

Musically Informed Audio Decomposition

Meinard Müller and Jonathan Driedger

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Department of Computational Perception Johannes Kepler University Linz 14.12.2016

Meinard Müller

- 2001 PhD, Bonn University
- 2002/2003 Postdoc, Keio University, Japan
- 2007 Habilitation, Bonn University "Information Retrieval for Music and Motion"
- 2007-2012 Senior Researcher Max-Planck Institut für Informatik, Saarland
- 2012: Professor Semantic Audio Processing Universität Erlangen-Nürnberg

© AudioLabs, 2016

Musically Informed Audio Decomposition

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., 30 illus. in color, hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Musically Informed Audio Decomposition

International Audio Laboratories Erlangen

© AudioLabs, 2016

Research Group Semantic Audio Signal Processing

- Thomas Prätzlich
- Christof Weiß
- Stefan Balke Christian Dittmar
- Patricio López-Serrano
- Frank Zalkow

LABS

Research Group Semantic Audio Signal Processing

Jonathan Driedger

PhD Thesis **Processing Music Signals Using Audio Decomposition Techniques** Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) May 2016

Music Signal Processing

© AudioLabs, 2016 Meinard Müller and Jonathan Driedger

Musically Informed Audio Decomposition

© AudioLabs, 2016
Meinard Müller and Jonathan Driedge

Structure of this Talk

 Harmonic-percussiveresidual decomposition

Musically Informed Audio Decomposition

Structure of this Talk

- Harmonic-percussiveresidual decomposition
- Singing voice extraction

© AudioLabs, 2016 Meinard Müller and Jon

Structure of this Talk

- Harmonic-percussiveresidual decomposition
- Singing voice extraction
- Audio mosaicing

Harmonic-Percussive-Residual Decomposition

Harmonic-Percussive-Residual Decomposition

The "harmonic-percussive scale":

Musically Informed Audio Decomposition

Harmonic-Percussive-Residual Decomposition

Audio

[Ono et al. ISMIR 2008, Fitzgerald DAFx 2010]

© AudioLabs, 2016

Musically Informed Audio Decomposition

Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008, Fitzgerald DAFx 2010]

Audio

© AudioLabs, 2016
Meinard Müller and Jonathan Driedge

Harmonic-Percussive-Residual Decomposition

[Ono et al. ISMIR 2008, Fitzgerald DAFx 2010]

Spectrogram

Harmonic-Percussive-Residual Decomposition Spectrogram Time Harmonic sounds Percussive sounds © AudioLabs, 2016 Meinard Müller and Jonathan Driedge Musically Informed Audio Decomposition

Harmonic-Percussive-Residual Decomposition [Ono et al. ISMIR 2008, Fitzgerald DAFx 2010] Spectrogram

© AudioLabs, 2016 Meinard Müller and Jor

© AudioLabs, 2016

Musically Informed Audio Decompositio

Musically Informed Audio Decomposition

Musically Informed Audio Decomposition

© AudioLabs, 2016 Meinard Müller and Jor

Harmonic-Percussive-Residual Decomposition [Driedger et al. ISMIR 2014] Spectrogram Horizontally and vertically enhanced spectrograms Separation factor $\bigcirc > \beta \bullet \bigcirc \rightarrow \text{Harmonic}$ component $\beta \geq 1$ $\beta \bullet \square < \square \Rightarrow$ Percussive component Time LABS

DAUDIOLADS, 2016

Meinard Müller and Jonathan Driedger

Additional Examples

Musically Informed Audio Decomposition

Singing Voice Extraction

AudioLabs, 2016
 Meinard Müller and Jonathan Driedger

Musically Informed Audio Decomposition

Singing Voice Extraction

© AudioLabs, 2016 Meinard Müller and Jonathan Driedger

Musically Informed Audio Decomposition

Singing Voice Extraction

Cascaded Audio Decomposition

© AudioLabs, 2016 Meinard Müller and Jor

Audio Mosaicing

LABS

Audio Mosaicing

LABS

Basic NMF-Inspired Audio Mosaicing

© AudioLabs, 2016 Meinard Müller and Jonathan Driedger Musically Informed Audio Decomposition

Basic NMF-Inspired Audio Mosaicing

Core idea: support the development of sparse diagonal activation structures

© AudioLabs, 2016 Meinard Müller and Jonathan Driedger Musically Informed Audio Decomposition

Audio Mosaicing with Extended Set of Update Rules

[Driedger et al. ISMIR 2015]

