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ABSTRACT

Abstract

Analyzing spatial sound fields typically necessitates a large number of microphones placed at

specific spatial points. The usage of moving microphones provides an alternative method for

analysis, potentially reducing the required number of microphones. To investigate the potential

of a single fast moving microphone we previously developed the rotating equatorial microphone

prototype. The circular motion of this microphone introduces distortions into recorded sound

sources which can be used to determine their direction of arrival (DOA).

In this thesis an algorithm is derived which compensates these distortions for arbitrary sound

sources given their DOA. Additionally, a metric is introduced which quantifies the distortions

present in an audio recording. Subsequently, arbitrary sound sources with an unknown DOA are

localized by applying the algorithm for various DOA guesses and determining the DOA with

minimum distortion using the previously defined metric. With this approach we localized four

simultaneous wideband audio signals in 2D space and two wideband audio signals in 3D space

with ±10◦ accuracy in simulations. We then verified the approach in practice for one and two

simultaneous audio sources. We found that accurate localization was only possible in 2D space

for audio sources mainly consisting of constant tones in the mid frequency range.
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1. INTRODUCTION

Chapter 1

Introduction

Analyzing spatial sound fields to perform applications such as beamforming, source localization

and blind source separation typically necessitates a large number of microphones, known as a

microphone array. Conventionally these arrays consist of non-coincident microphones placed at

various selected spatial points or coincident microphones with a non-omnidirectional directivity. A

well known microphone array is mh acoustics’ em32 Eigenmike®, which is a spherical microphone

array consisting of 32 microphones placed on a rigid sphere with an 8.4 cm diameter [24]. Due

to its small form factor and large number of microphones it is highly capable of a multitude of

spatial audio applications. However, one major disadvantage is the high cost associated with

the large number of microphones. This has lead the authors of [2] to devise their so-called

equatorial microphone array (EMA), which has 17 microphones placed along the equator of a

rigid sphere with a 17.5 cm diameter. Although the number of microphones is smaller than that

of the Eigenmike, a spherical microphone array would require at least 81 microphones to evaluate

the sound field as accurately as the EMA, as long as we can assume the sound field to be height

invariant.

The conception of the EMA sparked another idea, which has the potential to greatly reduce the

number of required microphones even further: Instead of placing many stationary microphones

around the equator of a sphere, instead it could be possible to approximate the data captured by

the EMA utilizing only one microphone which rapidly moves along the equator. Naively this

could be achieved by setting the sampling rate of the moving microphone to 17 times that of the

EMA and performing a full rotation between every sample of the EMA. For a typical sampling

rate of 48 kHz, however, this would require 48000 microphone rotations per second (RPS), which

is highly infeasible in practice. Alternatively, an attempt could be made to use the data captured

by the moving microphone to interpolate the sound field at the microphone positions of the EMA.

This, however, requires additional information about the sound waves captured by the moving

microphone, such as their direction of arrival (DOA). This motivates the topic of this thesis: A
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1. INTRODUCTION

constant, circular microphone movement introduces periodic, DOA-dependent distortions into

the recorded sound. If we can estimate the DOA of incoming (plane) sound waves from these

distortions, it should allow us to approximate the sound field around the equator of a rigid sphere,

enabling us to use EMA sound processing algorithms while only requiring one microphone.

To investigate the potential of sound field analysis using a fast rotating microphone in practice,

we previously built the rotating equatorial microphone (REM) prototype described in [22]. The

microphone was designed to reach speeds of up to 1000RPS in order to capture various points

along the equator at similar points in time, however, we quickly realized that beyond 40RPS the

signal captured by the microphone becomes unusable due to motor and especially wind noise.

Fortunately, inspecting the audio signals captured by the REM sparked an idea, potentially

allowing for DOA estimation at much lower speeds, upon which we will expand later.

The following chapter will cover the current state of the art in sound field analysis using moving

microphones, particularly in regard to DOA estimation. Chapter 3 will give a detailed description

of the distortions introduced into a microphone recording due to circular movement, as well as

how these distortions can be compensated using two different methods. In Chapter 4 the findings

from the previous chapter will be used to perform DOA estimation in a simulated environment

under various conditions. Finally, Chapter 5 will investigate the accuracy of the proposed DOA

estimation algorithm in practice by performing sound source localization using the REM for

various sound sources and locations in an anechoic chamber.
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2. LITERATURE REVIEW

Chapter 2

Literature Review

Spatial sound field analysis using microphone arrays has been studied very comprehensively,

whereas research using one or multiple moving microphones is scarce. The limited research

that has been conducted mainly addresses the measurement of room impulse responses and

head-related transfer functions with a given known source signal. There are two main approaches,

those that we categorize as using slow microphone movement such that there is only a marginal

distortion of the recorded sound due to the movement and those utilizing fast microphone

movement where there is significant distortion. Although we do not intend to determine room

impulse responses in this thesis, we will nonetheless give an overview of these approaches, since

the used signal processing ideas may prove helpful for DOA estimation and future research.

Section 2.1 and Section 2.2 cover room impulse response measurement for slow and fast moving

microphones, respectively. In Section 2.3 we will cover the limited research that has been

conducted on DOA estimation using moving microphones, as well as the limitations of these

approaches.

2.1 Room Impulse Response Measurement Using Slow Micro-

phone Movement

Impulse responses characterize a system’s behaviour when presented with a very brief input

signal, known as an impulse. An interesting property of impulse responses is that the output of a

time-invariant system can be computed by convolving its input with its impulse response [4]. The

same holds for time-variant systems, with the only difference being that the impulse response

varies over time. If we want to obtain the way sound changes as it travels from one point in a

room to another, we can do this by computing the impulse response between the two points and

subsequently convolving it with an arbitrary input. Such an impulse response is known as a
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2. LITERATURE REVIEW

room impulse response (RIR) as it characterizes the acoustic properties of the room. To allow

us to, for example, virtually place sound sources at arbitrary points in a room and obtain the

way they sound at a given listener’s position we require a very large number of RIRs. These

can be obtained by either placing a microphone array with potentially hundreds of microphones

in the room, or utilizing a small number of microphones and moving them after obtaining each

RIR. These methods are either very costly or very time-consuming, making the use of a moving

microphone appealing, as it could significantly reduce the time required while keeping the cost

low.

The authors of [3] investigated the possibility of obtaining RIRs along a given circular microphone

trajectory without requiring the microphone to stop during acquisition. The main idea lies in the

reconstruction of a two-dimensional spectrum for both spatial and temporal frequencies from the

one-dimensional frequency spectrum of the signal captured by the microphone, given a known

excitation signal. This two-dimensional spectrum can then be divided by the spectrum of the

excitation signal to obtain the spectrum of the impulse responses at various spatial points, from

which the impulse responses can be obtained by taking the inverse Fourier transform. To obtain

the two-dimensional spectrum, the excitation signal needs to be chosen such that it contains

many frequencies which are all spaced sufficiently far apart that any Doppler frequency shift due

to the movement doesn’t cause their spectra to overlap. The distance between higher frequencies

therefore needs to be greater, since the Doppler shift is proportional to the frequency, i.e. higher

frequencies get shifted by a larger amount. If this condition holds, any frequency present in the

recorded signal can be uniquely projected onto the two-dimensional spectrum. This concept is

illustrated in Figure 2.1, where ω represents the frequency axis, lθ the spatial frequency axis,

ω1 and ω2 are the two largest frequencies present in the excitation signal and v⃗ is the angular

velocity of the circular movement. The recorded Doppler shifted frequencies are initially on the

ω-axis and can be uniquely projected onto the true frequencies ω1, ω2, etc. following the direction

Figure 2.1: Projection of 1D spectrum onto 2D spectrum (image modified from [3]).
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2.1 ROOM IMPULSE RESPONSE MEASUREMENT USING SLOW MICROPHONE
MOVEMENT

of v⃗. This projection removes the Doppler shift and provides us with spatial information.

For this approach there is an additional constraint regarding the maximum angular velocity

of the microphone which may not exceed vmax = πc
r(ω1T−π) , where c is the speed of sound, r

the radius of the circular motion and T is the RIR length. This leads to very slow microphone

movement on the order of several minutes for one microphone rotation.

Initially this approach looks promising for DOA estimation as it allows us to gather spatial

information from recorded sounds by projection onto a two-dimensional spectrum. However,

this is only possible if the source signals are known and their frequencies sufficiently spaced.

Ideally our DOA estimation should be able to locate arbitrary, unknown sound sources, which

this approach does not allow for. Furthermore the maximum allowable speed of the microphone

is very limited, making it impossible to sample the sound field along the equator of a sphere at

similar points in time.

The authors of [9] followed a different approach. The initial setup is similar to the approach

discussed above and differs only in the utilized excitation signal, which is chosen to be a periodic

perfect sequence ψ(n) with period N . Perfect sequences have an ideal autocorrelation, i.e. the

autocorrelation is an arbitrary value (usually 1) when the signal overlaps perfectly with itself

and 0 otherwise.

Figure 2.2: Setup for RIR measurement (image from [9]).

The locations at which the RIRs are to be determined are the grey points shown in Figure 2.2,

which are also the sampling positions of the microphone. Here s(n) is the source signal, p(n) the

recorded signal at discrete time and position n, r0 is the radius and Ωϕ the angular velocity of

the circular microphone movement. Using a periodic perfect sequence ψ(n) as a source signal

allows for the k-th coefficients of the impulse responses at all positions n to be expressed as

h(k, n) =
∑N−1

m=0 am(n)ψ(−k + m), where am(n) is an expansion coefficient and the impulse

responses are assumed to be shorter than N . The expansion coefficients can be obtained as

p(n) = a(n mod N)(n). If we choose N = 4 this means we only sample 1
4 -th of the required

expansion coefficients, as shown in Figure 2.3. This, however, does not pose a problem if the
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spatial sampling points are placed sufficiently close to each another, i.e. if the microphone moves

slowly enough, since we can obtain the missing samples from neighbouring coefficients using

linear or sinc interpolation.

Figure 2.3: Observed expansion coefficients for N = 4 (image modified from [9]).

The authors of this approach also investigated the case in which the microphone does not

move uniformly in [10], as it is difficult to achieve perfectly uniform movement in practice.

Non-uniform movement results in uneven spacing of the sampling points from Figure 2.3, making

interpolation more challenging. This is circumvented by using Lagrange interpolation instead of

sinc interpolation.

Interestingly, the maximum allowable speed of this approach is very similar to the approach

from [3], even though the methodology is quite different, once again making it impossible to

sample different points around the equator of a sphere at similar points in time. Additionally,

this approach requires a very specific, known excitation signal, making it challenging to use any

of its signal processing ideas for DOA estimation.

