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Richard, Lostanlen, Yang, Müller: Model-Based Deep Learning for Music Information Research: Leveraging Diverse Knowledge Sources
to Enhance Explainability, Controllability, and Resource Efficiency. IEEE Signal Processing Magazine, 41(6): 51–59, 2024
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Overview

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 
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Literature
 Turian, Henry: I'm sorry for your loss: Spectrally-based audio distances are bad at pitch. Proc. Adv. Neural Inf. Process. Syst., 2020.
 Hayes, Saitis, Fazekas: Sinusoidal frequency estimation by gradient descent. Proc. ICASSP, 2023.
 Torres, Peeters, Richard: Unsupervised Harmonic Parameter Estimation Using DDSP and Spectral Optimal Transport. Proc. ICASSP, 2024
 Schwär, Müller: Multi-Scale Spectral Loss Revisited. IEEE Signal Processing Letters, 30: 1712–1716, 2023.
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Knowledge Source: Signal Representations

 Hierarchical Classification Loss
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Example Scenario: Sinusoidal Frequency Estimation
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𝑓୲୲

Sinusoid with target frequency: 𝑓୲୲ ൌ 1000 Hz
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Loss

Sinusoid with target frequency: 𝑓୲୲ ൌ 1000 Hz

Sinusoid with estimated frequency: 𝑓 ୱ୲ ൌ 750 Hz

750
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Loss

Sinusoid with target frequency: 𝑓୲୲ ൌ 1000 Hz
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Loss

Sinusoid with target frequency: 𝑓୲୲ ൌ 1000 Hz

𝑓 ୱ୲
o

Sinusoid with estimated frequency: 𝑓 ୱ୲ ൌ 1100 Hz
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Loss

Sinusoid with target frequency: 𝑓୲୲ ൌ 1000 Hz

Sinusoidal sweep of estimated frequencies 𝑓 ୱ୲
Loss landscape over estimates for a given target 
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Lo
ss

Loss landscape depends a lot on the chosen loss function to 
compare estimated and target signal
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)
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Loss landscape depends a lot on the chosen loss function to 
compare estimated and target signal

 Loss function discussed later
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Lo
ss

Loss landscape depends a lot on the chosen loss function to 
compare estimated and target signal

 Loss function discussed later
 Ideal convex loss
 Multi-Scale Spectral (MSS) loss with standard settings

The MSS loss is what we 
widely use in audio 
processing (e.g., DDSP) 
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Multi-Scale Spectral Loss 

 𝑥 input signal
 𝑁  window size 
 𝐻  hop size
 𝑤  window function
 𝑝   compression function
 𝑑   distance function 
 set of window sizes
 set of compression function

Spectrum

MSS loss
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Multi-Scale Spectral Loss 

 𝑥 input signal
 𝑁  window size 
 𝐻  hop size
 𝑤  window function
 𝑝   compression function
 𝑑   distance function 
 set of window sizes
 set of compression function

Spectrum

MSS loss

MSS loss with 
standard settings:
(WH, S4, C4, D1)
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Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz

Time domain Frequency domain
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Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing

Mainlobe

Sidelobes Sidelobes

Time domain
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid 
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1003.9 Hz
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1003.9 Hz

Distance depends on
 Grid sampling
 Mainlobe & sidelobes
 Window type 
 STFT parameters
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1007.8 Hz

Distance depends on
 Grid sampling
 Mainlobe & sidelobes
 Window type 
 STFT parameters
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
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 Second signal: Sinusoid with frequency 𝑓 ൌ 1007.8 Hz

Distance depends on
 Grid sampling
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1020 Hz

Distance depends on
 Grid sampling
 Mainlobe & sidelobes
 Window type 
 STFT parameters
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1020 Hz

Distance depends on
 Grid sampling
 Mainlobe & sidelobes
 Window type 
 STFT parameters
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Dependency: Window Type

Hann window

Time domain Frequency domain
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Dependency: Window Type

Hann window

Rectangular window

Time domain Frequency domain
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Dependency: Window Type

Hann window

Rectangular window

Flattop window

Time domain Frequency domain
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Dependency: Window Type

Hann window

Rectangular window

Flattop window

Time domain Frequency domain
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Dependency: Window Type

Hann window

Rectangular window

Flattop window

Estimated frequency (Hz)

