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ABSTRACT
The piano concerto is a genre of central importance in Western classical music, often 
consisting of a virtuoso solo part for piano and an orchestral accompaniment. In this 
article, we introduce the Piano Concerto Dataset (PCD), which comprises a collection 
of excerpts with separate piano and orchestral tracks from piano concertos ranging 
from the Baroque to the Post-Romantic era. In particular, using existing backing tracks 
by the music publisher Music Minus One, we recorded excerpts from 15 different 
piano concertos played by five interpreters on various instruments under different 
acoustic conditions. The key challenge of playing along with pre-recorded orchestral 
accompaniments lies in the exact synchronization of the performer. For guiding the 
pianists for obtaining a high synchronization accuracy, we used additional click tracks 
generated with measure and beat annotations of the orchestral tracks, which also 
are provided in the PCD. The dataset is relevant for a variety of Music Information 
Retrieval (MIR) tasks, including music source separation, automatic accompaniment, 
music synchronization, editing, and upmixing.
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1. INTRODUCTION

Data-driven models for Music Source Separation (MSS) 
typically require clean, isolated target sources (also 
called stems) for training and evaluation. Research in 
MSS mainly focuses on separating vocals, bass, and 
drums from mixtures of popular music songs, mainly 
due to the availability of multitrack datasets such as 
MUSDB18 (Rafii et al., 2017) for this task. Separating 
classical music recordings into individual sound sources 
has also recently received attention (e.g., Miron et al., 
2017; Bugler et al., 2020; Chiu et al., 2020; Gover and 
Depalle, 2020; Petermann et al., 2020; Chen et al., 2022; 
Özer and Müller, 2022; Sarkar et al., 2022). Compared 
to popular music, the constituent sources of classical 
music recordings often reveal a higher spectro–temporal 
correlation, which makes the separation task more 
challenging. Furthermore, the availability of sufficiently 
large multitrack datasets for Western classical music is a 
limiting factor for research in this area. In this paper, we 
introduce a novel multitrack dataset called PCD (Piano 
Concerto Dataset), which enables both quantitative and 
subjective evaluation for separating piano concertos.

PCD contains 81 excerpts of multitrack piano and 
orchestra recordings, each having a duration of 12 
seconds. These are selected from 15 different piano 
concertos from the Baroque to the Post-Romantic period. 
The variety in the works’ complexity, the recordings’ 
acoustical settings, its orchestral instrumentation, and 
five different performers contributes to the diversity 
of PCD.

The piano concerto is an essential genre in Western 
classical music from the Baroque era onward. These 
compositions are generally written for pianists to 
demonstrate their virtuosity. Furthermore, the piano 
concerto has a rich and dynamic sound that is distinctive 
to this type of music, characterized by opposing musical 
elements (Cole, 1997). Besides a large number of 
compositions throughout music history, classical music 
archives comprise numerous prominent historical, 
public-domain recordings of piano concertos, which can 
be useful for various applications in Music Information 
Retrieval (MIR), including source separation, editing, 
and upmixing (Martínez-Ramírez et al., 2022), music 
alignment (Ewert et al., 2009; Prätzlich et al., 2016), 
automated accompaniment (Dannenberg and Raphael, 
2006; Arzt et al., 2008), and audio decomposition (Ewert 
et al., 2014). We elaborate on the related work for source 
separation in Section 2.2.

To create a multitrack dataset of piano concertos, we 
use Music Minus One (MMO).1 MMO provides recordings of 
backing tracks, in which the lead instrument or the vocal 
part is omitted, typically the soloist. This allows musicians 
to practice or perform the solo part along with the pre-
recorded accompaniment in case they do not have access 
to other musicians to play with them. The main difficulty 

of performing with a pre-recorded accompaniment lies 
in the absence of any interaction between the player 
and other musicians. This is particularly problematic for 
classical music since interpretations can vary greatly in 
terms of tempo and dynamics. Moreover, piano concertos 
often contain long sections which only involve orchestral 
accompaniment. The lack of guidance for the pianist, 
as typically provided by a conductor, can result in being 
asynchronous or missing the cue after a long rest. To 
address this issue, we annotated the measure and beat 
positions of the backing track of each piano concerto. 
During the recording sessions, the pianists simultaneously 
listened to the orchestral accompaniments and 
sonified click tracks, which were generated using these 
annotations. Notably, in case of abrupt tempo changes or 
long piano-solo sections, the additional click tracks have 
proven helpful for the interpreters while playing along 
with the pre-recorded accompaniments. Figure 1 displays 
an excerpt from the Piano Concerto in B Flat Minor, Op. 
23, 1st Movement by Peter Ilyich Tchaikovsky and its 
recording process. The recording sessions are followed 
by post-production for generating cohesive mixtures 
of newly recorded piano tracks and existing MMO 
accompaniments. As a main contribution of PCD, we 
provide dry and reverberant recordings of piano and 
orchestra stems and their mixtures.

