2b).

A further analysis shows that the 340 JSD recordings 
contain 1074 solo sections, which is an average of 
1074/340 ≈ 3.16 solos per performance. Each solo, in 
turn, consists of 2223/1074 ≈ 2.07 choruses on average. 
One of the longer solos (in terms of choruses) is the 
saxophone solo in “Juju” (see Figure 3) consisting of six 
choruses. The longest solo in terms of duration is the 
saxophone solo in “Impressions”13 by John Coltrane, 
lasting thirteen minutes.

3.3 INSTRUMENTATION ANNOTATIONS
Besides the structure annotations, JSD also provides the 
information on the active instruments for each annotated 
segment. Typically, in theme sections, all instruments of 
the ensemble are active. In the solo sections, there is a 
single solo instrument, which is accompanied only by a 
subset of the ensemble instruments, often the rhythm 
section (typically piano/guitar, bass, drums). Table 2 
provides an overview of all instrument types (along with 
abbreviations used as instrument identifiers) that occur 
in at least one of the 340 jazz recordings—either as solo 
or as accompanying instrument. Furthermore, the table 
indicates the total number of solos and solo choruses 
per instrument type. Note that the WJD annotations (see 
Section 2.2), which are based on the same recordings, 
comprise solo transcriptions for 456 out of the 1074 
solos (corresponding to 33.75% of the solos). In the last 
two columns of Table 2, we indicated the availability of 
transcriptions per instrument (in terms of total number 
and percentage).

Figure 4 shows how the instrumentation of each 
segment is encoded. In the case that there is no solo 
instrument (e.g., in a theme segment), the annotation 
file contains a comma-separated list of identifiers of 
active instrument types (e.g., “tp,ts,p,b,d”). In the case 
that there is a solo instrument, the prefix “s_” is used 
to indicate the solo instrument, and the prefix “b_” to 
indicate the accompanying band instruments (e.g., “s_
tp,b_p,b_b,b_dr” in the first trumpet solo of “Jordu”). In 
the fourth solo, tenor saxophone, trumpet, and drums 
share the solo chorus. We reflect this in the annotations 
by adding the prefix “s_” to each solo instrument “s_ts,s_
tp,s_dr,b_p,b_b”, i.e., the current annotation schema 
cannot encode structures smaller than a chorus.

As Table 2 indicates, the majority of the 1074 solos, 
instruments such as the tenor saxophone (245 solos), 
the piano (222 solos), the trumpet (170 solos), or the 
alto saxophone (107 solos), are involved. The dominance 
of these four solo instruments is also evident when 
looking at the accumulated duration of solo segments 
per instrument type (see Figure 6a). Particularly for 
data-driven machine learning approaches, such class 

Figure 5: (a) Distribution of number of (chorus-level) segments per recording (silence segments are discarded). The total number of 

segments is 3345 (sum of Intro, Theme, Solo, and Outro segments, excluding silence segments). On average, a recording consists 
of 3345/340 ≈ 9.84 segments. (b) Distribution of segment durations (seconds) of all 3345 segments. On average, a segment has a 
duration of 35 seconds.
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imbalances must be considered when training a model. 
Finally, Figure 6b shows statistics on the duration of solo 
sections broken down by instrument type. For example, 
the solos played by tenor saxophone tend to be longer 
than the ones played by trumpet.