Lo
ss

Lo
ss

Lo
ss

Loss landscape over estimates for a given target 

1000
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Dependency: Window Size

𝑁 ൌ  2048
𝑁 ൌ 512
𝑁 ൌ 8192
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Dependency: Window Size
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Dependency: Magnitude Compression

None

Decibels

Log(1+value)
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Dependency: Magnitude Compression

Estimated frequency (Hz)

Lo
ss

Lo
ss

Lo
ss

Loss landscape over estimates for a given target 

1000

None

Decibels

Log(1+value)
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Experiments

Estimated frequency (Hz)

Lo
ss

 MSS loss with standard settings (WH, S4, C4, D1)

1000

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
50

Experiments

Estimated frequency (Hz)
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 MSS loss with standard settings (WH, S4, C4, D1)
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Experiments

Estimated frequency (Hz)

Lo
ss

 MSS loss with standard settings (WH, S4, C4, D1)
 Modified Hann MSS (WH, S5, C4, D2)
 Smooth MSS (WF, S5, C2, D2)

1000
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Experiments

GRAConfiguration
300 ct.30 ct.3 ct.0.3 ct.Step Size
0.7750.5730.5290.523Standard MSS
0.9230.7080.6350.613Modified Hann MSS
0.8600.9520.9930.999Smooth MSS

Estimated frequency (Hz)

Lo
ss

GRA (Gradient-Sign Ranking Accuracy)
 Measures how often the loss gradient 

points in the correct direction.
 Step size distinguishes local gradient 

behavior from global trend.

1000
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Overview

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär

Michael Krause
Johannes Zeitler

Literature
 Silla, Freitas: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1-29: 

31–72, 2011.
 Wehrmann, Cerri, Barros: Hierarchical multi-label classification networks. Proc. ICML, 2018.
 Krause, Müller: Hierarchical Classification for Singing Activity, Gender, and Type in Complex Music Recordings. Proc. ICASSP, 2022.
 Krause, Müller: Hierarchical Classification for Instrument Activity Detection in Orchestral Music Recordings. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 31: 2567–2578, 2023.
 Weiß, Arifi-Müller, Krause, Zalkow, Klauk, Kleinertz, Müller: Wagner Ring Dataset: A Complex Opera Scenario for Music Processing and 

Computational Musicology. Transaction of the International Society for Music Information Retrieval (TISMIR), 6(1): 135–149, 2023.
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Wagner Ring Dataset

 Tetralogy (four operas)
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Wagner Ring Dataset

 Tetralogy (four operas)
 11 Acts
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Wagner Ring Dataset

 Tetralogy (four operas)
 11 Acts
 21,939 measures
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Wagner Ring Dataset
Raw Data

 Symbolic score:
 Piano reduction
 822 pages
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Wagner Ring Dataset
Raw Data

 Symbolic score:
 Piano reduction
 822 pages

 Audio recordings:
 16 performances
 232 hours
 3 performances in 

Public Domain (EU)
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Wagner Ring Dataset
Annotations

 Measure positions

Time (measures)

Time (seconds)
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Wagner Ring Dataset
Annotations

 Measure positions
 Note events
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Wagner Ring Dataset
Annotations

 Measure positions
 Note events
 Singing regions
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Wagner Ring Dataset
Annotations

 Measure positions
 Note events
 Singing regions
 Time signatures
 Key signatures
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PhD Thesis by Michael Krause (2023)
Activity Detection for Sound Events in Orchestral Music Recordings

Singing Voice 
Detection

Leitmotif 
Detection

Instrument
Detection
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Singing activity

Hierarchical Classification
Singing Voice Detection

Levels

Activity
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Singing activity

Male Female

Hierarchical Classification
Singing Voice Detection

Levels

Activity

Gender
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Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

Hierarchical Classification
Singing Voice Detection

Levels

Activity

Gender

Voice type
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Hierarchical Strategies for Activity Detection

 Strategy A: Independent Decisions
 Strategy B: Bottom-Up Aggregation
 Strategy C: Top-Down Divide-and-Conquer
 Strategy D: Joint Classification
 Strategy Dα,β: Joint Classification with Consistency Losses
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Hierarchical Strategies for Activity Detection
Strategy A: Independent Decisions