2.2 Room Impulse Response Measurement Using Fast Micro-

phone Movement

Contrary to the approaches from the previous section, the approach from [16] imposes no

constraints regarding the excitation signal and the speed of the microphone movement. Here a

Cartesian grid G with equidistant sampling points is defined where the RIRs are computed at

each point of the grid. The spacing ∆ between the points is chosen sufficiently small to prevent

spatial aliasing, i.e. ∆ < c
2fc

, where c is the speed of sound and fc is the maximum frequency to

be considered. The microphone moves along an arbitrary tracked path rrr(n) and captures the

signal

x(n) =
L−1∑
k=0

h(rrr(n), k) · s(n− k) + η(n) , (2.1)

where s(n) is the source signal, η(n) is the measurement noise and h(rrr(n), k) is the k-th coefficient
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2.2 ROOM IMPULSE RESPONSE MEASUREMENT USING FAST MICROPHONE
MOVEMENT

of the RIR of length L between the source and position rrr(n). The main idea is to interpolate the

RIRs h(rrr(n), k) from the RIRs on the grid as

h(rrr(n), k) =
∑
ggg∈G

φ(rrr(n), rgrgrg) · h(ggg, k) , (2.2)

where φ(rrr(n), rgrgrg) is the interpolation coefficient for the displacement rrr(n) − rgrgrg between the

microphone position and the grid positions rgrgrg. If s(n) is known and rrr(n) is perfectly tracked

then a system of linear equations can be constructed, allowing the reconstruction of all the RIRs,

given enough samples x(n).

The authors found that the accuracy of this approach degraded close to the boundary of the grid,

hence they utilized Lissajous trajectories in conjunction with Lagrange interpolation to improve

the performance. Lissajous curves were chosen due to their high density at the boundaries of the

grid, as shown in Figure 2.4.

Figure 2.4: Lissajous trajectory and RIR grid (image from [18]).

The authors further improved upon this approach in [17], where they utilized multiple grid

spacings ∆. Since the required grid density is dependent on the highest considered frequency,

this approach allowed for faster reconstruction of lower frequency by utilizing a sparser grid.

Additionally, they showed that under noisy conditions this improved the RIR recovery quality.

The described approach looks promising for DOA estimation, as it allows us to characterize a

sound field without any imposed requirements regarding the sound source or the microphone

trajectory and speed. The main problem is that we require precise knowledge of the sound

source. This could possibly be circumvented by utilizing an additional stationary microphone as a
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2. LITERATURE REVIEW

reference, however, since we would like to perform DOA estimation using only one microphone we

will set aside this idea for future research. Another problem inherent with this approach is that

it is difficult to implement Lissajous trajectories at high speed in practice. Although different

paths are also permissible, they may decrease the accuracy of the sound field reconstruction.

Another modification of the previously described approach was performed in [15]. Here, rather

than interpolating h(rrr(n), k) from Equation (2.1) using the RIRs on the grid as shown in Equation

(2.2), it is instead approximated with P multidimensional basis functions fp(·) as

h(rrr(n), k) ≈
P∑

p=1

apfp(rrr(n), k) , (2.3)

where fp(·) are chosen to be spherical harmonics basis functions and ap are the spherical harmonic

coefficients to be determined. An example of the first few spherical harmonics are depicted

in Figure 2.5, where blue and yellow regions represent positive and negative function values,

respectively.

Figure 2.5: Visual representations of the first few real spherical harmonics (image from [27]).

Equation (2.3), in essence, represents a spherical harmonics decomposition of the RIRs. Much

like a Fourier transform decomposes an arbitrary signal into a weighted sum of sinusoidal basis

functions with different frequencies and phases, a spherical harmonics decomposition decomposes

a three-dimensional sound field into a weighted sum of spherical harmonics basis functions.

Side note: This is one way spherical microphone arrays and the EMA are able to characterize a

sound field. In the case of spherical microphone arrays the spherical harmonic coefficients are

obtained by evaluating a weighted integral of the sound pressure over the surface of the sphere,

which can be performed more accurately the more microphones we have on the sphere’s surface.

In the case of the EMA a simplified formula is obtained, only requiring a weighted integration

over the equator of the sphere, given that the sound field is height invariant. As the required
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2.3 DIRECTION OF ARRIVAL ESTIMATION USING MOVING MICROPHONES

formulae are rather cumbersome, they are omitted here and can be found in [2]. The formulae for

determining the parameters ap will also not be included here and can be found in reference [15].

Since the ultimate goal of DOA estimation using the REM is to be able to approximate the data

captured by the EMA or spherical microphone array, this approach looks very promising, since it

skips the requirement for DOA estimation altogether and characterizes the sound field using a

spherical harmonics decomposition. However, as was the case with the previous approach, we

require knowledge of the excitation signal and the microphone trajectory is difficult to implement

in practice. Workarounds could be to use a simpler trajectory and an additional stationary

reference microphone, but, as before, we set aside this idea for future research.

2.3 Direction of Arrival Estimation Using Moving Microphones

We will now cover the research that has been conducted specifically investigating DOA estimation

using moving microphones. The authors of [31] devised a DOA estimation algorithm utilizing a

static circular microphone array with up to 8 microphones which is sampled in a round robin

fashion, i.e. a signal is constructed by taking the first sample from the first microphone, the

second sample from the neighbouring microphone and so on in a circular fashion. Although this

research technically did not utilize a moving microphone, the constructed signal is equivalent to

a signal captured by a (very) fast rotating microphone.

The circular sampling introduces a periodic Doppler shift into the signal which can be utilized

for DOA estimation. Further elaboration on this frequency shift will be provided in Section 3.1.

Due to this effect we observe a periodically shifted instantaneous frequency fobs(n) at discrete

time n when recording a sound source emitting a tone of frequency f0 arriving at azimuth angle

φ relative to the position of the first microphone, given by

fobs(n) = f0 ·
(
1− 2πrfs

Mc
· sin

(
2πfs
M

· n− φ

))
, (2.4)

where M is the number of microphones of the circular array with radius r, fs is the sampling

rate and c is the speed of sound. As it can be seen, the instantaneous frequency periodically

shifts around f0 in a sinusoidal manner with phase offset φ. Therefore, determining the phase

of this sinusoid provides us with the DOA of the source signal. The instantaneous frequency

is estimated using the Teager-Kaiser Energy Operator (TKEO) from [14], which is given by

ψ(x(n)) = x2(n)− x(n− 1) · x(n+ 1). It is an estimate of the instantaneous energy of x(n) and

approximately equal to the squared product of the frequency and amplitude of the signal. The

DOA is subsequently estimated by
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2. LITERATURE REVIEW

φ =
π

2
− ∠

{
N−1∑
n=0

ψdiff(n) · e−j 2πn
M

}
, (2.5)

where ψdiff(n) is the differential TKEO given by ψdiff(n) = ψ(x(n))− ψ(xopp(n)). Here xopp(n)

corresponds to a signal constructed via circular sampling which starts at the microphone opposite

of the first microphone from x(n).

To enable this approach to function with multiple, more complex sound sources the constructed

signals are divided into a number of subbands and frames and a phase estimate is performed for

each band and frame. All of the estimates are subsequently combined into a histogram, which

shows clear peaks at the source positions. In [31] this approach was able to locate 5 speech

sources with reasonable accuracy.

The advantages of this DOA estimation algorithm are its simplicity, low computational complexity

and ability to locate multiple complex sources. As shown in [32], however, the TKEO is

susceptible to noise and only suitable for frequencies up to fs/8. The susceptibility to noise is

particularly problematic when attempting to perform this DOA estimation approach using a

moving microphone since the microphone movement will introduce wind and motor noise into the

recorded signal. Additionally, the computation of ψdiff(n) would require two moving microphones

placed opposite of each other. This in itself does not pose a problem, since our REM prototype

contains two oppositely mounted microphones (see Section 5.1 and [22]), however, preferably we

wish to perform DOA estimation using only one microphone.

An improvement to this approach was made in [32], where the TKEO was replaced by the Center-

of-gravity (CoG) algorithm from [6] for the estimation of the instantaneous frequency fIF(n). As

shown in [12], the CoG algorithm is given by

fIF(n) =
fs
N

·
∑N

2
−1

k=0 k · |X(k, n)|2∑N
2
−1

k=0 |X(k, n)|2
(2.6)

for discrete-time signals, where X(k, n) is the spectrogram of x(n) with k frequency bins and

N is the length of the discrete Fourier transform (DFT). The subsequent DOA estimation is

performed by replacing ψdiff(n) in Equation (2.5) with fIF(n). The estimate can be made even

more robust using the differential instantaneous frequency, which analogous to ψdiff(n) is the

difference of the instantaneous frequencies computed over two circularly sampled signals with

opposite starting points. The paper showed that the CoG approach consistently outperformed

the TKEO approach.
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2.3 DIRECTION OF ARRIVAL ESTIMATION USING MOVING MICROPHONES

The paper also investigated the DOA estimation accuracy for different distances between the

sound source and the microphone array. For distances above 20 cm and an array diameter of 8 cm

the estimation accuracy is reasonably constant and only deteriorates at closer distances. This is

due to the fact that the phase of the instantaneous frequency only gets noticeably distorted at

close distances due to curved wavefronts.

In [12] the previously described approach was implemented in practice using a fast rotating

microphone with a 25 cm diameter. To our knowledge it is also the only publication in which a

fast rotating microphone was designed and evaluated in practice, aside from our REM prototype.

The rotational speeds reached were between approximately 6RPS and 17RPS. At these speeds

the individual microphone samples are taken at very close distances to each other, much closer

than would be possible with the circular sampling approach, potentially leading to a higher DOA

estimation accuracy.

The authors first simulated the DOA estimation accuracy of various single-frequency tones

at different rotational speeds and signal-to-noise ratios (SNRs) using additive pink noise and

subsequently tested these scenarios in practice in an anechoic chamber. The results can be found

in Figure 2.6.

(a) 9.58RPS (simulated) (b) 17.24RPS (simulated)

(c) 9.58RPS (real) (d) 17.24RPS (real)

Figure 2.6: DOA estimation accuracy for different rotational speeds and frequencies at various
SNRs (images from [12]).
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2. LITERATURE REVIEW

As it can be seen, the DOA estimation accuracy increases for higher SNRs and frequencies both

in theory and practice. This was to be expected, since the Doppler frequency shift is larger at

high frequencies and thus the change in the instantaneous frequency can be estimated more

accurately. Higher SNRs similarly allow for an improved instantaneous frequency estimation.

Additionally, it was expected that higher rotational speeds would increase the DOA estimation

accuracy due to larger Doppler shifts. However, simulations showed that the accuracy slightly

deteriorated at larger rotational speeds, especially for higher frequencies. This may be due to a

decrease in the estimation accuracy of the instantaneous frequency as it changes more quickly

at higher speeds. In practice, this effect was also discernible to some extent, although it is

challenging to determine the impact of the additional wind and motor noise as a result of higher

rotational speeds on this observation.

The research showed that DOA estimation using a rotating microphone is feasible in practice and

reasonably accurate for higher frequencies. A major drawback of the used approach, however, is

the inability to locate low frequencies reliably. Additionally, the utilized implementation relies

on the sound sources to be single, constant and known frequencies. Dividing the recorded signal

into subbands could help circumvent this problem, but only as long as each subband can be

assumed to only contain one frequency.

