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Chroma-based Audio Features

 Very popular in music signal processing

 Based equal-tempered scale of Western music

 Captures information related to harmony

 Robust to variations in instrumentation or timbre

Chroma-based Audio Features

Example: Chromatic scale
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Enhancing Chroma Features

 Making chroma features more robust to changes in 
timbre

 Combine ideas of speech and music processing

 Usage of audio matching framework for evaluating
the quality of obtained audio features

M. Müller and S. Ewert
Towards Timbre-Invariant  Audio Features for Harmony-Based Music.
IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3, 
pp. 649-662, 2010.

Motivation: Audio Matching
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Chroma Features
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How to make chroma features more robust to timbre changes?
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Chroma Features

First occurrence Third occurrence

How to make chroma features more robust to timbre changes?
Idea:  Discard timbre-related information

C
hr

om
a 

sc
al

e

Time (seconds) Time (seconds)

MFCC Features and Timbre

Time (seconds)

M
FC

C
 c

oe
ffi

ci
en

t

MFCC Features and Timbre

Lower MFCCs                     Timbre

M
FC

C
 c

oe
ffi

ci
en

t

Time (seconds)

MFCC Features and Timbre

Idea:  Discard lower MFCCs to achieve timbre invariance 
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Enhancing Timbre Invariance

Short-Time Pitch Energy
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Audio Analysis

Idea:

Use “Audio Matching” for analyzing and
understanding audio & feature properties:

 Relative comparison
 Compact 
 Intuitive
 Quantitative evaluation 

Audio Analysis
Example: Shostakovich, Waltz (Yablonsky)
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Audio Analysis
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Audio Analysis

Expected matching positions (should have local minima)

Idea:
 Use matching curve for analyzing feature properties
 Example: Chroma feature of higher timbre invariance
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Quality: Audio Matching

Standard Chroma (Chroma Pitch)
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Chroma Toolbox

 There are many ways to implement chroma features
 Properties may differ significantly
 Appropriateness depends on respective application

 http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
 MATLAB implementations for various chroma variants
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 Audio Features based on Chroma Information
Application: Audio Matching

 Motion Features based on Geometric Relations
Application: Motion Retrieval

 Audio Features based on Tempo Information
Application: Music Segmentation

 Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction

Motion Capture Data

 3D representations 
of motions

 Computer animation

 Sports

 Gait analysis

Motion Capture Data

Optical System

Motion Capture Data

Motion Retrieval

 = MoCap database

 = query motion clip

 Goal: find all motion 
clips in     similar to  

Motion Retrieval



Motion Retrieval

 Numerical similarity 
vs. logical similarity

 Logically related 
motions may exhibit 
significant spatio-
temporal variations

Relational Features

 Exploit knowledge of kinematic chain

 Express geometric relations of body parts

 Robust to motion variations

Meinard Müller, Tido Röder, and Michael Clausen
Efficient content-based retrieval of motion capture data.
ACM Transactions on Graphics (SIGGRAPH), vol. 24, pp. 677-685, 2005.

Meinard Müller and Tido Röder
Motion templates for automatic classification and retrieval of motion 
capture data.
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on 
Computer Animation (SCA), Vienna, Austria, pp. 137-146, 2006.

Relational Features Relational Features

Relational Features

Right knee 
bent?

Right foot
fast?

Right hand
moving upwards?

Motion Templates (MT)
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Motion Templates (MT)
Quantized template
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 Gray areas indicate inconsistencies / variations
 Achieve invariance by disregarding gray areas

MT-based Motion Retrieval

MT-based Motion Retrieval
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MT-based Motion Retrieval: Jumping Jack MT-based Motion Retrieval: Jumping Jack



MT-based Motion Retrieval: Elbow-To-Knee



MT-based Motion Retrieval: Cartwheel

Matching curve blending out variations

Matching curve using average MT

MT-based Motion Retrieval: Throw MT-based Motion Retrieval: Throw



MT-based Motion Retrieval: Basketball MT-based Motion Retrieval: Basketball

MT-based Motion Retrieval: Lie Down Floor MT-based Motion Retrieval: Lie Down Floor
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Music Signal Processing

Analysis tasks
 Segmentation
 Structure analysis
 Genre classification
 Cover song identification
 Music synchronization
 …

Audio features 
 Musically meaningful
 Semantically expressive
 Robust to deviations
 Low dimensionality
 …

Need of robust mid-level
representations

Relative comparison
of music audio data

Mid-Level Representations

Musical Aspect Features Dimension

Timbre MFCC features 10 - 15

Harmony Pitch features 60 - 120

Harmony Chroma features 12

Tempo Tempogram > 100

Mid-Level Representations

Musical Aspect Features Dimension

Timbre MFCC features 10 - 15

Harmony Pitch features 60 - 120

Harmony Chroma features 12

Tempo Tempogram > 100

Tempo Cyclic tempogram 10 - 30

Peter Grosche, Meinard Müller, and Frank Kurth
Cyclic tempogram – a mid-level tempo representation for music signals.
Proceedings of IEEE International Conference on Acoustics, Speech, and 
Signal Processing (ICASSP), Dallas, Texas, USA, pp. 5522-5525, 2010.