The remainder of the article is organized as follows. 
In Section 2, we give an overview of existing multitrack 
datasets and investigate relevant MSS applications. 
In Section 3, we address the role and significance of 
piano concertos in Western classical music and review 
their form and compositional structure. As the main 
contribution of this article, we describe the content of 
PCD in Section 4 and outline its recording process and 
challenges. In Section 5, we describe the different 
interfaces for accessing the dataset. In Section 6, we 
provide an exemplary usage of PCD for separating piano 
concertos with a baseline U-Net model presented by 
Özer and Müller (2022). Finally, we conclude in Section 7 
with prospects on the potential applications of the PCD.

2. RELATED DATASETS AND THEIR 
APPLICATION IN MUSIC SOURCE 
SEPARATION

2.1 DATASETS
For the training and evaluation of data-driven models, 
datasets constitute an essential component of MIR 
research. In particular, the availability of multitrack 
datasets has led to impressive results of data-driven 
MSS approaches that focus on separating popular music 
recordings. In the Western classical music domain, 
several datasets have been introduced for polyphonic 
vocal music (McLeod et al., 2017; Schramm and Benetos, 
2017; Cuesta et al., 2018; Rosenzweig et al., 2020), 
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which comprise isolated recordings of vocal ensembles. 
For instrumental music, however, there are only a few 
multitrack datasets (see Table 1). Bay et al. (2009) 
presented the Woodwind Quintet (WWQ) dataset, which 
includes separate tracks of a woodwind adaptation 
of Beethoven’s String Quartet, Op.18 No. 5. The TRIOS 
dataset (Porter, 2012) involves multitrack recordings of 
four classical pieces and one jazz piece, as well as their 
transcriptions. The PHENICX-Anechoic dataset (Schedl et 
al., 2016) comprises annotations and audio material of 
anechoic multitrack recordings of four orchestral works, 
which differ in terms of the number of instruments per 
instrument class. Bach10 (Miron and Martorell, 2017) 

consists of multitrack recordings of ten chamber music 
pieces where each work comprises four parts (SATB) 
played by violin, clarinet, saxophone, and bassoon. Li 
et al. (2019) introduced the University of Rochester 
Multimodal Performance (URMP) dataset, which 
addresses the music performance as a multi-modal art 
form and provides the musical score, as well as the audio 
recordings of the individual stems of 44 ensemble pieces. 
Their work also describes the challenges of maintaining 
synchronization and musical expressiveness while 
creating a multitrack dataset of classical music pieces. 
Sarkar et al. (2022) presented the EnsembleSet, which 
consists of synthesized multitrack recordings of strings, 
woodwind instruments, and brass, generated by using 
MIDI files from RWC (Goto et al., 2002) and Mutopia.2 For 
an overview of a variety of publicly available datasets in 
MIR, we refer to Bittner et al. (2019).3

2.2 MUSIC SOURCE SEPARATION (MSS)
MSS is defined as the task of separating a recording of 
multiple instruments or voices into individual musical 
sound sources. Generally, a musical source may refer to 
singing, an instrument, or an entire group of instruments, 
such as an ensemble or orchestra. Isolating individual 
musical sources contained in a sound mixture is useful 
in a variety of applications, including creating karaoke 
systems, assisting in music production, enabling music 
transcription, and supporting music analysis. Due to the 

Figure 1 Overview of the recording process. (a) The sheet music of measures 8–15 from Tchaikovsky’s Piano Concerto No. 1 in B Flat 
Minor, Op. 23, 1st movement. (b) During the recording process, the pianist is supposed to play synchronously with the backing track. 
In a real-life recording process, the pianist and conductor interact for optimal synchronization and cohesion between the piano and 
orchestra. In our scenario, however, playing along with a pre-recorded accompaniment is a difficult task for the performer. To address 
this challenge, they listen to metronome-like click tracks sonified using measure (solid green) and beat (dashed green) annotations in 
addition to the orchestral accompaniments. As the result of a final mastering step, PCD comprises dry and reverberant synchronous 
recordings of piano and orchestra accompaniments selected from 15 different piano concertos and their mixes.

NAME & AUTHOR # R DUR

WWQ (Bay et al., 2009) 1 00:09:00

TRIOS (Porter, 2012) 5 00:03:12

PHENICX (Schedl et al., 2016) 4 00:10:36

Bach10 (Miron and Martorell, 2017) 10 00:05:30

URMP (Li et al., 2019) 44 01:36:00

EnsembleSet (Sarkar et al., 2022) 9 01:03:34

PCD 81 00:16:12

Table 1 Multitrack instrumental datasets in the Western 
classical music domain, indicating the number of recordings 
(#R) and their total duration (Dur) in hh:mm:ss.
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non-stationary spectro-temporal properties of music 
signals and the high correlation of constituent sound 
signals in a music recording, MSS is a challenging task 
(Cano et al., 2019). In the last years, deep neural networks 
(DNNs) have led to major improvements in separating 
musical sources (e.g., Jansson et al., 2017; Takahashi and 
Mitsufuji, 2017; Stoller et al., 2018; Stöter et al., 2019; 
Hennequin et al., 2020; Défossez, 2021; Kim et al., 2021). 
A main pre-requisite for supervised MSS models is data 
availability, as training DNNs requires large datasets with 
clean, isolated recordings.