We will now elaborate on the introduced Doppler shift due to rotation in more detail and

subsequently derive a new method of DOA estimation, which not only has the potential to locate

complex and low frequency sources more reliably, but also has the ability to remove the distortion

introduced due to the microphone rotation.
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Chapter 3

Theoretical Foundations

In this chapter we elaborate on the theoretical background needed to perform DOA estimation

with a rotating microphone and subsequently use this knowledge to implement a DOA detection

algorithm. Section 3.1 shows a connection between the aforementioned movement-induced

Doppler shift and frequency modulation and in Section 3.2 a simple DOA detection algorithm is

derived. Section 3.3 introduces an alternative representation of frequency modulation using Bessel

functions and Section 3.4 derives an algorithm to compensate frequency modulation. Finally,

Section 3.5 shows an alternative to the previously derived frequency modulation compensation

algorithm.

3.1 Frequency Modulation due to Rotation

Figure 3.1: Rotating microphone in a sound field.
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3. THEORETICAL FOUNDATIONS

As we already briefly outlined in Section 2.3, a circular rotation in a sound field introduces a

periodic Doppler shift into the recorded signal. In the following, a more detailed explanation of

this effect will be given.

Consider a circularly moving microphone in the x-y plane with rotational radius r and rotational

speed frot placed in a sound field composed of only a monochromatic wave of frequency fsrc

arriving at angle φ relative to the initial microphone position. The sound source is assumed

to be in the x-y plane and sufficiently far away from the microphone such that we can assume

all incoming waves to be plane waves. Furthermore, there are no acoustic reflections, i.e. the

microphone is in a free field. This scenario is depicted in Figure 3.1.

If we further assume the microphone to be perfectly omnidirectional the circular microphone

movement can be simplified to a sinusoidal movement along a line perpendicular to the incoming

sound waves, as shown in Figure 3.2. This movement can be seen as a projection of the circular

movement onto an axis perpendicular to the plane waves.

Figure 3.2: Equivalent linear sinusoidal movement of a microphone in a sound field.

From the depicted scenario it becomes clear that a periodic Doppler shift is introduced into the

recorded sound. This shift reaches its maximum whenever the microphone is at the center of its

linear movement, since this is the point at which the speed relative to the incoming sound waves

is at its maximum. The maximum speed of the microphone vm,max relative to the plane waves

corresponds to the angular velocity of the circularly rotating microphone:

vm,max = 2πr · frot (3.1)
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Since the speed of the linear movement changes in a sinusoidal fashion with respect to frot, the

instantaneous speed of the microphone relative to the plane waves can be computed as

vr(t) = vm,max · cos(2πfrot t) = 2πr · frot · cos(2πfrot t) , (3.2)

if the initial microphone position is assumed to be at the center of the linear movement, i.e.

φ = 90◦. To compute the observed instantaneous frequency due to the movement, we make use

of the well-known Doppler shift formula

fobs =

(
c± vr
c± vs

)
· fsrc , (3.3)

where c is the speed of sound and fobs is the observed frequency of a receiver moving at speed vr

relative to a sound source moving at speed vs, emitting frequency fsrc [29]. In our case vs = 0

and we use the positive sign in front of vr since the microphone initially moves towards the sound

source. Our instantaneous observed frequency therefore becomes:

fobs(t) =

(
1 +

vr(t)

c

)
· fsrc (3.4)

To find an expression for the signal x(t) captured by the microphone, we make use of the fact

that

x(t) = A · cos(ϕ(t)) , (3.5)

where ϕ(t) is the instantaneous phase and A is the maximum amplitude of the recorded signal.

Furthermore, the relationship dϕ(t)
dt = 2πfobs(t) holds, as shown in [33]. The instantaneous phase

can therefore be computed as:

ϕ(t) =

∫ t

−∞
2πfobs(τ)dτ = ϕ(0) +

∫ t

0
2πfobs(τ) dτ = ϕ(0) + 2πfsrc t+

2πr · fsrc
c

· sin(2πfrot t)

(3.6)
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For simplicity, we assume ϕ(0) = 0. Therefore, our captured signal is

x(t) = A · cos
(
2πfsrc t+

2πr · fsrc
c

· sin(2πfrot t)
)
. (3.7)

A keen eye may notice that this expression is very similar to the commonly used equation for a

frequency modulated signal xFM(t)

xFM(t) = Ac · cos(2πfc t+ β · sin(2πfm t)) , (3.8)

where fc is the carrier frequency with amplitude Ac, which in our case correspond to fsrc and A,

respectively, fm is the frequency of the modulating wave, which corresponds to frot, and β is the

so-called modulation index [5]. It is defined as β = ∆f
fm

, where ∆f describes the peak frequency

deviation from carrier fc. The modulation index can be seen as a measure of how much we

modulate the carrier frequency. An example plot of xFM(t) for β = 0 and β = 1.5 is shown in

Figure 3.3.

Figure 3.3: xFM(t) for fc = 400Hz, fm = 40Hz, β = 0 (blue) and β = 1.5 (orange).

In the case of modulation introduced by the microphone movement the modulation index

corresponds to

β =
2πr · fsrc

c
, (3.9)

as it can be observed from Equation (3.7). Note that, contrary to what might be expected, it is

independent of the rotational speed frot.

Our derived expression for the captured signal x(t) can be easily extended to arbitrary angles of

arrival φ ∈ [0◦, 360◦] of plane waves in the x-y plane relative to the initial microphone position as
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x(t, φ) = A · cos(2πfsrc t+ β · sin(2πfrot t+ φ′)) , (3.10)

where φ′ = φ− 90◦, since the angle of arrival only impacts the phase of the modulating wave

(90◦ = π
2 rad). Finally, we can further extend this expression for arbitrary elevation angles of

arrival θ ∈ [0◦, 180◦] of the plane waves relative to the rotational plane. Consider the scenario

illustrated in Figure 3.4:

Figure 3.4: Plane waves arriving at different elevation angles.

The depicted scenario is identical to the 2D case we considered in Figure 3.2 for plane waves

arriving at θ = 90◦. For plane waves are arriving at θ = 0◦, however, there is no movement of the

microphone relative to the sound waves. Therefore no frequency modulation takes place and the

modulation index is zero. It transpires that the relative displacement between the microphone

and the sound source changes with the elevation of the incoming sound waves. This effect can be

modeled by defining an elevation dependent modulation index β(θ) as follows:

β(θ) = sin(θ) · β = sin(θ) · 2πr · fsrc
c

(3.11)
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With this modification of the modulation index we can express the recorded signal of a plane

wave arriving from an arbitrary direction as

x(t, φ, θ) = A · cos(2πfsrc t+ β(θ) · sin(2πfrot t+ φ′)) . (3.12)

3.2 Single Frequency Direction of Arrival Estimation

To determine φ and θ from a given x(t, φ, θ), let us assume that we have knowledge of the

instantaneous frequency fobs(t) of x(t, φ, θ), given by

fobs(t) =
d

dt

ϕ(t)

2π
= β(θ) · frot · cos(2πfrot t+ φ′) + fsrc , (3.13)

where ϕ(t) corresponds to the argument of the cosine function in Equation (3.12). Since fobs(t)

is solely composed of a weighted frequency frot with initial phase φ′ plus a DC offset, we can

obtain φ by computing the argument of the Fourier transform of fobs(t) at frequency frot as

φ = arg(F{fobs(t)}f=frot) + 90◦ , (3.14)

where F{·} denotes the Fourier transform.

To compute θ, recall that the modulation index can be expressed as

β(θ) =
∆f(θ)

fm
= sin(θ) · 2πr · fsrc

c
, (3.15)

where fm corresponds to frot in our case. Furthermore we can compute the peak frequency

deviation as ∆f(θ) = fobs,max − fsrc, where fobs,max denotes the maximum of fobs(t), which

allows us to express θ as

θ = arcsin

(
(fobs,max − fsrc) · c
frot · 2πr · fsrc

)
. (3.16)

Note that fobs,max − fsrc ≥ 0, therefore θ ∈ [0◦, 90◦]. This may seem problematic at first, since

in reality θ ∈ [0◦, 180◦], however, since β(θ) is the only component in x(t, φ, θ) dependent on θ
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and β(90◦ + θ′) = β(90◦ − θ′) for θ′ ∈ [0◦, 90◦] due to its sine-dependency, plane waves arriving

at a given azimuth φ and elevation θ = 90◦ ± θ′ will produce identical audio signals, i.e. it is not

possible to differentiate whether a signal is arriving above or below the rotational plane.

The question that remains is how we can obtain fobs(t) from x(t, φ, θ). To answer this question,

consider the spectrogram of an 8 kHz sine wave and the corresponding modulated version depicted

in Figure 3.5:

(a) Spectrogram of a sine wave (b) Spectrogram of a modulated sine wave

Figure 3.5: Original and modulated sine wave for fsrc = 8kHz, frot = 40Hz and r = 5 cm.

The center frequency fctr[n] of Figure 3.5b over discrete time n, which can be computed using the

CoG algorithm from [6] for example, can be seen as a discrete approximation of the instantaneous

frequency fobs(t) of x(t, φ, θ). This enables us to compute φ by replacing the Fourier Transform

and fobs(t) in Equation (3.14) with a DFT and fctr[n], respectively. In essence, this is the

approach used in [32] and [12] for DOA estimation. Similarly, θ can be computed by replacing

fobs,max in Equation (3.16) by the maximum value of fctr[n].

The main advantage of this DOA estimation approach is its simplicity, however, there are also

multiple drawbacks:

1. To accurately approximate the instantaneous frequency fobs(t), we need to compute our

DFT over a very short time interval, especially as we increase frot. As a consequence we

have a low frequency resolution, which makes DOA detection challenging for low source

frequencies fsrc, as can be seen in Figure 3.6.

2. fsrc needs to stay constant for at least one full rotation of the microphone to detect its

DOA, time varying signals can therefore not be located. If fsrc only varies slowly over time,

increasing frot can help mitigate this problem.

3. Since this approach currently relies on the CoG algorithm, which only detects a single

frequency [6], multiple tones arriving from different directions or more complex source
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signals, e.g speech signals, cannot be located. Splitting the recorded signal into multiple

subbands can potentially circumvent this problem, however, only as long as each subband

contains only one frequency.

(a) Spectrogram of a sine wave (b) Spectrogram of a modulated sine wave

Figure 3.6: Original and modulated sine wave for fsrc = 200Hz, frot = 40Hz and r = 5 cm.

To obtain an alternative DOA estimation approach, the following chapter shows a relationship

between frequency modulation and Bessel functions, which we can use to our advantage for

deriving an improved DOA estimation algorithm.

3.3 Frequency Modulation and Bessel Functions

The spectrograms shown in Figure 3.5 and Figure 3.6 were computed using a DFT window length

of L = 512 samples. This value has been chosen to provide a trade-off between the accuracy of

the instantaneous frequency estimation and the frequency resolution (when using a sampling rate

of fs = 48 kHz). If we substantially increase the value of L such that the DFT is computed over

at least one full rotation of the microphone, we obtain the spectrograms shown in Figure 3.7.

Side note: These spectrograms and all following spectrograms were computed using a Hann-

window if not specified otherwise.

As it can be observed, increasing L from 512 to 8192 not only provides a substantially higher

frequency resolution, the spectrograms of the modulated signals also exclusively show multiple

constant frequencies with a spacing of 40Hz = frot. Furthermore, many more of these constant

frequencies are visible for the 8 kHz signal as compared to the 200Hz signal.