3.4 WEB-BASED INTERFACES
For the purpose of an easy access and a better 
understanding of the JSD annotations, we created web-
based interfaces using similar technologies as the ones 
described by Balke et al. (2018) and Rosenzweig et al. 
(2020). The starting website, as indicated by Figure 1a, 
provides an overview of the JSD. The website’s table 
contains one row for each of the 340 recordings, showing 
a recording’s JSD title, the interpreter (performer), a 
three-digit JSD ID, as well as “snapshot” visualization 
of the structure. It also includes a hyperlink that leads 
to a separate recording-specific web page, which is 
shown in Figure 1b for our running example “Jordu.” 
Being based on the trackswitch.js player (Werner et al., 
2017), this website allows a user to listen to the recording 
with a time-synchronized visualization of the structure 
annotation. Above the annotation, the novelty curve of a 
classical structure analysis method (Foote, 2000) can be 
seen, which is explained in Section 4. Additionally to the 
visualized structure, a click sound is added to the audio 
file at the time position of each boundary. In Section 
4.3.2, we show how our web-based interface can also 
be used for accessing and comparing analysis results 
obtained from automated approaches.

4 EXAMPLE TASK: BOUNDARY 
DETECTION

In this section, we illustrate the potential of the JSD 
for MIR research by considering the task of structure 
boundary detection as a concrete example scenario. In 
our experiments, we employ two conceptually different 

Figure 6: (a) Accumulated duration of all solos (minutes) per instrument. The total duration of all solos is 1325 minutes. (b) Statistics 
on durations of solo sections (seconds) broken down by instrument. The outlier “Impressions” by John Coltrane (containing a 
13-minute long saxophone solo) is not shown.

# Abbr. Instrument #Solo #Chorus #Trans. %Trans.

0 cl Clarinet 23 35 15 65.22

1 bcl Bass clarinet 4 14 2 50

2 ss Soprano 
saxophone 

25 74 23 92

3 as Alto 
saxophone 

107 239 80 74.77

4 ts Tenor 
saxophone 

245 727 158 64.49

5 bs Baritone 
saxophone 

21 35 11 52.38

6 tp Trumpet 170 376 102 60

7 fln Flugelhorn 2 4 0 0

8 cor Cornet 18 24 15 83.33

9 tb Trombone 38 83 26 68.42

10 p Piano 222 456 6 2.70

11 key Keyboard 3 8 0 0

12 vib Vibraphone 15 28 12 80

13 voc Vocals 8 15 0 0

14 fl Flute 4 6 0 0

15 g Guitar 39 88 6 15.38

16 bjo Banjo 1 1 0 0

17 vc Violoncello 1 2 0 0

18 b Bass 61 113 0 0

19 dr Drums 65 131 0 0

20 perc Percussion 2 8 0 0

  1074 2467† 456 33.75

Table 2: List of instrument types occurring in JSD. The 
abbreviations are used as instrument identifiers. The last four 
columns indicate the number of solos (#Solo), the number 
of solo choruses (#Chorus), the number of transcribed solos 
(#Trans.), and the percentage of transcribed solos (%Trans.). 
†Note that the number of solo choruses is not identical to the 
number of solo segments from Table 1 (2467 vs. 2223). The 
former can be higher since there can be multiple soloists in a 
single solo section. (e.g., drums and bass).



164Balke et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.131

approaches: a classical novelty-based approach (Foote, 
2000) and a more recent data-driven approach using 
deep learning (Grill and Schluter, 2015; Ullrich et al., 
2014). After giving a short summary of these approaches 
(Section 4.1), we describe our experimental setup 
including database splits, peak picking, and evaluation 
metrics (Section 4.2). Then, we discuss our experimental 
results, giving deeper insights into the JSD and the MIR 
task at hand, while yielding baselines for future research 
(Section 4.3).

4.1 BOUNDARY DETECTION APPROACHES
As already mentioned in the introduction, there are 
many principles a musical structure may be based on. 
Paulus et al. (2010) and Müller (2015) distinguish three 
different classes of structure analysis methods used in 
MIR. First, repetition-based methods are used to identify 
recurring patterns. Second, homogeneity-based methods 
are used to determine passages that are consistent with 
respect to some musical property (e.g., instrumentation 
or tempo). Third, novelty-based methods are employed 
to detect transitions between contrasting parts. In the 
following, we consider two different segmentation 
approaches that are based on the principle of novelty.