Unlike in popular music production, where individual 
instruments are often recorded separately, the direct 
interaction between musicians is typically an essential 
aspect of the recording process for classical music. When 
musicians perform together in the same room, they 
have more flexibility in adjusting tempo and dynamics, 
resulting in a more cohesive and expressive performance. 
As a result, there are hardly any multitrack recordings 
available for classical music.

To circumvent the problem of missing multitrack 
training samples, artificial training data has been created 
by random mixing as a data augmentation method. For 
example, Chiu et al. (2020) generated training material 
by mixing classical violin and pop piano solo recordings 
for the separation of piano and violin duos. For the 
quantitative evaluation of the MSS model, they then 
used 16 multitrack piano and violin recordings from 
MedleyDB (Bittner et al., 2014). Özer and Müller (2022). 
also generated artificial training material by randomly 
mixing sections selected from the solo piano repertoire 
(e.g., piano sonatas, mazurkas) and orchestral pieces 
without piano (e.g., symphonies) to train an MSS model 
for separating piano concertos in a lead-accompaniment 
separation setting. In this scenario, the lack of multitrack 
recordings made the quantitative evaluation of the 
MSS model difficult. PCD will enable the subjective and 
quantitative evaluation of MSS models addressing the 
separation of piano concertos, providing a wide range 
of works recorded by various performers in different 
acoustic environments.

3. PIANO CONCERTOS IN WESTERN 
CLASSICAL MUSIC

As it is a central theme in PCD, we highlight in this section 
the compositional structure and evolution of piano 
concerto as a genre of central importance in Western 
classical music. A piano concerto is a musical composition 
written for piano and orchestra. It typically consists of 
multiple movements, with the piano playing the primary 
role and the orchestra providing the accompaniment. 
Since the Baroque period, piano concertos have been 
composed by many composers from all epochs until 
today. As a result, piano concertos are an enduring 

and popular form of classical music and continue to be 
enjoyed by audiences around the world.

In the seventeenth century, the earliest use of the 
term concerto in Western classical music referred to its 
literal meaning combined effort. The “combined effort” 
sense persisted until Johann Sebastian Bach, whose 
keyboard concertos depend on the reconciliation of 
cembalo or harpsichord and other instruments (Cole, 
1997). One has to consider that in J. S. Bach’s time, 
the keyboard did not yet have the status of a virtuoso 
instrument as it does today. When it appeared in 
association with other instruments, it was initially 
associated with the term continuous bass instrument 
(Schering, 1905). Nowadays, pianists often perform 
baroque keyboard concertos on the modern piano.

Whereas the high Baroque period cultivated various 
kinds of concertos, the solo concerto, which comprises a 
lead instrument accompanied by an orchestra, emerged 
as the preeminent type of this form in the high Classical 
period. In the late eighteenth century, the classical 
concerto evolved to an independent form, incorporating 
form-functional elements associated with the Baroque 
period, e.g., the ritornello, and the Classical period, e.g., 
the classical sonata form (Caplin, 1998). The pioneers 
of the Vienna Classic, Haydn, Mozart, and Beethoven, 
wrote piano concertos that involve a dialogue between 
orchestra and solo instrument (Schering, 1905).

During the course of the nineteenth century, 
romanticism brought a new interest in orchestral color, 
and composers explored a variety of sounds obtained 
by closely intertwining the solo instrument and the 
orchestra. Additionally, the piano had grown in tonal 
capabilities compared to its usage in the Baroque and 
Classical periods. As a result, Romantic piano concertos 
diverged from the Classical form (Girdlestone, 1948). For 
example, the focus of the interaction between orchestra 
and piano shifted in favor of the soloists in the case of 
piano concertos by Frédéric Chopin. In contrast, while 
renouncing the mere virtuoso display of the soloist, 
Robert Schumann’s Piano Concerto in A minor, Op. 54, 
is considered a masterpiece of thematic and melodic 
integration of piano and orchestra. Romanticism reached 
a climax in Brahms’ piano concertos, interchangeably 
splitting the themes between orchestra and the piano. 
Finally, the virtuoso style in the Romantic period 
witnessed its best examples in Tchaikovsky’s famous 
first piano concerto (Op. 23), but even more by the post-
romanticism in the piano concertos by Rachmaninov.

4. PIANO CONCERTO DATASET (PCD)

In this section, we present the PCD as our main 
contribution of this article. In Section 4.1, we cover the 
details of the musical content and characteristics of 
the dataset. We define the naming conventions of the 
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included files in Section 4.2. In Section 4.3, we explain 
our approach for the alignment of pianists with the 
pre-recorded orchestral tracks. We elaborate on the 
recording process in Section 4.4, describe the required 
pre-processing steps in Section 4.5, and finally the post-
production in Section 4.6.