These unexpected findings can be explained by the following alternative representation of x(t, φ, θ)

from Equation (3.12)
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A · cos(2πfsrc t+ β(θ) · sin(2πfrot t+ φ′)) = A ·
∞∑

n=−∞
Jn(β(θ)) · cos(2π(fsrc + nfrot) t+ nφ′) ,

(3.17)

where Jn(·) denotes the Bessel function of the first kind for integer order n. The derivation of

this equation is omitted here and can be found in [7]. Note that the derivation does not include

terms A and φ′, but can be easily extended to include an amplitude and a starting phase.

As can be seen from Equation (3.17), a frequency modulated signal can be represented as an

infinite weighted sum of frequencies spaced integer multiples n of frot around the carrier frequency

fsrc. The weights are computed by evaluating n-th order Bessel functions of the first kind at the

modulation index β(θ). An example plot of five of these functions is depicted in Figure 3.8.

If no frequency modulation is present, i.e. β(θ) = 0, all Bessel functions except J0(·), and therefore

all the sidebands of fsrc, are zero. As we increase the modulation index, the remaining Bessel

(a) Spectrogram of 8 kHz sine wave (b) Spectrogram of modulated 8 kHz sine wave

(c) Spectrogram of 200Hz sine wave (d) Spectrogram of modulated 200Hz sine wave

Figure 3.7: Spectrograms of the signals from Figure 3.5 and Figure 3.6 for DFT length L = 8192.
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Figure 3.8: Bessel functions of the first kind for integer orders n = 0, 1, 2, 3, 4.

functions gradually take on significant values, resulting in more sidebands to become visible.

Note that higher order Bessel functions stay close to zero longer, therefore the distant sidebands

only start becoming visible at very high modulation indices. Since the modulation index is

dependent on fsrc, more sidebands will be visible for higher frequencies if all other parameters

remain unchanged.

Another noteworthy property of Bessel functions of the first kind is given by

∞∑
n=−∞

J2
n(x) = 1 , ∀x ≥ 0 , (3.18)

as shown in [1]. This identity becomes useful when computing the energy E of the frequency

modulated signal from Equation (3.17) as

E =

∫ ∞

−∞
|x(t, φ, θ)|2dt = 1

2π

∫ ∞

−∞
|X(2πf)|2df =

A2

2π

∞∑
n=−∞

J2
n(β(θ)) =

A2

2π
, (3.19)

where X(2πf) denotes the Fourier transform of x(t, φ, θ) [4]. As it can be observed, the

modulation index has no impact on the energy of the signal. This is advantageous since it allows

us to interpret frequency modulation as an energy-conserving redistribution of the input energy,

where the energy gets dispersed more as the modulation index increases. Likewise the energy
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becomes more focused as the modulation index approaches zero. The degree to which the energy

of the spectrogram is focused, which we will call focusedness, can therefore be used as a measure

for the modulation index. This property will be used in Section 3.4 and Section 3.5, where

an algorithm for unmodulating a given signal for multiple DOAs will be derived, effectively

modifying the modulation index. The DOA will then be estimated based on which unmodulated

signal has the highest focusedness. Since the focusedness acts on the entire spectrogram, this

approach requires no knowledge or estimation of the source frequency.

To quantify the focusedness of a spectrogram, note that it can be shown that if we have a set of

N numbers {x1, x2, ... , xN}, xn ≥ 0 ∀n ∈ [1, 2, ... , N ], where
∑N

n=1 xn = 1 holds, the squared

sum
∑N

n=1 x
2
n will reach its maximum if ∃! i ∈ [1, 2, ... , N ] for which xi = 1, xn̸=i = 0 holds, i.e.

if all except one xn are zero. Furthermore the squared sum over all xn will reach its minimum if

xn = 1
N ∀n ∈ [1, 2, ... , N ], i.e. if all xn have the same value. Therefore, given a set of numbers

which sum up to one, the squared sum can be used as a measure for how distributed the sum is

over the numbers. Likewise we can use the squared sum of the energies of each frequency in a

spectrogram frame as a way to quantify its focusedness.

In practice, obtaining the energy of a given DFT frame n simply requires the computation of the

squared sum of the absolute value of all the DFT bins X[n, k] in frame n as

E[n] =

N/2∑
k=0

|X[n, k]|2 , (3.20)

where N denotes the used DFT length. Computing the focusedness F [n] of DFT frame n can be

achieved by squared summation of the energies of each bin as

F [n] =

N/2∑
k=0

|X[n, k]|4 . (3.21)

An example plot of the energy and focusedness of the spectrum of an 8 kHz sine wave for an

increasing modulation index is depicted in Figure 3.9. The energy and the focusedness have been

normalized to output a maximum value of 1. As it can be seen, the energy remains constant

regardless of β, as it has been shown in Equation (3.19), whereas the focusedness decreases as

the modulation index increases.
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(a) β-dependent 8 kHz sine wave spectrum (b) β-dependent energy and focusedness

Figure 3.9: Normalized energy and focusedness of an 8 kHz sine wave for an increasing β.

3.4 Time Warping Algorithm

As it has been briefly mentioned in the previous section, the main idea behind the sound source

localization approach in this thesis is to derive an algorithm which compensates the frequency

modulation introduced into a recorded audio signal for various DOAs and subsequently compute

the focusedness of the resulting signal spectrograms. The unmodulated signal with the highest

focusedness should, in theory, provide information about the DOA of the audio source. In this

section, a DOA-dependent algorithm for unmodulating a frequency modulated audio signal

will be derived which in essence performs an accurate time stretching and compression of the

modulated audio signal to undo the frequency modulation.

Consider again the scenario from Figure 3.1 and its simplified form in Figure 3.2. We now assume

the incoming plane waves to be an arbitrary, unknown audio signal rather than monochromatic

sound waves of a known frequency. Additionally, as before, we assume that the microphone is in

a free field, perfectly omnidirectional and that its rotational speed frot as well as the starting

phase relative to the sound source φ are known. To unmodulate the audio signal captured by

the moving microphone Mmov, we need to determine what signal would have been captured

by a stationary microphone Mstat sampling at the same sampling rate fs. Figure 3.10 shows a

comparison of the scenario from Figure 3.1 and a stationary microphone placed at the center of

the rotational movement.

To derive an algorithm for the unmodulation it is helpful to change our reference frame from

Figure 3.10: Rather than fixing our coordinate system in space we fix it to a wavefront of the

plane waves, resulting in the waves to appear stationary. In this reference frame microphone

Mstat moves at the speed of sound c towards the sound waves. Similarly, Microphone Mmov

moves in the same direction as Mstat at variable speed v(t) = c+ vr(t), where vr(t) is given by
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(a) Moving Microphone (Mmov) (b) Stationary microphone (Mstat)

Figure 3.10: Moving microphone compared to stationary case at the center of the rotation.

Equation(3.2), i.e. the speed periodically fluctuates around c. The movement of Mmov has an

additional component parallel to the sound waves, however, we neglect this component since it

has no influence on the recorded sound.

As Mmov is moving faster than Mstat it is capturing fewer data points of the sound field as

compared to Mstat, since the sampling rates of both microphones are identical. Likewise, as

Mmov is moving slower than Mstat, it is capturing more data points of the sound field. If we now

want to capture the same data as Mmov with Mstat we can achieve this by precisely modifying

the sampling rate of Mstat such that it is sampling more slowly as Mmov is moving faster and

sampling more quickly as Mmov is moving slower. Correspondingly, if we choose to modify the

sampling rate of Mmov such that it samples more quickly as it is moving faster and more slowly

as it is moving slower, we can capture the same data points as Mstat.

To illustrate this concept in a more comprehensive manner we will now demonstrate how to

perform frequency modulation by varying the sampling rate of a stationary microphone. Consider

the sampling points shown in Figure 3.11:

Figure 3.11: Uniform and non-uniform sampling points.
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The blue points represent uniform sampling positions at sampling rate fs, whereas the orange

points are non-uniformly spaced. The computation of the exact locations of the non-uniform

sampling points will follow later. Let us now use these sampling points to sample, for example, a

sinusoidal wave, as illustrated in Figure 3.12.

Figure 3.12: Uniform and non-uniform sampling of a sinusoidal wave.

Now, if we time-shift the non-uniform orange sampling points to match the sampling grid of the

blue points, we obtain the red points shown in Figure 3.13.

Figure 3.13: Non-uniform sampling points time-shifted to the sampling grid.

The resulting signal described by the red points is depicted in Figure 3.14. As it can be observed

the red graph represents a frequency modulated version of the original signal. This does not only

hold for a sinusoidal wave but for any arbitrary audio signal.

Figure 3.14: Original and frequency modulated signal.

The demonstrated concept can now be made use of for unmodulation: The red sampling points

can be seen as the samples taken by the rotating microphone and the blue points as their

unmodulated counterpart. To obtain the blue points from the red points we first need to

time-shift the red samples to the correct positions in time, as shown in Figure 3.15. Then we can

interpolate the blue points from the orange points using a high quality interpolation method.

Some interesting notes on interpolation: Generally speaking, perfect interpolation is only possible

if the sampling rate is above the Nyquist rate, i.e. the sampling rate is at least twice the bandwidth
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Figure 3.15: Frequency modulation compensation - first method.

of the sampled signal [21]. Here we have the unusual case that the sampling rate of the orange

points varies over time. Interestingly, this does not pose a problem for interpolation, since perfect

signal reconstruction is theoretically possible as long as the average sampling rate is above the

Nyquist rate [8]. In practice, however, interpolation of non-uniform data is more challenging and

often less accurate than that of uniform data, as the authors of [23] show.

The necessary time-shifts are obtained by computing the time at which the wavefronts that were

sampled by the moving microphone arrived at the stationary microphone. The new sampling

positions tnew(t, φ) for sound waves arriving at angle φ and sampled at time t can therefore be

computed by:

tnew(t, φ) = t− ∆d(t, φ)

c
= t− r · cos(2πfrot t+ φ)

c
, (3.22)

where ∆d(t, φ) is the time-dependent difference in distance of the moving microphone to the

sound source and the stationary microphone to the sound source.

To interpolate the blue data points from our time-shifted samples, it is desirable to use sinc

interpolation, given by

x(t) =
∞∑

n=−∞
x(nT ) · sinc

(
π(t− nT )

T

)
, sinc(x) =


sin(x)

x , if x ̸= 0.

1 , if x = 0.
, (3.23)

where T = 1
fs

refers to the sampling period. The reason we would like to use sinc interpolation

is that it is exact if we assume to have an infinite number of discrete samples, no quantization

errors and a sampling rate above the Nyquist rate. Although we will always have quantization

errors and a finite number of discrete samples in practice, sinc interpolation still provides very

accurate results [30].

Unfortunately, we cannot directly implement Equation (3.23) since it requires uniform spacing of

our input samples, which is not the case for the orange samples in Figure 3.15. However, as the
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authors of [23] show, it is possible to use modified versions of sinc interpolation for non-uniform

samples, given that certain constraints are met. The downside of these approaches is that they

represent an approximation of sinc interpolation and are more difficult to implement.

Fortunately, we can avoid using non-uniform sinc interpolation altogether by slightly changing

our unmodulation approach from Figure 3.15. Consider Figure 3.16:

Figure 3.16: Frequency modulation compensation - second method.

