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Why Audio Decomposition?
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Mid-level
components

Structure of this Talk

= Harmonic-percussive-
residual decomposition
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Structure of this Talk

= Harmonic-percussive-
residual decomposition
= Singing voice extraction W
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Structure of this Talk

= Harmonic-percussive-
residual decomposition
= Singing voice extraction LA A A W

= Audio mosaicing
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Harmonic-Percussive-Residual
Decomposition
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Harmonic-Percussive Decomposition

[Ono et al. ISMIR 2008,
Fitzgerald DAFx 2010]

Input signal

>

Harmonic Percussive
component component
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Harmonic-Percussive Decomposition

The “harmonic-percussive scale”:

Clearly percussive sounds

1

Percussive
component

Clearly harmonic sounds

Harmonic :
component '
Harmonic-percussive
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Harmonic-Percussive-Residual Decomposition

The “harmonic-percussive scale”:
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Harmonic-percussive-residual
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Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008,

Fitzgerald DAFx 2010]
Time

Audio

Amplitude
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Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008,
Fitzgerald DAFx 2010]

Audio

Amplitude

Time
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Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008,
Fitzgerald DAFx 2010]

Spectrogram

Frequency
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Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008,
Fitzgerald DAFx 2010]

Spectrogram

Frequency

\ Harmonic sounds
Percussive sounds
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Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008,
Fitzgerald DAFx 2010]
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Spectrogram |
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Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008,
Fitzgerald DAFx 2010]

Spectrogram

Frequency

Horizontally and 3| 3|
vertically enhanced E | g .
spectrograms £ z

Time Time
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Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008,
Fitzgerald DAFx 2010]

Spectrogram

Frequency
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Time Time
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Harmonic-Percussive-Residual Decomposition

[Driedger et al. ISMIR 2014]

Spectrogram
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Harmonic-Percussive-Residual Decomposition

[Driedger et al. ISMIR 2014]
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Harmonic-Percussive-Residual Decomposition

[Driedger et al. ISMIR 2014]
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Harmonic-Percussive-Residual Decomposition

[Driedger et al. ISMIR 2014]

>
3
e
Spectrogram El
L qme
Horizontally and 3 3
vertically enhanced £ =0 g
spectrograms b i &)
Time Time
Separation factor O >Be O => Harmonic component
B=1 B+ O<0O 9 Percussive component
otherwise = Residual component
. e v ~
Harmonic, 3 3 8
residualand 2 ] 2
i g g gl
percussive E E g
components Time Time Time

© AudioLabs, 2016 Musically Informed Audio Decomposition AUDIOD
Meinard Miler and Jonathan Driedger LABS

Harmonic-Percussive-Residual Decomposition

[Driedger et al. ISMIR 2014]
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Harmonic-Percussive-Residual Decomposition
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Harmonic-Percussive-Residual Decomposition

Mixture:

2 IS o 15
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Additional Examples

Harmonic Residual Percussive
component component component

Stepdad I E >hi: B IS B S
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« Clearly harmonic « Noise-like sounds * Drum hits
sounds + “Sound texture” < Fricatives
« Vibrato/glissando  Very short sounds
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Singing Voice Extraction
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I ———
Singing Voice Extraction

Original Recording

< <

Singing voice Accompaniment
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Singing Voice Extraction

Original Recording

Frequency [Hz]

Time [sec]
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Cascaded Audio Decomposition
_ |

[Driedger & Miller ICASSP 2015]
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Cascaded Audio Decomposition

[Driedger & Mller ICASSP 2014]
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"Harmonic component Percussive component Residual component




HPR — Harmonic-Percussive-Residual Decomposition
[Tachibana et al. IEEE-TASLP 2013]
[Jeong & Lee IEEE-SPL 2014]
[Driedger et al. ISMIR 2014]
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Residual component

FO annotation

"=~ Harmonic component

‘Harmonic portion
accompaniment

MR — Melody/Residual Decomposition
[Virtanen et al. ISCA 2008]

[Salamon & Gémez IEEE-TASLP 2012]

Idea:
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TR — Transient/Residual Decomposition

Frequency

Time
Percussive component

Frequency

.. Time .
Fricatives singing voice

[Talmon et al. IEEE-TASLP 2011]
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Percussive component

Residual component

Ly

‘Vibrato & formants _ Diffuse instruments sounds
singing voice iment

SL — Sparse/Low Rank Decomposition

Frequency

Time
Residual component

[Candés et al. JACM 2011]
[Huang et al. ICASSP 2012]

Idea:
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Robust principle component
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Musically Informed Audio Decomposition

Residual component

‘Vibrato & formants _ Diffuse instruments sounds
iment

singing voi

Cascaded Audio Decomposition
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Cascaded Audio Decomposition: Bearlin (Pop)
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Cascaded Audio Decomposition: Acheronita (Metal)
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Cascaded Audio Decomposition: Freischiitz (Opera)
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Approaches to Singing Voice Extraction
[Driedger & Miller ICASSP 2014]

Original recording

e
A
Direct decomposition Source estimates

A® i\

Cascaded decomposition

. = NERE
m

Fine-grained decomposition
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DISASSEMBLE

Musically Informed Audio Decomposition
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Audio Mosaicing

e D e

MM
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Audio Mosaicing

Target signal: Beatles—Let it be Source signal: Bees

ARAA |«

Mosaic signal: Let it Bee
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NMF-Inspired Audio Mosaicing

Non-negative matrix factorization (NMF)

Non-negative matrix

Components

<
u

Driedger et al. ISMIR 2015]

Activations

W .