 Train and evaluate separate models 
for each hierarchy level

 Activity classifier

 Gender classifier

 Voice type classifier

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy A: Independent Decisions

 Train and evaluate separate models 
for each hierarchy level

 Activity classifier

 Gender classifier

 Voice type classifier

 Outputs may be inconsistent

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy B: Bottom-Up Aggregation

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

 Train and evaluate a single model for 
the lowest hierarchy level

 Voice type classifier

 Aggregate results from lower levels

 Consistency is trivially fulfilled

 May cause poor predictions on upper 
levels due to error propagation
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Hierarchical Strategies for Activity Detection
Strategy D: Joint Classification

 Train and evaluate a single model for 
all classes

→ Multi-task model

 Need additional loss terms to 
promote consistent predictions

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

 Notation:
 c: a class
 pc: probability of cSinging activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

 Notation:
 c: a class
 pc: probability of c
 c↓: child classes of c

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

 Notation:
 c: a class
 pc: probability of c
 c↓: child classes of c

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

 For bottom-up consistency, minimize

pc should be at least as high as any pc'

→    penalty for every pc' >  pc
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

 Notation:
 c: a class
 pc: probability of c
 c↓: child classes of c

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

 For top-down consistency, minimize

pc should not be above largest pc' 
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

All classes

Classes at level h

Number of levels

Children of c

Probability for c

Notation
Bottom-up loss term:

Top-down loss term:

Joint loss term:
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Results: Female Singing

 Strategy A (Independent Decisions) yields good but inconsistent results

Frames predicted as c

Frames predicted as 
child of c

Consistency

ConsistencyDetection results (frame-wise F-measure)
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Results: Female Singing

 Strategy A (Independent Decisions) yields good but inconsistent results
 Strategy B (Bottom-Up Aggregation) gives worse but consistent results

Frames predicted as c

Frames predicted as 
child of c

Consistency

ConsistencyDetection results (frame-wise F-measure)
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Results: Female Singing

 Strategy A (Independent Decisions) yields good but inconsistent results
 Strategy B (Bottom-Up Aggregation) gives worse but consistent results
 Strategy Dα,β (Joint with Consistency Losses) provides good trade-off

Frames predicted as c

Frames predicted as 
child of c

Consistency

ConsistencyDetection results (frame-wise F-measure)
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Scenario: Hierarchical Instrument Classification

 Musical instruments can naturally be arranged into hierarchies

Instrument activity

Woodwind

Flute Oboe Bassoon

Brass Timpani Vocals Strings

Clarinet French Horn Trumpet Female Male Violin Viola Cello Contrabass

 Instrument-level annotations hard to obtain
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Overview

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär

Michael Krause
Johannes Zeitler

Literature
 Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017.
 Blondel, Mensch, Vert: Differentiable Divergences Between Time Series. AISTATS, 2021.
 Krause, Weiß, Müller: Soft Dynamic Time Warping For Multi Pitch Estimation And Beyond. Proc. ICASSP, 2023.
 Zeitler, Deniffel, Krause, Müller: Stabilizing Training with Soft Dynamic Time Warping: A Case Study for Pitch Class Estimation with Weakly 

Aligned Targets. Proc. ISMIR, 2023.
 Zeitler, Krause, Müller: Soft Dynamic Time Warping with Variable Step Weights. Proc. ICASSP, 2024.
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (seconds)

Time (seconds)

Karajan
(Orchester)

Gould
(Piano)
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

Karajan
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(Piano)

C
hr
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a

C
hr
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a

G

G

C

C

B
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

Karajan
(Orchester)

Gould
(Piano)

C
hr
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C
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

E♭

E♭

Karajan
(Orchester)

Gould
(Piano)

C
hr

om
a

C
hr

om
a
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Ti
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e 
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Gould
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Ti
m

e 
(in

di
ce

s)
Ka

ra
ja

n

Gould

Cost matrix
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Ti
m

e 
(in

di
ce

s)
Ka

ra
ja

n

Gould

Cost matrix
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Ti
m

e 
(in

di
ce

s)
Ka

ra
ja

n

Gould

Cost-minimizing 
warping path
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Karajan
(Orchester)

Gould
(Piano)

Cost-minimizing 
warping path

→ Strong alignment

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
93

Feature Learning

Strong alignment

Input

Ouput

Targets

 Task: Learn audio features using a neural network

 Loss: Binary cross-entropy 
 framewise loss
 requires strongly aligned targets
 hard to obtain

Neural Network
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Feature Learning

Weak alignment

Input

Ouput

Targets

 Task: Learn audio features using a neural network

 Loss: Binary cross-entropy 
 framewise loss
 requires strongly aligned targets
 hard to obtain

 Alignment as part of loss function
 requires only weakly aligned targets
 needs to be differentiable

 Problem: DTW is not differentiable
→ Soft DTW

?