Instead of first time-shifting the samples and then interpolating, we could instead choose to first

interpolate and then time-shift. This is advantageous since we can interpolate the green samples

from the red samples using Equation (3.23), as the red data points are uniformly spaced. The

disadvantage of this approach, however, is that determining the equivalent positions of the blue

samples on the red graph, i.e. the timestamps of the green points, is more difficult than the

time-shift computation from Equation (3.22) as we will now show.

The timestamps of the green samples can be determined by computing the time at which the

wavefronts that were sampled by the stationary microphone arrived at the moving microphone.

Let us assume that a given wavefront arrived at the stationary microphone at time t0. Then, the

time-dependent difference in distance ∆d(t, t0, φ) of the moving microphone to the sound source

and the stationary microphone to the sound source reads:

∆d(t, t0, φ) = r · cos(2πfrot (t+ t0) + φ) , (3.24)

The wavefront travels along an axis parallel to the linear sinusoidal movement of the microphone

at the speed of sound. Furthermore it reaches the stationary microphone at time t0, which is

placed at the origin of the coordinate system. Therefore, along this axis, we can model the

time-dependent position of the wavefront as c · t. To determine at what time t̂(t0, φ) the wavefront

meets the moving microphone, we need to find the intersection between these two equations:

r · cos(2πfrot (t+ t0) + φ) = c · t (3.25)
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Unfortunately, this expression cannot be solved analytically for t. Hence, we need to numerically

approximate the root of function

f(t, t0, φ) = r · cos(2πfrot (t+ t0) + φ)− c · t !
= 0 , (3.26)

for a given t0 and φ, which can be achieved by minimizing the absolute value of f(t, t0, φ) as

t̂(t0, φ) = argmin
t

(|f(t, t0, φ)|) . (3.27)

Note that f(t) has a unique root and |f(t)| is convex only as long as c ≥ 2πrfrot holds, i.e. as

long as the microphone speed does not exceed the speed of sound, which we can safely assume to

be the case.

To summarize, computing the unmodulated version x̂[n] from a given sampled audio signal x[n]

can be achieved by the following algorithm, which we will refer to as time warping algorithm or

TWA for short:

1. Compute t̂(t0, φ) using Equation (3.27), where t0 are the uniformly spaced sampling times

and φ is the DOA of the sound waves

2. Use Equation (3.23) to interpolate x[n] at timestamps t̂(t0, φ)

3. Uniformly space the interpolated samples from 2. to obtain x̂[n]

Side note: For simulation purposes it may be helpful to have an inverse TWA, i.e. an algorithm

that modulates a given audio signal. Fortunately, the inverse TWA follows the exact same

steps as the TWA, with the only difference being that t̂(t0, φ) is replaced by tnew(t, φ) from

Equation (3.22).

This algorithm can be easily extended to work for arbitrary incoming elevation angles θ of the plane

waves by following the same argumentation as for the derivation of β(θ) from Equation (3.11):

We simply need to modify Equation (3.26) to

f(t, t0, φ, θ) = sin(θ) · r · cos(2πfrot (t+ t0) + φ)− c · t !
= 0 , c

!
≥ sin(θ) · 2πrfrot , (3.28)

and instead of estimating t̂(t0, φ) we estimate t̂(t0, φ, θ) by
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t̂(t0, φ, θ) = argmin
t

(|f(t, t0, φ, θ)|) . (3.29)

One final note on the TWA: To perfectly unmodulate a signal it is necessary to have perfect

knowledge of its DOA. This, of course, completely defies the purpose of DOA estimation. However,

as the next section will show, if we guess the DOA for a signal and the guess is close to the

true DOA, the TWA will increase the focusedness of the signal spectrogram. Likewise, if our

DOA guess is poor, the algorithm will decrease the focusedness. The true DOA can therefore be

approximated by either making a large number of DOA guesses and selecting the DOA with the

maximum associated focusedness or by making a few strategical guesses and iteratively refining

our DOA search. The latter approach is more efficient from a computational standpoint, however,

we will use the former method for the sake of simplicity, since efficiency or real-time functionality

are not of a concern in this thesis and left for future research. Unfortunately, the computational

complexity of our approach will most likely be significantly greater as compared to the localization

technique from [12] regardless of the implementation. However, our proposed method has the

great advantage of removing or at the very least reducing the distortions introduced by the

microphone rotation. This allows us to not only locate sound sources, but also to reconstruct

the incoming audio signals, potentially enabling applications such as blind source separation or

beamforming.

3.5 Matrix-based Time Warping

To enable applications such as blind source separation or beamforming it would be beneficial to

encapsulate the functionality of the TWA into a modulation matrix Zφ such that

y(1) = x(1) · Zφ , (3.30)

where x(1) is the first spectrogram frame of the source signal and y(1) is the corresponding

modulated frame with DOA φ (we assume θ = 90◦). To be more specific,

x(1) = [x
(1)
1 x

(1)
2 ... x(1)n ] ∈ Cn , y(1) = [y

(1)
1 y

(1)
2 ... y(1)n ] ∈ Cn , Zφ ∈ Cn×n , (3.31)

where n = L
2 + 1 for a given (even) DFT length L and x

(1)
i , y

(1)
i correspond to the i-th DFT bins
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Figure 3.17: Matrix-based time warping - idea.

of the first spectrogram frame of the source signal and the modulated signal, respectively.

Inverting Zφ provides us with the unmodulation matrix Z−1
φ which allows us to compute x(1)

from y(1) as

x(1) = y(1) · Z−1
φ . (3.32)

This idea is visualized in Figure 3.17 for a 2 kHz source signal. The advantage of this representation

becomes apparent once we have two audio sources arriving from two different directions. Let us

denote the first spectrogram frame of an audio signal with a DOA of 90◦ as a(1) and the first

spectrogram frame of another audio signal with a DOA of 180◦ as b(1). The first spectrogram

frame captured by a stationary microphone can therefore be expressed as x(1) = a(1) + b(1).

Separating these two signals is most likely impossible if no additional constraints are given,

however, separation becomes possible with some prior knowledge of the audio sources. As an

example, [20] separates a male and a female speaker from a single microphone recording given

the characteristics of male and female speech.

On the other hand, the first spectrogram frame captured by the rotating microphone can be

formulated as y(1) = a(1) · Z90◦ + b(1) · Z180◦ . This expression is visualized in Figure 3.18, where

a(1) and b(1) correspond to single frequencies.

It can be observed that deriving a(1) and b(1) from y(1) is not a straightforward task despite the

simplicity of the source signals. However, the matrix-based representation allows us to define the
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Figure 3.18: Matrix-based time warping of two source signals with different DOAs.

following function:

f(a,b) = y(1) − a · Z90◦ + b · Z180◦ (3.33)

This function should allow us to approximate a and b, which correspond to the first spectrogram

frames of the audio signals to be determined, by minimizing its absolute value as

a,b = argmin
a,b

(|f(a,b)|) . (3.34)

This, in theory, enables us to perform source separation of arbitrary audio signals as long as we

have perfect knowledge of the location of our source signals and we can find a way to determine

the corresponding modulation matrices. We will not investigate source separation specifically as

it goes beyond the scope of this thesis, however, we will nonetheless explore how the modulation

and unmodulation matrices can be derived. For this we define a set F = {f1, f2, ... , fn} which

contains the center frequencies of each DFT bin, where n = L
2 + 1 and L is the utilized DFT

length. The center frequencies can be determined as

fi = (i− 1) · fs
L
, i ∈ [1, 2, ... , n] , (3.35)
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where fs corresponds to the sampling rate. If we compute the Fourier transform of xi(t) =

cos(2πfi t) for any fi ∈ F using a rectangular window we obtain a ‘perfect’ spectrum. An example

is depicted in Figure 3.19a for fs = 48kHz, L = 8192 and i = 343, i.e. f343 ≈ 2004Hz. The

depicted spectrum can be considered as being ‘perfect’ since it shows precisely one peak at the

source frequency bin and is very close to zero everywhere else, i.e. there is almost zero spectral

leakage. The modulated counterpart of xi(t), given by

zi(t, φ, θ) = cos(2πfi t+ β(θ) · sin(2πfrot t+ φ− 90◦)) , (3.36)

is shown in Figure 3.19b for β(θ) ≈ 1.84, φ = 90◦ and frot = 40Hz.

(a) Magnitude spectrum of x343(t) (b) Magnitude spectrum of z343(t, φ, θ)

Figure 3.19: Modulated and original spectrum using a frequency in F and a rectangular window.

Side note: Recall that β(θ) = sin(θ) · 2πr·fi
c . The values we have chosen to obtain β(θ) ≈ 1.84

are r = 5 cm, c = 343 m
s and θ = 90◦.

The great advantage of the spectrum and therefore energy of xi(t) being perfectly concentrated

into the i-th DFT bin is that the spectrum of zi(t, φ, θ) indicates precisely how the energy and

phase of the i-th DFT bin gets redistributed as we perform modulation for a given β(θ), frot

and φ. If we now formulate the spectrum of zi(t, φ, θ) as a vector ziφ as

35 Master Thesis, Jeremy Lawrence



3. THEORETICAL FOUNDATIONS

ziφ = [zi1φ zi2φ ... zinφ ] ∈ Cn (3.37)

and normalize this vector to have unit energy, we can compute the modulated version of individual

DFT bins of arbitrary signals by simple multiplication of their i-th bin with ziφ . As an example,

let us assume we have a signal whose spectrum x is zero at every DFT bin except the i = 100-th

position, which we denote as x100. The modulated spectrum y for DOA φ can then be computed

by

y = x100 · z100φ . (3.38)

An arbitrary signal, such as x(1) from Equation (3.31), can be modulated by applying the same

principle to all DFT bins as

y(1) =

n∑
i=1

x
(1)
i · ziφ . (3.39)

We can formulate this expression more compactly by stacking all ziφ to form matrix Zφ as

Zφ =


z1φ

z2φ
...

znφ

 . (3.40)

This matrix allows us to modulate x(1) by computing

y(1) = x(1) · Zφ , (3.41)

which is identical to the expression from Equation (3.30). Zφ can be easily extended to consider

arbitrary elevations θ as well by modifying θ in the computation of zi(t, φ, θ), however, we will

restrict ourselves to θ = 90◦ in this section. To summarize, the modulation matrix Zφ can be

obtained using the following algorithm:
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1. Compute the spectra of zi(t, φ, θ) = cos(2πfi t+ β(θ) · sin(2πfrot t+φ− 90◦)) with a given

DFT length L, rotational radius r, rotational speed frot, sampling rate fs and DOA (φ, θ)

for all fi ∈ F

2. Stack the resulting spectra as shown in Equation (3.40) to form matrix Zφ

3. Normalize the energy of Zφ by multiplication with factor 2 ·
√

fs
L

Side note: Normalization of the energy of Zφ is not strictly necessary for sound source localization,

however, we choose to perform normalization nonetheless since this results in transformations

using Zφ to be energy conserving.