4.1.1 Foote Approach
One classical novelty-detection approach was introduced 
by Foote (2000) to the field of MIR. In this approach, the 
music recording is first converted into a sequence of 
feature vectors, from which one obtains a square self-
similarity matrix (SSM) by comparing all elements of 
the sequence in a pairwise fashion (see Figure 8b for an 
example). The crucial observation is that the resulting 
SSM reveals block-like structures in the case that the 
underlying feature sequence reveals only small variations 
over the duration of an entire section (e.g., being 
homogeneous with respect to instrumentation). Often, 
such a homogeneous segment is followed by another 
homogeneous segment that stands in contrast to the 
previous one (e.g., due to different instrumentation). To 
identify the boundary between two contrasting sections, 
one correlates a checkerboard-like kernel function along 
the main diagonal of the SSM. This yields a novelty 
function, the peaks of which indicate instances where 
significant changes occur in the audio signal.

In our experiments, we use the lower twenty (excluding 
the first two) mel-frequency cepstral coefficients (MFCCs) 
as underlying feature representation with a feature 
rate of 10 Hz (Davis and Mermelstein, 1990). These 
features parametrize the rough shape of the spectral 
envelope and thus capture properties related to timbre 
and instrumentation (Aucouturier and Pachet, 2004; 
Terasawa et al., 2005). To compute the SSM, we use the 
inner product of normalized feature vectors. To compute 
the novelty function, we use Hann-weighted kernel 
functions with two different sizes corresponding to 16 

and 32 seconds, respectively. The boundary positions are 
obtained by applying a suitable peak picking procedure, 
which is explained in Section 4.2.3. Using MFCCs as the 
underlying features, the peak positions of a novelty 
function are good indicators for changes in timbre or 
instrumentation. In the following, we denote this overall 
procedure by Footeshort for the short kernel, and Footelong 
for the long kernel (for a detailed description, see, e.g., 
Foote, 2000; Müller, 2015).

4.1.2 CNN-Based Approach
As second approach, we use a convolutional neural 
network (CNN) closely following the architecture proposed 
by Ullrich et al. (2014). The general idea is to interpret 
the boundary-detection task as a binary classification 
problem. The input consists of a short audio snippet (e.g., 
in form of a time–frequency patch of a spectrogram) 
with the goal to predict if its center corresponds to a 
musical boundary (output probability close to 1) or 
not (output probability close to 0). The structure of the 
network is shown in Table 3. Further details can be found 
in Ullrich et al. (2014) and our reference implementation 
accompanying this paper. The most important design 
choices are as follows. First, as input patches, we extract 
standard mel-spectrograms with 80 bands at a feature 
rate of 43 Hz. Similar to the Foote-based approach, we 
consider two settings denoted as CNNshort and CNNlong, 
respectively. For CNNshort, the feature rate is 7.17 Hz (43 
Hz divided by a sub-sampling factor of 6) and patches 
consists of 116 time frames, thus corresponding to 
16.19 seconds. For CNNlong, the feature resolution is 3.58 
Hz (43 Hz divided by a sub-sampling factor of 12) and 
patches consists again of 116 time frames, this time 
corresponding to 32.38 seconds. With this choice of 
parameters, the patch sizes roughly correspond to the 
kernel sizes of Footeshort and Footelong, respectively.

In both cases, we use the same network as shown 
in Table 3. The loss function is the binary cross-entropy. 
Note that the binary classification problem is highly 
unbalanced, since there are only few boundary frames 

Layer Type Size Output Shape

InputLayer — (116, 80, 1)

Batch Normalization — (116, 80, 1)

Conv2D (ReLU) 8×6 (109, 75, 32)

MaxPooling2D 3×6 (36, 12, 32)

Conv2D (ReLU) 6×3 (31, 10, 64)

Flatten — (19,840)

Dropout (50%) — (19,840)

Dense (ReLU) — (128)

Dropout (50%) — (128)