Neural Network
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Dynamic Time Warping (DTW)

Sequence X

Sequence Y

x9x8x7x6x5x4x3x2x1

y7y6y5y4y3y2y1

Alignment

1 2 3 4 5 6 7
1
2
3
4
5
6
7
8
9

Sequence Y

Se
qu

en
ce

X

Alignment matrix

Set of all possible alignment matrices

=  Feature space
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Dynamic Time Warping (DTW)

=  Feature space

Cost measure:

Cost matrix:

Cost of alignment:

DTW cost:

with

Optimal alignment:

Alignment matrix

Set of all possible alignment matrices
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Dynamic Time Warping (DTW)

DTW cost:

 Efficient computation via Bellman’s recursion in O(NM)

 Problem: DTW(C) is not differentiable with regard to C

 Idea: Replace min-function by a smooth version

for set                 and temperature parameter 

for n>1 and m>1 and suitable initialization.  
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Soft Dynamic Time Warping (SDTW)

SDTW cost:

 Efficient computation via Bellman’s recursion in O(NM) still works:

 Limit case:

 Questions:
‒ How does the gradient look like?
‒ Can it be computed efficiently?
‒ How does SDTW generalize the alignment concept?

for n>1 and m>1 and suitable initialization.  

 SDTW(C) is differentiable with regard to C
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Soft Dynamic Time Warping (SDTW)

SDTW cost:

 Define              as the following “probability” distribution over            : 

for

 The expected alignment with respect to             is given by:

 The gradient is given by: 

Soft-DTW
Cuturi, Blondel: Soft-DTW: A 
Differentiable Loss Function
for Time-Series. ICML, 2017

 The gradient can be computed efficiently in  O(NM) via a recursive algorithm.
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Soft Dynamic Time Warping (SDTW)

Se
qu

en
ce

Y

Sequence X

Expected alignment :

Cost matrix C

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 
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Soft Dynamic Time Warping (SDTW)

Se
qu

en
ce

Y

Sequence X

Expected alignment :

Cost matrix C

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

Optimal alignment A*
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Soft Dynamic Time Warping (SDTW)

Se
qu

en
ce

Y

Sequence X

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 0 ( = A* )
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 0.1

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 1

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 10

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 100

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)
Conclusions

 Direct generalization of DTW (replacing min by smooth variant)

 Gradient is given by expected alignment

 Fast forward algorithm: O(NM)

 Fast gradient computation: O(NM)

 SDTW yields a (typically) poor lower bound for DTW

 Can be used as loss function to learn from weakly aligned sequences  
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Soft Dynamic Time Warping (SDTW)
Stabilizing Training

 Standard SDTW often unstable
 Unstable training in early stages
 Degenerate output alignment 

 Hyperparameter adjustment
 High temperature to smooth alignments
 Temperature annealing 

 Diagonal prior

 Modified step size condition

Predicted sequence (frames)

Ta
rg

et
 s

eq
. (

fr.
)

SDTW alignment
Reference alignment

Predicted sequence (frames)

Ta
rg

et
 s

eq
. (

fr.
)

Predicted sequence (frames)

Ta
rg

et
 s

eq
. (

fr.
)
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Soft Dynamic Time Warping (SDTW)
Representation Learning

 Symmetric application
 Learn representation of both sequences
 Needs a contrastive loss term

 Assymmetric application 
 Use fixed (e.g., binary) encoding of target
 Learn representation of only one sequences
 No contrastive loss term need

 Simulation of CTC-loss using SDTW possible 

 Many DTW variants also possible for SDTW

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
110

Conclusions

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär

Michael Krause
Johannes Zeitler
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Conclusions

Müller, Zeitler: 2025 ISMIR Tutorial
Differentiable Alignment Techniques for Music 
Processing: Techniques and Applications

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär

Michael Krause
Johannes Zeitler