As we have mentioned earlier, the inverse of Zφ can, in theory, be used to unmodulate y(1) by

computing x(1) = y(1) ·Z−1
φ . In practice, however, Zφ has a very large condition number, leading

to sizeable errors when computing its inverse. As the condition number is a topic beyond the

scope of this thesis we will not elaborate further on this metric and refer to [26] for more details

regarding its computation and influence on matrix inversion.

A workaround that allows for a direct computation of Z−1
φ without the need of inverting Zφ is

to apply the same approach used to derive Zφ to a signal that has a ‘perfect’ spectrum in the

modulated domain, i.e. we search for a signal ẑi(t) that produces the spectra shown in Figure 3.20

(in the case of i = 343) when using a rectangular window. In other words, we require a signal

(a) Magnitude spectrum of ẑ343(t) (b) Modulated magnitude spectrum of ẑ343(t)

Figure 3.20: Ideal (modulated) magnitude spectrum of a signal ẑi(t) using a rectangular window.
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which is distorted in a way such that the modulation introduced when recording the signal with

a rotating microphone perfectly cancels out these distortions to produce a perfect sinusoidal

tone in F. Such a signal can be constructed by applying the TWA to a frequency in F. The

downside of this approach is that any inaccuracies introduced by the interpolation step in the

TWA will also be introduced into the spectrum used to construct the unmodulation matrix. To

circumvent this we can choose to only compute t̂(t, φ) from Equation (3.27) (or t̂(t, φ, θ) from

Equation (3.29)) and use these time stamps to approximate ẑi(t) as

ẑi(t) ≈ xi(t̂(t, φ)) = cos(2πfi t̂(t, φ)) . (3.42)

The modulated counterpart of xi(t̂(t, φ)), given by computing zi(t̂(t, φ), φ, θ) using Equation

(3.36), produces a close to perfect spectrum. The spectra of xi(t̂(t, φ)) and zi(t̂(t, φ), φ, θ) for

i = 343 look identical to the spectra from Figure 3.20.

This means that xi(t̂(t, φ)) gives us a good indication of how the energy and phase of the i-th

modulated frequency bin gets a redistributed as we unmodulate for a given β(θ), frot and φ.

Therefore we can formulate the spectrum of xi(t̂(t, φ)) as a vector ẑiφ

ẑiφ = [ẑi1φ ẑi2φ ... ẑinφ ] ∈ Cn (3.43)

and then stack these vectors as

Ẑ−1
φ =


ẑ1φ

ẑ2φ
...

ẑnφ

 . (3.44)

to obtain Ẑ−1
φ . Note that we use the hat on Ẑ−1

φ since it does not perfectly represent the inverse

of Zφ.

It may at first seem as though performing unmodulation using Ẑ−1
φ is vastly more efficient

than using the TWA, since the unmodulation matrix needs to only be computed once for each

DOA an then the unmodulation of arbitrary spectrogram frames simplifies to a vector-matrix

multiplication. However, there are multiple caveats to the matrix-based approach:
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1. So far, we have only shown unmodulation with respect to the first spectrogram frame as

x(1) = y(1) ·Z−1
φ . If we want to unmodulate the second spectrogram frame we cannot simply

compute x(2) = y(2) ·Z−1
φ , since φ refers to the DOA at the start of the spectrogram frame.

If the microphone is not at exactly the same position at the start of our next spectrogram

frame we need to compute Z−1
φ again for a different DOA to compensate for the different

microphone starting position. As an example, for frot = 40Hz, fs = 48 kHz and L = 8192

the microphone completes frot · L
fs

≈ 6.83 rotations in one DFT frame. This means that

at the start of each spectrogram frame the DOA changes by −61.2◦ with respect to the

previous frame, assuming there is no frame overlap. This requires the computation of a

large number of unmodulation matrices, which poses a problem since determining Z−1
φ is

expensive from a computational standpoint, especially for large L.

2. It may seem as though we could counteract this problem by making sure that frot is an

integer multiple of L
fs

or using appropriate spectrogram frame overlap, however, in practice

frot is not perfectly constant, requiring us to compute multiple unmodulation matrices for

the varying rotational speed in addition to the DOA shift.

3. The unmodulation matrices have a large memory requirement. Using the numpy.complex128

datatype and L = 8192 requires 81922 · 128 bit · 0.125byte
bit ≈ 1GB of memory for a single

unmodulation matrix.

We could mitigate the first two problems if the rotational speed of the rotating microphone

could be set more precisely. Additionally this would make the third concern less problematic

since fewer unmodulation matrices need to be stored. This incentivises the design of a more

accurate successor to the REM prototype such that matrix-based time warping can be utilized

without the need for computing a separate unmodulation matrix for each frame. Therefore, a

microphone with sufficiently precise speed control could allow for all the matrices to be computed

beforehand, potentially enabling real time audio processing. This would allow for some interesting

applications, e.g. real time tracking of multiple audio sources.

To conclude this chapter, let us give a quick comparison between the two unmodulation approaches.

Figure 3.21 shows a comparison between the unmodulation performance of the TWA and the

matrix based unmodulation for a 4 kHz source signal. It can be observed that both approaches

perform similarly well, however, they appear to produce slightly different artifacts. The matrix-

based approach reconstructs the main frequency almost perfectly but there is a noticeable error

at the first sidebands. The TWA, on the other hand, does not reconstruct the main frequency

as well as the matrix-based approach, however, the error at the first sidebands is reduced. To

evaluate the accuracy of both approaches more precisely we compute the total error between the

true unmodulated signal spectrum x and the computed unmodulated signal spectrum x̂ as
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Err =
n∑

i=1

|xi − x̂i|2 . (3.45)

For the example shown in Figure 3.21 we find that the errors of the TWA and matrix-based

time warping are approximately 2.12 · 10−7 and 2.72 · 10−7, respectively. For other input signals

the performance of both algorithms is also similar, however the TWA always outperformed

the matrix-based approach for all the signals we tested. For performance reasons we will be

exclusively utilizing the TWA in the following chapters.
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(a) Input signal (b) Perfect Unmodulation

(c) TWA unmodulation (d) TWA unmodulation error

(e) Matrix-based unmodulation (f) Matrix-based unmodulation error

Figure 3.21: Unmodulation performance using the TWA and matrix-based time warping.
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Chapter 4

Direction of Arrival Estimation -

Theoretical Verification

We will now use the TWA to estimate the location of one or multiple sound sources. Section 4.1

presents the DOA estimation approach and determines the localization accuracy of one single

frequency sound source in two-dimensional space, i.e. it is assumed that θ = 90◦. In Section 4.2

this localization method will be refined to allow for separate processing of different frequency

bands. Subsequently, Section 4.3 and Section 4.4 explore the localization accuracy of one and

multiple complex sound sources in two-dimensional space, respectively. Finally, Section 4.5

investigates the DOA estimation accuracy in three-dimensional space.

4.1 Localization of a Single Frequency Source in 2D Space

(a) Modulated 200Hz sine wave (b) Modulated 8 kHz sine wave

Figure 4.1: Spectrograms for fs = 48 kHz, frot = 40Hz, r = 5 cm and DFT length L = 8192.
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Consider again the spectrograms of the modulated 200Hz and 8 kHz sine waves from Section 3.3.

They are depicted again in Figure 4.1 for convenience. We can now use our derived TWA and

apply it to the first frame of these spectrograms for φ ∈ [0◦, 1◦, ..., 358◦, 359◦], for example.

Placing all the resulting spectrogram frames side-by-side results in a φ-dependent spectrogram,

which we will refer to as azimuth-spectrogram, shown in Figure 4.2.

(a) Azimuth-spectrogram of a 200Hz sinusoid (b) Azimuth-spectrogram of an 8 kHz sinusoid

Figure 4.2: Azimuth-spectrograms of the signals from Figure 4.1.

The true DOAs of the 200Hz and 8 kHz sine waves were φ = 180◦ and φ = 270◦, respectively. We

can clearly see that the azimuth-spectrograms focus into one point as φ approaches the correct

values. This becomes even more clear when computing the φ-dependent normalized focusedness

of the plots, which is depicted in Figure 4.3.

(a) Focusedness of 200Hz azimuth-spectrogram (b) Focusedness of 8 kHz azimuth-spectrogram

Figure 4.3: Focusedness of the azimuth-spectrograms from Figure 4.2 with marked peaks.

It can be observed that the peaks of the focusedness plots precisely correspond to the true

DOAs of the sine waves. Furthermore it is clearly visible that the focusedness has a substantially

sharper peak and a lower minimum value for the 8 kHz signal as compared to the 200Hz signal.

This is due to the modulation index being larger for higher frequencies (see Equation (3.11)),

which also leads us to presume that DOA estimation of high frequencies is more accurate and

robust to noise in theory.
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Let us now investigate the impact of frot on the localization accuracy. Figure 4.4 and Figure 4.5

depict a comparison between 10RPS and 20RPS for the 200Hz signal.

(a) ‘Unmodulated’ 200Hz sinusoid (10RPS) (b) ‘Unmodulated’ 200Hz sinusoid (20RPS)

Figure 4.4: Azimuth-spectrograms of a 200Hz sinusoid for 10RPS and 20RPS.

(a) Focusedness for 10RPS (b) Focusedness for 20RPS

Figure 4.5: Focusednesses of the azimuth-spectrograms from Figure 4.4 with marked peaks.

It can be observed that the focusedness is less precise in the 10RPS case, which is due to the

sidebands overlapping. This leads us to presume that once the sidebands fully separate there

should be no increase in DOA estimation accuracy as we further increase frot. Thus, in practice,

the lowest rotational speed should be selected which causes the sidebands to separate, since

unnecessarily high rotational speeds result in additional motor and wind noise. We expect this

minimum required rotational speed to be dependent on the utilized DFT length L, since smaller

transformation lengths result in wider sidebands (and mainbands).

To verify these presumptions we simulate 100 DOA estimation trials for a 125Hz and 8 kHz

sound source at microphone rotational speeds varying between 5RPS and 50RPS. Randomly

generated pink noise is added to the signals at 0 dB and 20 dB SNR and three DFT lengths

L = 2048/4096/8192 are used. To quantify the DOA estimation error we use the root mean

square error (RMSE), which according to [13] is defined as
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RMSE =

√√√√ 1

N

N∑
i=1

(φ− φ̂i)2 , (4.1)

where N is the number of estimation trials, φ is the true DOA and φ̂i is the estimated DOA of

the i-th trial (in degrees). The diameter of the rotational motion is chosen to be 10 cm and the

microphone sampling rate as fs = 48 kHz, since this corresponds to the values used for our REM

prototype. The results of the simulations are shown in Figure 4.6. Note that RMSE ≈ 104◦ if

we randomly guess the DOA. This value was derived by performing 108 random guesses and

subsequently computing the RMSE.

(a) 125Hz source frequency (b) 8 kHz source frequency

Figure 4.6: RMSE of two frequencies for various DFT lengths L, RPS and SNR.