Dense (Sigmoid) — (1)

Table 3: Layer structure of the CNN-based approach.
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compared to non-boundary frames. To compensate 
for that, we apply the concept of target smearing with 
a smearing length of 1.5 seconds for CNNshort and 6 
seconds for CNNlong. The target smearing is applied by 
centering a Gaussian kernel with a width of, for instance, 
1.5 seconds at the position of the boundary annotation. 
This leads to non-zero regions around the annotated 
boundaries which lead to more (weighted) “positive 
samples” for the actual learning process. Furthermore, 
it partly compensates for the annotation ambiguities 
mentioned in Section 3.2. More details are described by 
Ullrich et al. (2014) and in the reference implementation. 
Furthermore, when selecting mini-batches for training, 
we non-uniformly sample the training set so that at least 
20% of the patches belong to the boundary class.

As said before, the output of our trained network is 
a probability value between 0 and 1. Concatenating the 
output values of subsequent patches (shifted frame by 
frame) yields a curve for a full recording similar to the 
novelty curve as obtained from the Foote approach. To 
obtain the boundary positions, we again apply a suitable 
peak picking procedure (see Section 4.2.3).

The result of multiple networks can be averaged 
to improve the boundary detection performance. This 
averaging technique is also called bagging (Breiman, 
1996). For our task, we average the output novelty 
curves of five networks, which are initialized differently 
(in a random fashion) and then trained using the same 
optimization procedure. Peak picking is then applied 
to the averaged output. The output of five CNN-based 
novelty functions and their average is shown for our 
running example “Jordu” in Figure 8c.

4.2 EXPERIMENTAL SETUP
In this section, we describe the general experimental 
setup including dataset splits, evaluation metrics, and 
other important aspects.

4.2.1 Dataset Splits
For our experiments, we consider the SALAMI dataset as 
well as the JSD. We split both datasets into three disjoint 
subsets for training, validation, and testing. In Table 4, 
the number of recordings contained in each subset is 
shown. Additionally, we combine both datasets to form 
“SALAMI+JSD” with the split obtained by merging the 
corresponding subsets of the two separate datasets. For 
SALAMI, we use the same test set as Ullrich et al. (2014). 
The rest of the recordings are randomly split into the 
training and validation set using a split ratio as indicated 
in Table 4. In the JSD split, we enforced that tracks from 
the same album are not distributed between both test 
and training set in order to avoid the “album effect”. Note 
that we currently do not account for an “artist effect”, 
i.e., the same artist could occur in the train and test set. 
For a documentation of the exact splits, we refer to our 
reference implementation.

4.2.2 Evaluation Metrics
For our evaluation, we consider standard metrics as 
described by, e.g., Müller (2015); Raffel et al. (2014). 
Given a tolerance parameter τ, an estimated boundary 
is considered correct if it lies in the τ-neighborhood of 
a reference (ground-truth) boundary. From this, one 
can derive a threshold-dependent precision (Pτ), recall 
(Rτ), and F-measure (Fτ). For further details and an 
implementation of these evaluation measures, we refer 
to the Python package mir_eval (Raffel et al., 2014). 
Following the conventions of prior work in structure 
analysis, we consider two different thresholds τ that 
correspond to 0.5 and 3 seconds, respectively. These 
measures were also used by Ullrich et al. (2014).

4.2.3 Peak Picking Optimization
Both the Foote and the CNN-based approach yield 
a novelty curve whose peak positions are used as 
estimates for musical boundaries. However, peak picking 
is far from trivial, and the peak picking strategy may 
have a significant impact on the final Fτ-values. In our 
CNN-based experiments, we use the same peak picking 
algorithm as Ullrich et al. (2014) (which is adapted from 
Böck et al., 2012). For the Foote-based approach, we use 
the find_peaks() implementation from SciPy (Virtanen 
et al., 2020). For details, we refer to the cited literature. 
At this point, it is important to note that both strategies 
depend on a parameter δ ϵ ℝ (added to a local moving 
average), which enforces that novelty values below δ are 
not counted as peaks.