4.1 DATASET CONTENT AND CHARACTERISTICS
This section describes several aspects concerning the 
content and characteristics of PCD. The dataset consists 
of 81 excerpts selected from 15 piano concertos by 
10 different composers, as shown in Table 2. Here, 
the WorkID specifies the prefix of each filename in the 
dataset encoding the composer, assigned work number 
(i.e., Op, BWV, and KV), and the movement, respectively. 
For further information on the naming conventions 
of the audio and annotation files in the dataset, see 
Section 4.2. In addition to various compositional styles 
ranging from the Baroque to the Post-Romantic era, PCD 
includes different difficulty levels of piano concertos. 
For example, J. S. Bach’s Piano Concerto in F Minor, 
BWV 1056, is classified as moderately difficult, whereas 
Rachmaninov’s Piano Concerto No. 3 in D Minor, Op. 30, is 
a very challenging virtuoso work for pianists.

Although we recorded longer sections, including 
the exposition, development, or sometimes entire 
movements of piano concertos, we decided to extract 
and provide only shorter excerpts of the recordings for 
several reasons. First, practicing and performing entire 
movements can be difficult for pianists. Second, it is 
time-consuming for sound engineers to edit and process 
longer recordings. Third, depending on the compositional 
style, piano concertos may involve long sections where 
the piano and orchestra do not play together, which does 
not serve the multitrack dataset. We will make the raw 
piano recordings (also of longer sections) available, upon 
request.

The choice of excerpts is mainly based on musical 
coherence and a balance between piano and orchestra. 
Besides passages where both parts play together, we 
also included sections where the piano and orchestra 
follow a conversational style, such as in Beethoven’s 
Piano Concerto No. 4 in G Major, Op. 58. In order to 
account for a suitable duration of the excerpts, we 
regarded two guidelines. First, the excerpts need to be 
long enough to involve a complete musical phrase. 
Second, they should be relatively short for their usability 
in a subjective listening test. Based on these criteria, we 

WORKID COMPOSER FULL NAME MVM PID #V #E DUR

Bach_BWV1056-01 J. S. Bach Piano Concerto in F Minor, BWV 1056 1 YO 2 10 120

Beethoven_Op015-01 Beethoven Piano Concerto No. 1 in C major, Op.15 1 MM 1 6 72

Beethoven_Op019-01 Beethoven Piano Concerto No. 2 in B Flat Major, Op. 19 1 ES 2 4 48

Beethoven_Op037-01 Beethoven Piano Concerto No. 3 in C Minor, Op. 37 1 ES 2 4 48

Beethoven_Op037-02 Beethoven Piano Concerto No. 3 in C Minor, Op. 37 2 LR 1 1 12

Beethoven_Op058-02 Beethoven Piano Concerto No. 4 in G Major, Op. 58 2 ES 2 2 36

Chopin_Op021-03 Chopin Piano Concerto No. 2 in F Minor, Op. 21 3 ES 1 5 60

Grieg_Op016-01 Grieg Piano Concerto in A Minor, Op. 16 1 ES 1 1 12

Mendelssohn_Op025-01 Mendelssohn Piano Concerto No. 1 in G Minor, Op. 25 1 ES 2 2 24

Mozart_KV414-01 Mozart Piano Concerto No. 12 in A Major, KV.414 1 YO 1 2 24

Mozart_KV467-01 Mozart Piano Concerto No. 21 in C Major, KV.467 1 YO 1 5 60

Mozart_KV467-02 Mozart Piano Concerto No. 21 in C Major, KV.467 2 YO 2 6 72

Rachmaninoff_Op018-01 Rachmaninov Piano Concerto No. 2 in C Minor, Op.18 1 JL 1 5 60

Rachmaninoff_Op018-02 Rachmaninov Piano Concerto No. 2 in C Minor, Op. 18 2 JL 1 5 60

Rachmaninoff_Op018-03 Rachmaninov Piano Concerto No. 2 in C Minor, Op. 18 3 JL 1 5 60

Rachmaninoff_Op030-01 Rachmaninov Piano Concerto No. 3 in D Minor, Op. 30 1 ES 2 6 72

Saint_Op022-01 Saint-Saëns Piano Concerto No. 2 in G Minor, Op. 22 1 ES 1 2 24

Schumann_Op054-01 Schumann Piano Concerto in A Minor, Op. 54 1 ES 2 4 48

Tschaikovsky_Op023-01 Tchaikovsky Piano Concerto No. 1 in B Flat Minor, Op. 23 1 ES 2 6 72

Σ 81 972

Table 2 Overview of the dataset indicating the work identifier (WorkID), composer, full name of the work, movement (Mvm), 
performer identifier (PID), number of versions (#V), number of excerpts (#E), and total duration in seconds (Dur). The versions here 
refer to distinct performances recorded under different acoustic conditions and played on different pianos.
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decided on a duration of 12 seconds. This audio length 
has been a good compromise for musicality while being 
the longest recommended duration for Multiple Stimulus 
with Hidden Reference and Anchors (MUSHRA) listening 
tests (Series, 2014).