From the depicted results it can be observed that for each L there is a clear rotational speed

at which the RMSE substantially improves. The minimum required rotational speeds RPSmin

for L = 2048/4096/8192 appear to be RPSmin ≈ 40/20/10, i.e. doubling the DFT length

approximately halves the required rotational speed. Interestingly, the SNR has virtually no

impact on the RMSE before this minimum rotational speed is reached, however, after RPSmin

has been reached the RMSE is consistently lower for the 20 dB SNR case. Another noteworthy

finding is that a larger L results in a lower RMSE, which is most likely due to an improved

frequency resolution and noise suppression inherent with the increased DFT length. A final

notable observation is that the localization accuracy of the 8 kHz signal is almost three orders of

magnitude better than that of the 200Hz signal. This agrees with our hypothesis from earlier

that localization of higher frequencies is more accurate and robust to noise.

Up until this point we have exclusively utilized Hann windows for the computation of all shown

spectrograms, however, different windows may perform better in regards to the localization

accuracy. In theory, windows that have a narrow main lobe should require a lower minimum
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rotational speed since the sidebands will separate sooner. On the other hand, narrower main

lobes result in higher side lobe levels, increasing the spectral leakage and therefore negatively

affecting the accuracy of the focusedness. To see which of these factors affects the localization

accuracy more we perform 100 localization trials of a 125Hz and 8 kHz source signal using three

windows: A rectangular window, a Hann window and a Blackman window. The rectangular

window provides us with the narrowest main lobe at 1 bin (in regards to the equivalent noise

bandwidth) and the highest maximum side lobe level at -13 dB. The Blackman window has the

widest main lobe at 1.73 bins and the smallest maximum side lobe level at -58 dB. The Hann

window lies approximately in the middle at 1.5 bins main lobe width and -32 dB maximum side

lobe level [28][11]. A rotational diameter of 10 cm is chosen and additive pink noise is added to

the signals at 20 dB SNR. Furthermore, we test two DFT lengths L = 4096 and L = 8192. The

results are plotted in Figure 4.7.

(a) 125Hz source frequency (b) 8 kHz source frequency

Figure 4.7: RMSE of two frequencies for various windows, DFT lengths L and RPS.

It can be observed that the rectangular window provides comparably unreliable and inconsistent

results. The difference between the Hann and the Blackman window are much smaller, with

the Blackman window showing a slight improvement in consistency and localization accuracy.

Therefore, every following spectrogram will be computed using a Blackman window from now on.

We will now investigate the impact of the rotation diameter on the DOA estimation accuracy.

Similarly to before we perform 100 estimation trials for a 125Hz and 8 kHz sound source at

rotational diameters ranging from 2 cm to 20 cm. The rotational speed is chosen to be 40RPS

and the DFT length as L = 8192. Additionally, we add randomly generated pink noise to the

signals at 0 dB and 20 dB SNR. The results of the simulations are depicted in Figure 4.8.

It can be observed that the RMSE decreases as the diameter increases. This was to be expected

since the modulation index is dependent on the rotational radius (see Equation (3.11)), increasing

the range of values for the focusedness for higher radii. It appears that we can increase the diameter

indefinitely to achieve a higher localization accuracy, however, an increase in diameter leads to an
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Figure 4.8: RMSE of two frequencies for various rotation diameters and SNR.

increase in microphone speed, which in turn results in increased wind noise. Additionally, most

real sound sources do not emit plane waves, resulting in a certain wave curvature depending on

the distance between the microphone and the sound source, as well as the geometry of the sound

source. This curvature is not taken into account by the TWA, leading to an error that becomes

larger as we increase the diameter.

Side note: If we extend the capabilities of the TWA such that it can take into account different

wavefront curvatures we could potentially not only estimate the DOA of sound sources but also

their distance to the microphone. In such a case it would be beneficial to choose the maximum

possible rotational diameter to allow for more accurate distance estimation.

We will now directly compare the DOA estimation accuracy of our approach with the method

from [12]. Similarly to the paper we perform 100 DOA estimation trials of source frequencies

125Hz, 250Hz, 500Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz mixed with randomly generated pink noise

at various SNR ranging from -20 dB to 20 dB. The rotational diameter is chosen to be 25 cm since

this is the value used in [12]. Additionally, we use a sampling rate of fs = 48 kHz, a DFT length

of L = 8192 and rotational speeds of 20RPS and 40RPS. We choose these speeds since 20RPS

correspond to the minimum speed of our REM prototype and 40RPS represent the maximum

speed the REM can reach without corrupting the audio signal too much due to self noise. The

results of our simulations are depicted in Figure 4.9.

It can be observed that all the plotted curves follow a very similar characteristic pattern, however,

there are some noteworthy findings: Unlike the approach from [12] our DOA estimation method

does not work regardless of the source frequency below an SNR of -10 dB at 20RPS and -5 dB at

40RPS. Beyond this point, however, our method consistently outperforms [12], especially for low

source frequencies. Interestingly, the localization accuracy of low frequencies is worse and that of

high frequencies is better at 40RPS as compared to 20RPS.

At this point it must be noted that the approach from [12] assumed knowledge of the source
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(a) 9.58RPS, approach from [12] (b) 17.24RPS, approach from [12]

(c) 20RPS, our approach (d) 40RPS, our approach

Figure 4.9: Comparison of the DOA estimation accuracy for various RPS using the approach
from [12] and the TWA.

frequencies, therefore the CoG algorithm was reduced to a small interval when computing the

instantaneous frequency. Our method does not make any assumptions regarding the source

frequency, which may explain the poor performance at low SNR, despite the true DOA being

visible by visual inspection of the -20 dB SNR case for the 8 kHz signal at 40RPS, for example.

Its azimuth-spectrogram is depicted in Figure 4.10.

It is clearly visible that the true DOA lies at approximately 180◦, however, the focusedness

fails to detect the peak since it is being overpowered by the pink noise which has more energy

in lower frequency regions. If we assume knowledge of the source frequency we could choose

to compute the focusedness only for the frequency bin most closely associated with 8 kHz and

therefore easily approximate its DOA. However, since we would like to localize arbitrary sound

sources we require a more general approach, which we will elaborate on in the following section.
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Figure 4.10: Noisy azimuth-spectrogram of an 8 kHz sine wave at 40RPS and -20 dB SNR.

4.2 Localization Using Subband Processing

On important note regarding this section: The extensive testing in the previous section was

performed to give us a general idea of the impact of various parameters and a baseline perfor-

mance of the focusedness-based localization. We will now perform one final modification of the

localization approach to improve performance in low SNR situations as well as allow for multiple

source localization. This modification opens the door for a very large number of additional signal

processing ideas which go beyond the scope of this thesis. Therefore we choose one possible

implementation of this modification and investigate its accuracy, as well as point out what other

possibilities could be explored in the future. All numerical parameters in this section were chosen

‘by eye’ and will not be optimized as vigorously as the parameters from the previous section,

since the number of possible parameter combinations to evaluate are too great to be included in

this thesis.

Up until this point the focusedness has been evaluated across the entire bandwidth of the

spectrogram. In practical settings, however, this may lead to inaccuracies if the source signal

is restricted to a small bandwidth under noisy conditions, as the previous section has shown.

Additionally, localization of multiple sound sources in different frequency bands is not possible if

there are large level differences between the signals. This motivates separating the spectrogram

into multiple subbands and performing focusedness-based localization for each band individually.

A suitable filter bank for separating the spectrogram is illustrated in Figure 4.11. We choose an

overlapping logarithmic filter bank since for each frequency there should be at least one filter

that fully encapsulates a frequency and all of its sidebands. Since the sidebands spread more

as the main frequency increases we require wider filters at higher frequencies. We use 20 filters

since rough tests showed that dividing the signal into 20 subbands produced good results.
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Figure 4.11: Proposed logarithmic filter bank with 20 filters.

The main difficulty associated with subband processing is combining the DOA estimations from

the individual subbands into one or multiple DOA predictions. One possibility is to perform a

weighted average of the individual predictions based on the energy associated with each subband,

however, this approach does not allow for the detection of multiple sound sources. Additionally,

it would be beneficial to assign a higher credibility to DOA guesses from a filter associated with

larger frequencies, since high frequencies can be located with a higher precision. Furthermore,

the energy within a subband does not necessarily indicate DOA estimation reliability, since

the energy could stem from noise rather than the signal to be located. A method for filtering

out bad DOA predictions would be to devise an algorithm which detects frequencies within

the signal that remain reasonably constant for short time periods and subsequently uses only

the subbands containing these frequencies for DOA estimation. This would be beneficial since

constant frequencies are needed to induce the Doppler shift required for the focusedness to work

and thus the DOA predictions of subbands containing noise will be discarded. However, devising

such an algorithm that works reliably on complex and noisy spectrograms is a very challenging

task in itself and will therefore be left for future research.

For the sake of simplicity we use a straightforward combination method: We obtain the single

angle with maximum focusedness for each subband and spectrogram frame and use these values

as our DOA predictions. Subsequently we estimate the probability density function (PDF) of

the obtained predictions using Parzen window density estimation with a Gaussian kernel. For

more information regarding this density estimation method see [25]. Our final DOA prediction

corresponds to the angle at which our estimated PDF has its maximum. Applying this modified

approach to the -20 dB SNR 8kHz signal from Figure 4.10 gives us the DOA estimation points

in Figure 4.12a when observing the signal for 1 s and using L = 4096. Note that the y-axis has

been added for visualization purposes only. The PDFs of these estimation points and for points
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obtained using other DFT lengths are depicted in Figure 4.12b, which show clear peaks at the

true DOA of the source signal. Localization is even possible down to a -30 dB SNR for L = 8192

as can be observed from Figure 4.12c.

(a) DOA estimation points for L = 4096 and -20 dB SNR

(b) PDF of DOA estimation points with peak at φ = 180◦ for various DFT lengths at -20 dB SNR

(c) PDF of DOA estimation points with peak at φ = 180◦ for various DFT lengths at -30 dB SNR

Figure 4.12: Localization using Parzen window density estimation of the DOA estimation points.

Some final remarks regarding this new approach: From a practical standpoint we perceive an

accuracy of 1◦ to be sufficient for our DOA estimation. Therefore, from now on, we compute

the TWA for all angles at 1◦ increments for performance reasons. Furthermore, we assume

that all sound sources are separated by at least 22.5◦. Following this assumption we found that

a Gaussian kernel width of 31◦ produced reliable PDFs. Additionally, we use a spectrogram

frame shift of 1024 samples to provide a trade-off between performance and the number of

DOA predictions. Finally, it must be noted that although this modified approach increases the
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reliability of DOA estimation, the absolute localization accuracy decreases due to the smoothing

we apply when using the Gaussian kernel. For this reason we will not provide a direct comparison

with the DOA estimation plots from Figure 4.9 and instead use the shape of the obtained PDFs

as an indication of the localization accuracy.

4.3 Localization of a Single Complex Source in 2D Space

Localization of complex audio signals using our proposed approach is generally only possible

if there are frequencies in the source signal which remain reasonably constant during one DFT

frame. This encourages the use of shorter DFT lengths as it increases the chances that frequencies

in the source signal will be constant for an entire frame. The expense of the shorter DFT length

is a slight decrease in localization accuracy and an increased required rotational speed, which

results in higher wind and motor noise, further decreasing the localization accuracy. Additionally,

we expect that our approach does not allow for the localization of percussive and noise-like

sources, since there will be no observable Doppler frequency shift. This, however, may be

the case in general for any DOA estimation algorithm using a single moving microphone if

no prior information regarding the source signal is given. We will experiment with L = 2048,

L = 4096 and L = 8192, which for a sampling rate of 48 kHz corresponds to frame lengths

of approximately 43ms, 85ms and 171ms, respectively. Additionally, we explore localization

accuracy for frot = 20RPS and frot = 40RPS, since these are the minimum and maximum

reasonable speeds of our REM prototype.