© AudioLabs, 2016

Meinard Müller and Jonathan Driedg

Musically Informed Audio Decomposition

Audio Mosaicing with Extended Set of Update Rules

[Driedger et al. ISMIR 2015]

© AudioLabs, 2016 Meinard Müller and Jonathan Driedger Musically Informed Audio Decomposition

LABS

NMF with Extended Set of Update Rules

- Constraints are enforced by additional update rules
- Additional rules are interleaved with standard NMF update rules
- Soft alternative to NMFD

© AudioLabs, 2016 Meinard Müller and Jonathan Driedgi Musically Informed Audio Decomposition

Kullback-Leibler Divergence between **Target and Mosaic** ·10⁴ 11 Kullback-Leibler divergence 9 10 11 12 Iteration number ℓ 14 15 16 17 18 19 20 Musically Informed Audio Decomposition LABS

Audio Mosaicing Target signal: Chic-Good times Source signal: Whales © AudioLabs, 2016 Meinard Müller and In LABS

Audio Mosaicing

© AudioLabs, 2016 Meinard Müller and Jo

Summary: Musically Informed Audio Decomposition

- Harmonic-percussiveresidual decomposition
- Singing voice extraction
- Audio mosaicing

© AudioLabs, 2016 Meinard Müller and Jo

Musically Informed Audio Decomposition

Summary: Musically Informed Audio Decomposition

- Harmonic-percussiveresidual decomposition
- Singing voice extraction
- Audio mosaicing
- Vibrato-residual decomposition

Summary: Musically Informed Audio Decomposition

- Harmonic-percussiveresidual decomposition
- Singing voice extraction
- Audio mosaicing
- Vibrato-residual decomposition
- Score-informed audio editing

¢1,17 mm mm

[Driedger et al. ACM-MM 2013]

LABS

Summary: Musically Informed Audio Decomposition

 Harmonic-percussiveresidual decomposition

Singing voice extraction

Audio mosaicing

Vibrato-residual decomposition

Score-informed audio editing

Time-scale modification

Musically Informed Audio Decomposition

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., 30 illus. in color, hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

© AudioLabs, 2016
Meinard Müller and Jonathan Driedge

Musically Informed Audio Decomposition

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., 30 illus. in color, hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Musically Informed Audio Decomposition

References

[Fitzgerald DAFx 2010] Derry Fitzgerald. Harmonic/percussive separation using medianfiltering. In Proceedings of the International Conference on Digital Audio Effects (DAFx), pages 246–253, Graz, Austria, 2010.

Austra, 2010.

[Tachibana et al. IEEE-TASLP 2013] Hideyuli Tachibana, Nobutaka Ono, and Shigeki Sagayama. Singing voice enhancement in monaural music signals based on two-stage harmonic/percussive sound separation on multiple resolution spectrograms. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(1):228–237, January 2013.

[Driedger et al. ISMIR 2014] Jonathan Driedger, Meinard Müller, and Sascha Disch, "Extending harmonic-percussive separation of audio signals," in Proceedings of the 15th International Conference on Music Information Retireus (ISMIR), Taiper, Taiwan, 2014.

[Virtanen et al. ISCA 2008] Tuomas Virtanen, Annamaria Mesaros, and Matti Ryynánen, "Combining pitch-based inference and non-negative spectrogram factorization in separating vocals from polyphonic music," in Proceedings of the ISCA Tutorial and Research Workshop on Statistical And Perceptual Audition (SAPA), 2008

[Salamon & Gómez Justin Salamon and Emilia Gómez, "Melody extraction from polyphonic music signals IEEE-TASLP 2012] using pitch contour characteristics," IEEE Transactions on Audio, Speech & Language Processing, vol. 20, no. 6, pp. 1759–770, 2012.

[Talmon et al. IEEE-TASLP 2011] Ronen Talmon, Israel Cohen, and Sharon Gannot, "Transient noise reduction using nonlocal diffusion filters," IEEE Transactions on Audio, Speech & Language Processing

[Candès et al. JACM 2011] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright, "Robust prinanalysis?," Journal of the ACM, vol. 58, no. 3, pp. 11:1–11:37, June 2011.

[Huang et al. ICASSP 2012] Po-Sen Huang, Scott Deeann Chen, Paris Smaragdis, and Mark Hasegawa-Johnson, "Singing-voice separation from monaural recordings using robust principal component analysis," in Proceedings of ICASSP, 2012.

Acknowledgements

This work has been supported by the German Research Foundation (DFG MU 2686/6-1). The International Audio Laboratories Erlangen are a joint institution of the Friedrich Alexander-Universität Erlangen-Nürnberg (FAU) and Fraunhofer IIS.