For a wide range of interpretations, five pianists 
participated in the curation of the dataset: Emre Şen 
(ES), Jeremy Lawrence (JL), Lisa Rosendahl (LR), 
Meinard Müller (MM), and Yigitcan Özer (YO). All the 
performers have provided their consent to publish the 
recorded material for research purposes under a Creative 
Commons license. The performers’ skills range from 
amateurs (LR, MM) to semi-professional players (JL, 
YO) to a concert pianist (ES), and their experiences 
differ accordingly. LR is a historian and musicologist, and 
MM is a full-time professor in MIR, playing the piano as a 
hobby. Among the semi-professional performers, JL is a 
Master’s student in electrical engineering with a strong 
musical background and experience as a pianist, whereas 
YO is a Ph.D. candidate working on MIR, with a background 
in electrical engineering and piano performance. ES is 
a concert pianist who regularly performs recitals and 
plays piano concertos with orchestras.

Furthermore, the room acoustics vary among the 
performances, ranging from a small and relatively dry 
domestic space (R2), via small recital halls (R1 and 
R3), to a spacious concert hall environment (R4). Each 
room is also associated with a different grand piano 
model. Table 3 summarizes the differences in recording 
conditions for each room.

In addition to distinct acoustic conditions, PCD 
includes recordings that vary in quality and orchestral 

accompaniments. The recordings of Rachmaninov’s 
Piano Concerto No. 2 in C Minor, Op. 18, performed by 
JL are considered the highest quality recordings in the 
dataset. These performances were recorded in multiple 
sessions and underwent exhaustive post-processing. 
Moreover, this is the only instance where the orchestral 
accompaniment is synthetic (as provided by MMO), 
whereas other backing tracks are real recordings. Note 
that we also provide recordings of multiple movements 
from the same piece for three works: Beethoven’s 
Piano Concerto No. 3 in C Minor, Op. 37, Mozart’s Piano 
Concerto in C Major, KV.467, and Rachmaninov’s Piano 
Concerto No. 2 in C Minor, Op. 18. Furthermore, there 
are two versions of certain excerpts, providing different 
piano recordings using the same underlying orchestral 
accompaniments.

To gain a more comprehensive understanding of the 
statistics of the dataset, the distribution of the number 
of pieces per composer is presented in Figure 2a. In PCD, 
Rachmaninov is the most prominent composer, with 21 
excerpts and a total duration of 252 seconds. Beethoven 
comes in second place, with 17 excerpts, followed by 
Mozart, J. S. Bach, and Tchaikovsky. Figure 2b provides 
an overview of the number of excerpts played by each 
performer. Most of the performances are by the concert 
pianist ES. Note that several pieces were performed by 
the same performer in different rooms. For example, ES 
performed Tchaikovsky’s Piano Concerto No. 1 in B Flat 
Minor, Op. 23 both in R3 and R4. Figure 2c illustrates the 
number of excerpts per room. The majority (32) of the 
recordings took place in R4, roughly a quarter of them 
(21) in R3, 15 in R1, and 15 in R2.

ROOM ID ROOM DESCRIPTION PIANO #E DUR

R1 Lecture Hall (Fraunhofer IIS) Yamaha C3 15 180

R2 Private Studio (Jeremy Lawrence) Yamaha C3X 15 180

R3 Music Academy (Emre Şen) Seiler 21 252

R4 Saygun Concert Hall (Bilkent University) Steinway D 30 360

Σ 81 972

Table 3 Overview of different rooms where the recordings took place, number of excerpts recorded in each room (#E), and their total 
duration in seconds (Dur). Note that the piano model is different in each acoustic environment.

Figure 2 Various bar plots describing the dataset. The number of selected 12-second excerpts is indicated by the horizontal axis per 
(a) composer, (b) performer, and (c) acoustic environment.
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4.2 NAMING CONVENTIONS
PCD offers a variety of musical dimensions as summarized 
in Table 4. These dimensions, referred to as ComposerID, 
WorkNo, MeasRange, PID, VersionID, StemType, and 
Reverb, are used in the filenames of the provided WAV 
audio files. The ComposerID specifies the composer 
(see Figure 2a). WorkNo indicates the Opus, BWV, or 
KV number of the work, and MovementNo denotes the 
number of the movement from which the excerpt was 
selected. The MeasRange dimension specifies range of 
the excerpt in measures. PID identifies the performer, 
as introduced in Section 4.1, and VersionID the version. 
StemType refers to the post-processing configurations 
presented in Section 4.6. Reverb refers to the presence of 
artificial reverb added in the post-production. The audio 
filename using the instances in the Example column in 
Table 4 is Bach_BWV1056-01-mm001–008_YO-V2_OP_
reverb.wav. It represents Bach’s (ComposerID) Piano 
Concerto in F Minor, BWV 1056 (WorkNo), 1st Movement 
(MovementNo), Measures 1–8 (MeasRange), played by 
YO (PID), second version (VersionID), which includes 
piano part plus orchestral accompaniment (StemType) 
with artificial reverb (Reverb).