In general, the optimal δ depends on the procedure 
used to compute the novelty curve as well as on the 
recording itself. In our experiments, we optimize the 
peak picking parameter δ globally using the validation 
set. To this end, we compute the value of δ that yields the 
highest mean Fτ-value averaged over the recordings of 
the validation set. Note that optimization of this value is 
done individually for each method (Foote, CNN), dataset 
(SALAMI, JSD), and τ value (0.5, 3).

4.2.4 Non-Musical Boundaries
Finally, we want to emphasize that the informative 
value of an evaluation may also depend on other 
(often hidden) factors. One such issue is the choice of 
reference boundaries included in the evaluation. For 
example, as already mentioned in Section 3.1, many 

Dataset Training Set Val. Set Test Set Σ

SALAMI (S) 772 (56.8%) 100 (7.4%) 487 (35.8%) 1359

JSD (J) 244 (71.7%) 28 (8.16%) 68 (20.1%) 340

SALAMI+JSD (S+J) 1016 (59.9%) 128 (7.5%) 555 (32.7%) 1699

Table 4: Overview of the splits for the datasets SALAMI, JSD, 
and SALAMI+JSD. The numbers refer to recordings (with the 
corresponding percentage given in brackets).
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recordings start or end with non-musical segments 
such as silence, people talking, or applause. Should one 
include boundaries between non-musical segments 
and musical segments—boundaries that are relatively 
easy to detect—in the evaluation? In the case of JSD, 
the percentage of such boundaries (having 1360 non-
musical and 3005 musical boundaries, see Table 1) 
amounts to roughly 30%. In other words, if we include 
such boundaries in the evaluation, an approach focusing 
only on these boundaries may easily achieve a recall of 
R = 0.33, a precision of P = 1, and a resulting F-measure 
of F = 0.5. In the subsequent evaluation, we remove 
such non-musical boundaries before and after the music, 
and only consider musical boundaries that separate two 
musical sections.

4.3 EXPERIMENTAL RESULTS
We now report on the evaluation results obtained for 
different settings. As also noted by Nieto et al. (2014); 
Smith et al. (2011), such evaluation results have to be 
taken with care. Besides algorithmic issues (including 
novelty computation and peak picking), the choice of 
evaluation metrics (including their tolerance parameters), 
the datasets used for training and testing, as well as the 
way reference boundaries are chosen have a substantial 
impact on the experimental outcome. Also, the usefulness 
of the results will crucially depend on the application in 
mind. Therefore, the quantitative evaluation in Section 
4.3.1 should be seen mainly as an illustrative case study 
and baseline for more detailed analyses. In Section 4.3.2, 
we introduce some interfaces for a user-centric and more 
qualitative evaluation of the results.

4.3.1 Quantitative Evaluation
In our experiments, we consider the classical approaches 
Footeshort and Footelong (see Section 4.1.1) and the CNN-
based approaches CNNshort and CNNlong (see Section 
4.1.2). For both of the CNN-based settings, in turn, we 
consider different training scenarios using SALAMI only 
(S), JSD only (J), and SALAMI and JSD jointly (S+J). We use 
additional subscript (S, J, or S+J) to denote the underlying 
training set, e.g., CNNJ was trained on the JSD database 
(see Table 4 for the splits).

First, for a direct comparison of our reimplementation 
to the original approach (Ullrich et al., 2014), we show 
in Table 5a the evaluation results for the test set of 
SALAMI. The F-measure F0.5 = 0.422 as reported by 
Ullrich et al. (2014) (corresponding to UllrichS, short) is only 
slightly higher than F0.5 = 0.358 for CNNS, short, which is the 
setting closest to the original approach. We conjecture 
that the difference in the F-measures is mainly due to 
a different handling of non-musical boundaries in the 
evaluation (see Section 4.2.4) and slight variations in 
the actual implementation. Different settings in the 
network optimization may be another reason. Our 
reimplementation is close to what has been considered 

the state of the art in boundary detection up to the year 
2015 (at least, for SALAMI and related datasets).