H

learned

‘ Proposed audio mosaicing approach

Target's spectrogram  Source’s spectrogram

I

Frequency
.
Time source

learned

Activations

1]
Frequency

Time source

WH

Mosaic's spectrogram

§ 26 Be e B

Time target

learned

Time target

© Audiolabs, 2016
Meinard Miller and Jonathan Driedger

Musically Informed Audio Decomposition

AUDIO
LABS

|
Basic NMF-Inspired Audio Mosaicing

Spectrogram Spectrogram Activation matrix Spectrog_ram
target source mosaic
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Basic NMF-Inspired Audio Mosaicing

Iterative updates

Spectrogram Spectrogram Actiliation mitrix Spectrogram
target source mosaic
T e of
z E z ¥ g} 3
5 5] 3 g
g =z "9 3
3 — 3 b | il g 3
[y [y I [y
Time target Time source

\ -

Time target

Core idea: support the development of sparse diagonal activation structures
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Audio Mosaicing with Extended Set of Update Rules

[Driedger et al. ISMIR 2015
Spectrogram Spectrogram Activation matrix Spectrog_ram
target source mosaic
A @
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5 5] 3k 5
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g — 8 o g g
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Audio Mosaicing with Extended Set of Update Rules

Driedger et al. ISMIR 2015]
Spectrogram Spectrogram Activation matrix Spectrogram
target source mosaic
i
) E ) ¥ 3
5 5 g
=1 ~ S - =1
~

g — g| e g
w w w

Time target Time source - =

Time target
_ > L > L >
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NMF with Extended Set of Update Rules

Time source
Time source

"»

Time source

W'

Time source

Time target

Activation matrix

Time target

Repetition-restricted

activation matrix

Neighborhood
constraints

Time target

Time target

Polyphony-restricted  Continuity-enhanced

activation matrix

Column
constraints

= Constraints are enforced by additional update rules
= Additional rules are interleaved with standard NMF update rules

activation matrix

Diagonal
smoothing
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Musically Informed Audio Decomposition

= Soft alternative to NMFD
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Kullback-Leibler Divergence between
Target and Mosaic
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Audio Mosaicing

Target signal: Chic-Good times Source signal: Whales

/

Mosaic signal
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Audio Mosaicing

Target signal: Adele-Rolling in the Deep Source signal: Race car

Mosaic signal
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Summary: Musically Informed Audio Decomposition

= Harmonic-percussive-
residual decomposition

= Singing voice extraction
= Audio mosaicing
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Summary: Musically Informed Audio Decomposition

= Harmonic-percussive-
residual decomposition

R . . o B Mix
= Singing voice extraction ww
= Audio mosaicing “. - ™ Vibrato
= Vibrato-residual “  » Residual

decomposition

[Driedger et al., ISMIR 2016]
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Summary: Musically Informed Audio Decomposition

= Harmonic-percussive-
residual decomposition -

= Singing voice extraction '}
= Audio mosaicing

= Vibrato-residual
decomposition

" - »® Original

N » Edited

= Score-informed
audio editing

[Driedger et al. ACM-MM 2013]
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Summary: Musically Informed Audio Decomposition

= Harmonic-percussive-
residual decomposition
= Singing voice extraction ‘/@
= Audio mosaicing H W| - +,| | - Original
= Vibrato-residual =~ "= + T Lo
decomposition H } +— +*| ;= Stretched by a

S N factor of 1.8

Score-informed
audio editing
Time-scale modification

[Dri
Driedge!
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Book: Fundamentals of Music Processing

Meinard Miller

Fundamentals of Music Processing

Audio, Analysis, Algorithms, Applications
483 p., 249 illus., 30 illus. in color, hardcover
ISBN: 978-3-319-21944-8

Springer, 2015

Fundamentals of
Music Processing

Accompanying website:
www.music-processing.de
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Book: Fundamentals of Music Processing

Chapter Meinard Miller

Fundamentals of Music Processing
| Audio, Analysis, Algorithms, Applications

e || sionns 483 p., 249 illus., 30 illus. in color, hardcover
ISBN: 978-3-319-21944-8

Springer, 2015

4 gJ- | Music Represanations

P Music Structure

5 | Ghord Recognigon Accompanying website:

2 | rerm— www.music-processing.de
Tracking
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