4.3 SYNCHRONIZATION
Similar to the development of other multitrack datasets, 
the PCD curation encountered several challenges 
regarding the alignment of separate tracks. The missing 
interaction between the performer and other musicians 
constitutes a key challenge in a multitrack recording 
setting. As Li et al. (2019) suggest, audio-visual cues may 
help the musicians when playing along with a given audio 
track. In the recording process of the PCD, we used only 
audio cues, which served as a guide for the performers 
alongside the pre-recorded orchestral accompaniments.

The main objective of PCD is to provide piano 
recordings, which are synchronous to the original 
backing tracks by MMO. This design choice enables the 
dataset’s reproducibility while restricting the freedom 
of interpretations since the pianists must steadily adapt 
their tempo to the orchestral track. To overcome the 

challenges posed by the recording settings, we provided 
metronome-like click tracks in the form of sonified 
measure and beat annotations. We first manually 
annotated the measure positions in the backing track 
where the orchestra is active. Note that piano concertos 
often involve relatively long piano solo passages. In these 
sections, we employed linear interpolation to estimate 
the measure positions. This approach guaranteed 
that the sonified metronome-like click tracks retained 
consistent tempo in sections where the backing track 
is silent.

For the beats, we initially experimented with manual 
annotations. However, we found that using manual 
annotations based on the orchestral accompaniments 
was ineffective for the performers, as the tempo 
changes within measures were often inconsistent. As 
an alternative, we again utilized linear interpolation 
to estimate the beats within the manually annotated 
measure positions based on the time signature of 
the piece. This approach resulted in equidistant beats 
interpolated between the manual measure annotations, 
which were more helpful for the pianists than manual 
beat annotations.

Only for the recordings of Rachmaninov’s Piano 
Concerto No. 2 in C Minor, Op. 18, we adopted a more 
involved iterative approach for the generation of beat 
annotations. For example, piano-only sections meant to 
be played with rubato (rather than a consistent tempo) 
were annotated by the performer such that the click 
tracks would match the tempo fluctuations in their 
interpretation. This facilitated a more natural-sounding 
recording of solo sections with larger variations in tempo.

Finally, we sonified measure and beat positions 
with different frequencies to aid the pianists during 
the recording process. Depending on the preference of 
the musician, we either activated or deactivated the 
click tracks during recording to allow for more agogical 
playing.

4.4 RECORDING PROCESS
In this section, we outline the technical details about the 
recording process. The performances in rooms R1, R3, 
and R4 were recorded using a stereo spot microphone 
setup with Schoeps MK4 cardioid microphones placed 
near the bend of the grand piano body (see Figure 3). 
Comparable high-end microphones like the MK4 are 
often used in similar professional recording setups. 
The exact position of the microphones was individually 
adjusted to the acoustics of each recording space and 
the characteristics of the instrument, roughly following 
an ORTF (Office de Radiodiffusion Télévision Française) 
setup. The microphone signals were recorded using a 
RME Babyface Pro FS audio interface and the REAPER4  
digital audio workstation. Recordings were initially stored 
in the WAV format with a sampling rate of 44.1 kHz and 
24 bits per sample. The orchestral accompaniment and 

DIMENSION DESCRIPTION EXAMPLE

ComposerID Composer Identifier Bach

WorkNo Op. / BWV / KV BWV1056

MovementNo Movement Number 01

MeasRange Measure Range mm001-008

PID Performer Identifier YO

VersionID Version Identifier V2

StemType (O)rchestra / (P)iano OP

Reverb Presence of Reverb reverb

Table 4 PCD dimensions, encoded in filenames.
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sonified click tracks were presented to the musicians via 
headphones (Beyerdynamic DT 770 Pro) and played back 
from the same REAPER session to ensure a synchronous 
recording of the piano part. The pianists had the possibility 
to record the movements in shorter segments and repeat 
individual sections, as is common in a studio recording 
process. This typically results in multiple takes for the 
same section, which are later edited to form a coherent 
performance (see Section 4.6). The performances 
in room R2 (the recordings of Rachmaninov’s Piano 
Concerto No. 2 in C Minor, Op. 18) were captured in a 
similar fashion, only differing in the utilized equipment. 
These performances were recorded using a stereo pair of 
Sennheiser MKH 8020 omnidirectional microphones in AB 
configuration with a spacing of 35 cm. The microphones 
were placed approximately 1 m from the bend of the 
grand piano body at the height of 145 cm. A Steinberg 
UR22mkII audio interface and the Cubase5 digital audio 
workstation were used.

4.5 MMO PRE-PROCESSING
The backing tracks provided by MMO vary in recording 
quality and format. To provide consistent orchestral 
accompaniments suitable for recording the piano parts, 
we modified the original tracks in several ways.