From Table 5a, one can observe the following 
tendencies, all of which may not come as a surprise. First, 
one obtains higher evaluation values using the larger 
tolerance τ = 3 seconds compared with τ=0.5 seconds. 
Second, the CNN-based methods generally perform 
better than the Foote-based methods. Third, for τ = 0.5, 
the “short” CNN-based approaches yield higher values 
(e.g., F0.5 = 0.358 for CNNS, short) than the “long” ones (e.g., 
F0.5 = 0.213 for CNNS, long). This is different when using the 
evaluation measures based on τ = 3. For example, the 
value F3 = 0.522 for CNNS+J, short is lower than F3 = 0.571 for 
CNNS+J, long. Fourth, using the joint dataset for training (i.e., 
S+J) slightly degrades the results over using individual 
datasets (i.e., either S or J).

Most of these tendencies are confirmed when 
evaluating the same approaches on the test set of 
JSD (see Table 5b). However, overall, the values of the 
evaluation metrics lie in lower ranges when comparing 
to the SALAMI test splits (e.g., F0.5 = 0.358 for CNNS, short 

(a) Evaluation results for SALAMI.

τ = 0.5 s τ = 3.0 s

P0.5 R0.5 F0.5 P3 R3 F3

UllrichS, short 0.422 0.490 0.422 — — —

CNNS, short 0.357 0.414 0.358 0.419 0.750 0.512

CNNS, long 0.234 0.223 0.213 0.563 0.672 0.580

CNNJ, short 0.231 0.075 0.100 0.432 0.420 0.386

CNNJ, long 0.136 0.049 0.066 0.494 0.233 0.287

CNNS+J, short 0.347 0.423 0.357 0.484 0.660 0.522

CNNS+J, long 0.242 0.226 0.221 0.508 0.729 0.571

Footeshort 0.227 0.274 0.223 0.467 0.610 0.477

Footelong 0.199 0.167 0.169 0.534 0.466 0.463

Baseline 
(equal) 

0.042 0.041 0.043 0.237 0.231 0.244

(b) Evaluation results for JSD.

τ = 0.5 s τ = 3.0 s

P0.5 R0.5 F0.5 P3 R3 F3

CNNS, short 0.186 0.230 0.189 0.297 0.610 0.382

CNNS, long 0.122 0.126 0.118 0.423 0.579 0.465

CNNJ, short 0.303 0.125 0.165 0.428 0.556 0.452

CNNJ, long 0.193 0.117 0.139 0.615 0.439 0.482

CNNS+J, short 0.242 0.269 0.232 0.409 0.531 0.428

CNNS+J, long 0.199 0.169 0.166 0.401 0.682 0.485

Footeshort 0.186 0.247 0.192 0.436 0.601 0.454

Footelong 0.216 0.185 0.184 0.548 0.505 0.488

Baseline 
(equal) 

 0.051  0.051  0.051  0.225  0.225  0.225

Table 5: Evaluation results for boundary detection on the test 
sets of (a) SALAMI and (b) JSD. The shown precision, recall, and 
F-measure values are averaged over the respective test set tracks.
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on the SALAMI test set vs. F0.5 = 0.189 on the JSD test 
set). This indicates that the model trained on SALAMI is 
not generalizing well on the JSD dataset. Furthermore, a 
model trained solely on the JSD dataset performs better 
on the JSD test set but still performs worse than the 
Foote approach. When training on SALAMI and JSD, the 
model performs slightly worse than Foote on average, 
but we do not consider this as a substantial difference in 
performance.