Novelty Curve
Example: Waltz, Jazz Suite No. 2
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1. Spectrogram
2. Log compression
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Novelty curve
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1. Spectrogram
2. Log compression
3. Differentiation
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Novelty curve / local average

Time (seconds)

Novelty Curve

1. Spectrogram
2. Log compression
3. Differentiation
4. Accumulation
5. Normalization
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Normalized novelty curve
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Tempogram

Time (seconds)

Te
m

po
 (B

P
M

)

Tempogram

Short-time Fourier analysis

Time (seconds)

Te
m

po
 (B

P
M

)

Tempogram

Short-time Fourier analysis

Time (seconds)

Te
m

po
 (B

P
M

)

Tempogram

Time (seconds)

Te
m

po
 (B

P
M

)

Tempogram

Time (seconds)

480

240

120

60 
30

Time (seconds)

Log-Scale Tempogram
480 

240 

120 

60 

30



Cyclic Tempogram
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Relative to tempo class […,30,60,120,240,480,…]
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Quantization: 15 tempo bins

Audio Segmentation

Example: Brahms Hungarian Dance No. 5
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Audio Segmentation

Example: Zager & Evans: In the year 2525
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Audio Segmentation

Example: Beethoven Pathétique
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Application: Data-Driven Motion Reconstruction

Data-Driven Motion Reconstruction

Andreas Baak, Meinard Müller, Gaurav Bharaj, Hans-Peter Seidel, and 
Christian Theobalt
A data-driven approach for real-time full body pose reconstruction 
from a depth camera.
Proceedings of the 13th International Conference on Computer Vision 
(ICCV), 2011.

 Goal: Reconstruction of 3D human poses from a 
depth image sequence

 Data-driven approach using MoCap database

 Depth image features: Geodesic extrema

Data-Driven Motion Reconstruction

Input: Depth image Output:  3D pose

Data-Driven Motion Reconstruction

Voting

Database lookup

Local opt. Previous frame
Input Output

Data-Driven Motion Reconstruction

Voting

Database lookup

Local opt. Previous frame
Input Output

 Database lookup 
 Local optimization
 Voting scheme



Data-Driven Motion Reconstruction

Voting

Database lookup

Local opt. Previous frame
Input Output
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Data-Driven Motion Reconstruction

Voting

Database lookup

Local opt. Previous frame
Input Output

 Database lookup 
 Local optimization
 Voting scheme

Database Lookup 

Voting

Database lookup

Local opt. Previous frame
Input Output

 Database lookup 
 Local optimization
 Voting scheme

Need of motion features
for cross-modal comparison

Depth Image Features

 Point cloud

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010]

Depth Image Features

 Point cloud
 Graph

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010] Depth Image Features

 Point cloud
 Graph

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010]



Depth Image Features

 Point cloud
 Graph
 Distances from root

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010] Depth Image Features

 Point cloud
 Graph
 Distances from root
 Geodesic extrema

Observation: First five
extrema often correspond
to end-effectors and head

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010]

Database Lookup Local Optimization

Voting Scheme

 Combine database lookup & local optimization

 Inherit robustness from database pose

 Inherit accuracy from local optimization pose

 Compare with original raw data pose
using a sparse symmetric Hausdorff distance

Voting Scheme
Distance measure



Voting Scheme
Distance measure (Hausdorff)

Voting Scheme
Distance measure (Hausdorff, symmetric, sparse)

Experiments Informed Feature Representations

 Audio Features based on Chroma Information
Application: Audio Matching

 Motion Features based on Geometric Relations
Application: Motion Retrieval

 Audio Features based on Tempo Information
Application: Music Segmentation

 Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction

Informed Feature Representations

 Audio Features based on Chroma Information
Application: Audio Matching

 Motion Features based on Geometric Relations
Application: Motion Retrieval

 Audio Features based on Tempo Information
Application: Music Segmentation

 Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction

Informed Feature Representations

 Exploit model assumptions 
– Equal-tempered scale
– Kinematic chain

 Deal with variances on feature level
– Enhancing timbre invariance
– Relational features
– Quantized motion templates

 Consider requirements for specific 
application 
– Explicit information often not required
– Mid-level features

Features with 
explicit meaning.

Makes subsequent  
steps more robust

and efficient!

Avoid making 
problem harder as 

it is.
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