First, some of the MMO recordings were supplied in 
multiple sections (e.g., including just one page of sheet 
music). To have backing tracks of the entire movements, 
we joined the audio files which belong to the same 
movement. The resulting backing tracks are single audio 
files that serve as a continuous reference timeline for the 
dataset. Furthermore, we removed audible waveform 
artifacts at the splitting points. Finally, we removed the 
silence at the beginning and end of CD audio files. Note 
that this results in a shorter total duration of the reference 
timeline than the sum of the MMO tracks. All timings in 
the provided annotations and documentation refer to 
the reference timeline of the backing tracks created in 

this process. We conducted all the modifications with 
Python scripts, which allows for reproducing our backing 
tracks from original MMO files.

Second, we removed some clicks in the backing 
track, provided in MMO in pauses of the orchestral 
accompaniment where the pianist plays solo. In the 
rendered excerpts, all clicks are always deactivated. 
This applies to the backing tracks of Bach_BWV1056-
01, Beethoven_Op037-01, Beethoven_Op058-

02, Mendelssohn_Op025-01, Mozart_KV414-01, 

Rachmaninoff_Op018-01, Rachmaninoff_Op018-

02, Rachmaninoff_Op018-03, and Schumann_
Op054-01.

Third, we finally employed some additional cosmetic 
pre-processing, including the removal of background 
noises (using the iZotope RX8 Audio Editor) and 
equalization for more consistent timbral qualities 
between pieces.

4.6 POST-PRODUCTION
The post-production of the recorded performances 
was conducted in three steps. First, we edited the 
recorded takes in REAPER to create a coherent rendition 
of the piano part. The takes were chosen to reduce 
playing mistakes while still maintaining a consistent 
musical arc in the performance, similar to post-
production in a recording studio. Note that we maintained 
the timeline of the backing track in the post-production. 
Only the piano recording was edited to achieve good 
synchronicity with the MMO orchestral accompaniments.

Second, equalization was applied to the piano 
recordings to ensure consistent timbral qualities within 
our dataset without overcompensating the differences 
between instruments and recording spaces. Some 
minor noise removal similar to the MMO pre-processing 
was necessary to remove background noises. Third, 
to increase the coherence between the piano part 
and orchestral accompaniment, we applied artificial 
reverberation to both tracks simultaneously using the 
FabFilter Pro-R2 algorithmic reverb software. All tracks 
are available with and without artificial reverberation to 
facilitate different use cases (see below). For the dataset, 
the post-processed excerpts were exported as WAV files 
with 44.1 kHz sampling rate and 16 bits per sample in six 
different configurations:

•	 OP_reverb: Piano part plus orchestral 
accompaniment with artificial reverb

•	 OP: Piano part plus orchestral accompaniment 
without artificial reverb

•	 P_reverb: Piano part only with artificial reverb
•	 P: Piano part only without artificial reverb
•	 O_reverb: Orchestral accompaniment only with 

artificial reverb
•	 O: Orchestral accompaniment only without artificial 

reverb

Figure 3 An impression from the recording process in R4 
with stereo spot microphones (two Schoeps MK4). To play 
synchronously with the orchestra, the performer listens to the 
MMO orchestral accompaniment (superimposed by click tracks) 
via Beyerdynamic DT 770 Pro headphones.
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During the recordings of Beethoven_Op015-01, and 
Mozart_KV467-01, the orchestral accompaniment 
was erroneously played back with a rate of 0.995 
(Beethoven_Op015-01) and 1.005 (Mozart_KV467-
01), which results in a slightly slower or faster piano 
part relative to the backing track with the original 
playback speed. This mistake was corrected in the post-
production with Elastique Pro v3.3.3 by applying time-
scale modification (with rates 1.005458 and 0.994616, 
respectively).

5. PCD INTERFACES

The main motivation of PCD is to provide a freely 
available and well-documented multitrack dataset to 
support MIR research on orchestral music, particularly 
piano concertos. To this end, the dataset is made publicly 

accessible through different interfaces in order to support 
scientific exchange and ensure the reproducibility of 
scientific results.

Interactive interfaces can lower barriers to access 
datasets and research results. This can be achieved 
through features such as playback functionalities (Gasser 
et al., 2015; Röwenstrunk et al., 2015; Jeong et al., 2017). 
To provide an interactive medium for the researchers, 
we use an open-source audio player (Werner et al., 
2017) integrated in a web interface, which allows the 
listener to switch between multiple audio tracks while 
synchronously indicating the playback position of the 
audio tracks. As default visualization, the interface 
offers an overview of the six configurations of stems, as 
presented in Section 4.6. The main page is subdivided 
into a section called Excerpts, which includes links to 
recorded piano concerto sections with a dedicated sub-
page for each excerpt. Figure 4 shows a screenshot of an 

Figure 4 Screenshot of our web-based interface with Track Switcher (Werner et al., 2017), which comprises six tracks of dry and 
reverberant recordings of an excerpt from Tchaikovsky’s Piano Concerto No. 1 in B Flat Minor, Op. 23, 1st movement.
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exemplary sub-page,6 which hosts the multitrack audio 
files for an excerpt selected from Tchaikovsky’s Piano 
Concerto No. 1 in B Flat Minor, Op. 23, 1st movement.