We close our quantitative evaluation by reporting 
on a baseline experiment. In this baseline approach, 
we assume that we know the number of ground-truth 
segments for each recording. We then simply split each 
recording into the corresponding number of segments 
of equal duration and use the resulting boundaries 
as estimates. The evaluation results are shown in the 
rows “Baseline (equal)” of Table 5. In particular for the 
threshold τ = 3 seconds, one obtains already an F-measure 
that exceeds the value 0.244. This again demonstrates 
that, while indicating certain tendencies, a quantitative 
evaluation should always go along with qualitative 
analyses. This is where interfaces, as introduced in the 
next section, may help.

4.3.2 Qualitative Evaluation
Using the same web-based technology as discussed 
in Section 3.4, we also provide interactive interfaces 

that allow researchers to access, compare, and better 
understand evaluation results in a qualitative fashion. 
The website, as indicated in Figure 7, yields an overview 
of all JSD evaluation results.14 In particular, the website’s 
table contains a row for each recording of the JSD test set, 
indicating the recording’s metadata (title, interpreter, ID) 
as well as the F-measures for the Foote-based and CNN-
based approaches listed in Table 5b. For a better visual 
impression, all F-measure values are color-coded, with red 
shades encoding low values and green shades encoding 
high values. By a simple click, the rows can be sorted with 
respect to the table’s categories (e.g., alphabetically with 
respect to the title or in ascending order with respect to 
any of the F-measures). The F-measures averaged over 
the full test set are shown in the corresponding table’s 
column header and footer. Furthermore, every row also 
contains a hyperlink leading to a separate recording-
specific web page for more details.

Figure 8a shows such a separate web page for our 
running example “Jordu” by Clifford Brown. Based 
on the trackswitch.js player (Werner et al., 2017), the 
interface offers synchronized audio playback and a user 
menu with the functionality for selecting and switching 
between different visualizations. As default visualization, 
the interface shows an overview of the novelty functions 
obtained from the eight different settings listed in 
Table 5b. The compact overview of the various novelty 

Figure 7: Overview of the evaluation results for all recordings contained in the JSD’s test set. The link (red arrow) leads to the details 
page as depicted in Figure 8.
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functions along with the peak positions (indicated by red 
vertical lines) allows a researcher to understand better 
the behavior of the different approaches based on specific 
examples. Furthermore, by listening synchronously to 
the underlying jazz recording, one can better understand 
the challenges of the boundary detection task from 
an algorithmic, modeling, and musical perspective. To 
understand an approach in even greater depth, one may 
switch to a visualization of individual approaches. For 
example, Figure 8b shows the SSM and novelty curve of a 
Foote-based approach, while Figure 8c shows the novelty 
curve of five networks and the resulting bagged novelty 
curve for a CNN-based approach.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the Jazz Structure Dataset 
(JSD), which provides structure as well as instrument 
annotations for 340 jazz recordings. We demonstrated the 
potential of the dataset for MIR research by considering 
structure boundary detection as an application task. 
The JSD is released together with interactive web-based 
interfaces and Python-based reference implementations. 
Such tools are necessary not only to gain a better 

understanding of the data and results, but also to 
critically question the evaluation measures, the (often 
hidden) model assumptions, and the task at hand.

Especially during the implementation and evaluation 
phase of the baselines, the role of the peak picker 
became evident again. For the sake of being consistent, 
we left out extensive optimization runs on the peak 
picker’s hyper-parameters, although being aware of the 
fact that this may lead to sub-optimal results. However, 
our experiments showed that SciPy’s find_peaks() 
implementation produced inferior results compared 
to the picker used by Ullrich et al. (2014) on the CNN-
based approaches. Vice versa, on the Foote approach, 
the behavior was flipped, i.e., SciPy’s picker worked 
better. This unsatisfying fact leads to the question 
whether we really evaluate the quality of the model or 
in the end “overfit” to the typical novelty functions seen 
in a specific dataset by choosing the better-performing 
peak picker. Such considerations are of even higher 
importance as soon as the improvement of model 
performance is addressed. More advanced deep-learning 
models involving recurrent, residual, and self-attention 
components may be considered to better incorporate 
sequential information, as done with enormous success 
with the Transformer architecture (Vaswani et al., 2017) 