6. APPLICATIONS TO MUSIC SOURCE 
SEPARATION

In this section, we highlight the potential of PCD by 
means of a case study in MSS. Here, we consider the 
separation of piano concertos into piano and orchestral 
tracks, which can be regarded as a lead-accompaniment 
separation task (Rafii et al., 2018). To this end, we use 
the pre-trained model by Özer and Müller (2022), which 
is a spectral-based U-Net architecture (Hennequin et al., 
2020).7 The training procedure of the pre-trained model 
is based on artificial random mixes of samples from the 
solo piano repertoire (e.g., piano sonatas, mazurkas) 
and orchestral pieces without piano (e.g., symphonies) 
to simulate piano concertos. While this method cannot 
simulate the harmonic and rhythmic relationships 
between different instruments in a real recording, it 
trains the model to identify the unique sound qualities of 
multiple musical sources.

For the quantitative and subjective evaluation of the 
pretrained MSS model by Özer and Müller (2022), we use 
the widely-used Signal to Distortion Ratio (SDR) (Vincent 
et al., 2006), computed with the BSSEval8 Python library. 
Using dry and reverberant recordings, we assess the 
separation results along the various dimensions of PCD.

In Figure 5, we present the results based on reverberant 
recordings on the top and dry recordings on the bottom. 

The trend generally indicates that SDR results based on 
dry recordings are better than those from reverberant 
recordings.

To get a first impression of the model’s performance 
by different dimensions, Figure 5a provides an overview 
of the average SDR values per composer. Beethoven’s 
piano concertos have the highest SDR value for separated 
piano. Note that Bach’s piano concerto has the highest 
unison overlap between piano and orchestra, which 
results in a relatively lower separation performance for 
both parts.

For our next evaluation, we focus on the model’s 
performance per performer (see Figure 5b). The SDR 
results reveal that piano separation outperforms 
orchestra separation for each performer. In particular, 
the excerpt played by LR yields the highest SDR values 
for both parts, both for dry and reverberant recordings. 
Note that the results for LR are based on a single excerpt, 
which is an easier passage for the model to separate. 
While separating piano and orchestra leads to similar 
SDR results for ES, MM, and YO, the piano separation is 
better than the orchestra by a wider margin for JL.

Figure 5c illustrates the comparison of SDR values 
across different acoustic environments. Similar to 
our previous analysis based on the SDR values per 
performer, piano separation yields higher SDR values 
compared to orchestra. The results indicate that the 
highest SDR value varies based on the artificial reverb in 
different acoustic conditions. Whereas the highest SDR 
value occurs in R2 for piano separation for reverberant 
recordings, the average SDR value for the dry recordings 
is the highest in R1.

Figure 5 Comparison of Signal-to-Distortion-Ratio (SDR) values for the separation of piano (red) and orchestra (blue), averaged over 
(a) composer, (b) performer, and (c) acoustic environment. The bar plots on top indicate the results based on reverberant recordings, 
on the bottom dry.
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For the future, our goal is to explore musically 
plausible data augmentation methods that simulate 
more realistic mixtures. To further enhance the 
separation performance, avenues of research may be to 
integrate a transcription model as proposed by Manilow 
et al. (2020) or to use the real and imaginary part of the 
STFT as an input to the network, following the Complex-
as-Channel approach by Choi et al. (2020). Furthermore, 
we intend to investigate objective evaluation measures, 
e.g., 2f-score introduced by Kastner and Herre (2019), 
to assess the source separation performance of piano 
concertos.

7. CONCLUSION

In this paper, we introduced the Piano Concerto Dataset 
(PCD), which comprises excerpts from piano recordings 
and orchestral accompaniments of piano concertos 
ranging from the Baroque to the Post-Romantic era. 
Using backing tracks from the music publisher Music 
Minus One (MMO), we recorded 15 different piano 
concertos played by five performers with different 
instruments under varying acoustic conditions. To 
address the challenge of precise synchronization with 
pre-recorded orchestra accompaniments, we created 
click tracks to guide the pianists during the recording 
process. As a main contribution of PCD, we provide 81 
excerpts of dry and reverberant recordings of piano 
and orchestra stems and their mixtures. We release the 
dataset via an interactive web-based interface to provide 
convenient access. Diverse musical dimensions of PCD 
enable various applications for MIR research, particularly 
for quantitative and subjective evaluation of source 
separation models.

NOTES
1	 https://www.halleonard.com/series/MMONE.

2	 https://www.mutopiaproject.org.

3	 https://mirdata.readthedocs.io/en/latest/.

4	 https://www.reaper.fm/.

5	 https://www.steinberg.net/cubase/.

6	 https://www.audiolabs-erlangen.de/resources/MIR/PCD/.

7	 https://github.com/deezer/spleeter.

8	 https://github.com/sigsep/bsseval.
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