Figure 8: (a) Evaluation web page showing the output of all methods for the running example “Jordu” by Clifford Brown. (b) 
Evaluation results of Foote’s method with the input SSM based on MFCCs. (c) Evaluation results of a CNN consisting of the novelty 
curve of five networks and the bagged novelty curve.
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in natural language processing. The use of such large and 
data-hungry approaches requires an even more critical 
evaluation to discover their actual benefit over simpler 
approaches.

Besides the boundary detection task, the JSD and its 
tools provide the basis for different research questions. 
First, complementing the SALAMI dataset, it can serve 
for studying general structure analysis approaches. In 
particular, repeating harmonic progressions that are 
superimposed by solo improvisations (as characteristic 
for jazz music) are a challenging scenario for repetition-
based approaches to structure analysis. Furthermore, 
the instrumentation annotations of the JSD can be used 
for central MIR tasks related to instrument recognition 
(Gómez et al., 2018). The JSD allows for studying 
such tasks with a particular focus on the jazz-specific 
instrument taxonomy, as indicated by Table 2. In this 
context, one fundamental task is to detect when certain 
instrument groups such as percussive instruments (drums, 
percussion), polyphonic accompaniment instruments 
(e.g., piano, guitar, vibraphone), or monophonic solo 
instruments (e.g., trumpet, saxophone, clarinet) are 
active or not. The specific detection of instruments 
coming from the same family, such as soprano, alto, and 
tenor saxophones, is demanding as these instruments 
share similar sound production mechanisms. A further 
task is a general instrument-agnostic local estimation 
of the ensemble size, yielding the number of performing 
instruments in a structural section such as a chorus.

As for the task of boundary detection, the achieved 
performance on the JSD shows that Jazz music is a 
challenging scenario. With the implemented baseline 
approaches, we assume that a complex model such 
as a deep neural network can obtain enough structural 
information to obtain chorus boundaries by simply 
“looking” at the respective MFCC features. As Jazz music 
is highly dependent on repeating harmonic patterns 
(chorus structure), integrating this knowledge into the 
input representation and/or the model architecture, could 
improve the results. However we performed baseline 
experiments and could show that the task by itself is not 
solved yet. Complementing and extending datasets such 
as the WJD and the SALAMI dataset, we hope that the 
JSD contributes another valuable building block to MIR 
research while highlighting aspects of reproducibility and 
the need for critical scrutiny of research results.

NOTES
1 Quadromania Jazz Edition, Clifford Brown, Easy Living, CD 2, 

2005, Membran Music Ltd.

2 https://github.com/stefan-balke/jsd. Our implementation makes 
use of the open source packages of Harris et al. (2020), Virtanen 
et al. (2020), and McFee et al. (2015), among others.

3 https://dunya.compmusic.upf.edu/.

4 http://liederenbank.nl/.

5 https://ismir.net/resources/.

6  The original WJD contains 343 tracks, however, we removed 
three duplicates (see source code documentation for details). 

7 https://archive.org/details/davidwnivenjazz.

8 https://musicbrainz.org/.

9 http://mir.audiolabs.uni-erlangen.de/jazztube.

10 The Blue Note Years – The Best of Wayne Shorter, 1988, Blue Note.

11 Even in the case that there is no silence at all, we added, for the 
sake of consistency, a silence segment of duration zero.

12 http://www.sonicvisualiser.org/.

13 The Complete 1961 Village Vanguard Recordings, CD 3, 1987, 
impulse!

14 https://www.audiolabs-erlangen.de/resources/MIR/2022-JSD-
BoundaryDetection/.
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