We test 7 different complex signals: All the frequencies 125Hz, 250Hz, ..., 4 kHz, 8 kHz combined,

randomly generated pink noise, a male voice sample, a female voice sample, a simple drum groove,

a short excerpt from a piano concerto and an exponential sine sweep. All signals are roughly 2 s

long and modulated for a DOA of φ = 180◦ and a rotational radius r = 5 cm. To obtain the

baseline performance we first investigate the localization accuracy without any additive pink

noise. The results for various DFT lengths and frot = 40RPS are depicted in Figure 4.13, where

the true DOAs are indicated with a black line.

It can be observed that a larger DFT length leads to an improved, more decisive DOA estimation

in all cases. Therefore it seems that the gain in localization accuracy from using shorter DFT

lengths due to frequencies being more constant within a frame is minimal. The best results were

achieved with the sine tones, since this signal features a large number of constant frequencies.

An interesting observation is the small peak at φ = 0◦. Further investigation showed that this

peak is caused by subbands that encapsulate only the sidebands of a frequency and not the main

frequency, since the energy in the sidebands is maximized when the modulation index is at its

peak, i.e. when the TWA is performed in the opposite direction as the true DOA.
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(a) 125Hz, 250Hz, ..., 4 kHz, 8 kHz sine tones combined

(b) Randomly generated pink noise

(c) Male voice sample

(d) Female voice sample

(e) Simple drum groove

(f) Piano concerto excerpt

(g) Exponential sine sweep

Figure 4.13: DOA estimation accuracy for various sound sources at frot = 40RPS.
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As we expected, the classical music signal also showed very good performance, since it features

many constant frequencies. A surprising observation is the localization accuracy of the drum

groove. We believe this is due to the constant tonal components inherent to the bass and

snare drum within the signal. The speech samples were detected with reasonable accuracy with

the female voice being detected more reliably due to its higher fundamental frequency. The

exponential sine sweep was detected very well for L = 4096 and L = 8192, which was unexpected

since it lacks a constant frequency. However, a second clear peak is visible at φ = 0◦ the cause of

which we believe is the same as the small peak visible for the sine tones signal. Finally, the DOA

of the pink noise signal could not be detected, which matched our expectations. Therefore we

will not be including this signal in any further tests.

We performed the same tests for frot = 20RPS and expected the localization accuracy to only

deteriorate for L = 2048. Contrary to our expectations the localization accuracy decreased for

every signal and every DFT length. The DOA estimation accuracy was only marginally worse

for the sine tones, the classical music signal and the drum groove, however, in the case of the

speech signals and the exponential sine sweep the detection was very unreliable or failed entirely.

The results for these signals are depicted in Figure 4.14.

(a) Male voice sample

(b) Female voice sample

(c) Exponential sine sweep

Figure 4.14: DOA estimation accuracy for various sound sources at frot = 20RPS.

Our expectation was that, in the case of the exponential sine sweep, the slower rotational speed

would lead to a decrease in height of the peak at φ = 0◦ since there is less separation of the

sidebands, decreasing the chance of subbands only containing the sidebands of a frequency and

not its main frequency. In our simulation, however, the height of the incorrect peak increased
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relative to the correct peak and even surpassed its amplitude. Further investigation is needed to

explain this phenomenon as well as why the slower rotational speed produces overall worse results

despite Figure 4.9 showing very similar performance for both frot = 20RPS and frot = 40RPS.

(a) 125Hz, 250Hz, ..., 4 kHz, 8 kHz sine tones combined

(b) Male voice sample

(c) Female voice sample

(d) Simple drum groove

(e) Piano concerto excerpt

(f) Exponential sine sweep

Figure 4.15: DOA estimation accuracy for various sound sources and SNRs at frot = 40RPS.

Since frot = 40RPS and L = 8192 consistently produced the best results we will now be using

these parameters to investigate the DOA estimation accuracy of the previously used signals at
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various SNR. The results are depicted in Figure 4.15. Note the different SNR values.

It can be observed that all signals can be localized with reasonable accuracy once SNR > −5 dB.

Additionally, the signals whose DOA estimation was most accurate in Figure 4.13 can be located

at lower SNRs and with higher accuracy. An interesting finding is the decrease in the peak at

φ = 0◦ in the case of the combined sine tones and exponential sine sweep signals. We believe

this is due to the low energy sidebands being overpowered by the pink noise, leading to fewer

φ = 0◦ detections in subbands that only contain the sidebands of a frequency.

4.4 Localization of Multiple Sources in 2D Space

Let us now investigate DOA estimation accuracy when multiple sources are active at various

spatial points simultaneously. We start with two active sources and investigate two signal

combinations: the male speech + the female speech and the drum groove + the piano concerto

excerpt. We fix the DOA of the first signal to φ1 = 90◦ and test three different DOAs for

the second signal: φ2 = 225◦/150◦/113◦. Each signal and DOA combination is modulated

at frot = 40RPS, r = 5 cm and the three previously used DFT lengths are utilized during

localization. Additionally, all signals are normalized such that they have approximately the same

total energy. The results are depicted in Figure 4.16 and Figure 4.17, where the true DOAs are

indicated with black lines.

It can be observed that separate localization of two signals is possible, especially in the case of

the music signals. The speech signals are localized less precisely, but their DOAs can still be

obtained with reasonable precision as long as they are sufficiently spaced. When placed 23◦ apart

the two peaks merge into one, making it challenging to determine the individual DOAs. An

interesting observation can be made in Figure 4.16a as it appears that localization for L = 4096

outperforms the larger DFT length. This may, however, simply be a coincidence. Another

notable observation is the large difference in the peak heights in the case of the music signals.

We believe this is due to the energy of the piano concerto excerpt being more concentrated onto

constant frequencies over a larger range of subbands and the energy of the drum groove being

more concentrated onto the transients.

The depicted simulations were repeated using frot = 20RPS. The results showed that the

localization accuracy of the music signals was very comparable to the frot = 40RPS case.

Localization of the speech signals, however, failed entirely, since neither of the signals could be

detected.

We will now explore the sensitivity of the localization accuracy to additive pink noise at various

SNRs in the case of L = 8192, frot = 40RPS, φ1 = 90◦ and φ2 = 150◦. The results of the

simulations are shown in Figure 4.18, where the SNR was computed relative to the combined
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(a) Male voice (φ1 = 90◦) + female voice (φ2 = 225◦)

(b) Male voice (φ1 = 90◦) + female voice (φ2 = 150◦)

(c) Male voice (φ1 = 90◦) + female voice (φ2 = 113◦)

Figure 4.16: DOA estimation accuracy for two speech sources at frot = 40RPS.

(a) Drum groove (φ1 = 90◦) + piano concerto excerpt (φ2 = 225◦)

(b) Drum groove (φ1 = 90◦) + piano concerto excerpt (φ2 = 150◦)

(c) Drum groove (φ1 = 90◦) + piano concerto excerpt (φ2 = 113◦)

Figure 4.17: DOA estimation accuracy for two music sources at frot = 40RPS.
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source signals. The plots show that detection of the male voice only becomes possible at an

SNR > 10 dB. On the other hand, the drum groove can already be located at an SNR > 0 dB. We

therefore conclude that DOA estimation of signals which can be detected reliably by themselves

are less sensitive to noise.

(a) Male voice (φ1 = 90◦) + female voice (φ2 = 150◦)

(b) Drum groove (φ1 = 90◦) + piano concerto excerpt (φ2 = 150◦)

Figure 4.18: DOA estimation accuracy for two sources at various SNR and frot = 40RPS.

Finally, let us explore localization accuracy for three and four simultaneous audio sources. We

choose the same four signals as before and place the drum groove at φ1 = 90◦, the piano concerto

excerpt at φ2 = 113◦, the female voice at φ3 = 150◦ and the male voice at φ4 = 225◦. One

of these sources is deactivated at a time resulting in simultaneous playback of three signals.

The results of the DOA estimation using these signal combinations are depicted in Figure 4.19.

Subsequently we tested simultaneous playback of all four audio sources. These results are shown

in Figure 4.20a.

It can be observed that the music signals are localized accurately for all signal combinations.

The female voice is detected with reasonable accuracy in all cases, whereas localization of the

male voice is less reliable. In Figure 4.19a localization fails entirely, except for L = 4096, where a

subtle peak is visible at the correct DOA of the male speech sample.

In the case of all four sources being active at the same time the localization is reasonably accurate,

however, it fails to detect the male speech signal. Interestingly, L = 4096 once again slightly

outperforms L = 8192. Since we believed the male voice signal was overpowered by the piano

concerto excerpt we doubled the amplitude of the male speech sample and halved the amplitude

of the piano concerto signal. The results of the DOA estimation using these modifications

are displayed in Figure 4.20b. It can be observed that all four signals are now detected with

reasonable accuracy.

We conclude that localization of multiple audio sources is possible, especially if the source signals
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(a) Piano concerto excerpt + female voice + male voice

(b) Drum groove + female voice + male voice

(c) Drum groove + piano concerto excerpt + male voice

(d) Drum groove + piano concerto excerpt + female voice

Figure 4.19: DOA estimation accuracy for three sound sources and frot = 40RPS.

(a) All four signals combined

(b) All four signals combined, modified amplitudes

Figure 4.20: DOA estimation accuracy for four sound sources and frot = 40RPS.

consist of many constant, higher frequencies. Generally speaking, signals which can be detected

reliably by themselves are more likely to be detected accurately in the presence of other sources.
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Signals consisting mainly of low frequencies which do not remain constant for very long, such as

the male speech signal, are prone to being overpowered by other sources and detection may only

be possible if the amplitudes of all signals are adjusted.

4.5 Localization in 3D Space

To conclude the theoretical investigation of our DOA estimation algorithm we will now explore

3D sound source localization. The main idea is to follow the same steps as before, that is

computing the TWA for all angles φ = [0◦, 1◦, ..., 358◦, 359◦], θ = 90◦ and finding peak angles

φ̂ in the PDF of the focusedness-based predictions for each subband and spectrogram frame.

The 3D localization is then performed by taking each peak angle φ̂ we found and applying the

TWA for φ = φ̂ and θ = [0◦, 1◦, ..., 89◦, 90◦]. Subsequently we search for peak elevation angles θ̂

in a similar fashion to the search for φ̂. Note that we only search the interval [0◦, 90◦] and not

[0◦, 180◦] since the modulation index β(θ) is symmetric around 90◦. A reminder as to why this is

the case can be found under Equation (3.16). Since we focus more on 2D localization in this

thesis our investigation of 3D localization will not be as vigorous as the 2D case and therefore

we use only frot = 40RPS, L = 8192 and r = 5 cm for all simulations.

An example of the 3D localization approach is shown in Figure 4.21 for an 8 kHz source signal

with a DOA of φ = 180◦ and θ = 45◦. First, the azimuth-spectrogram is computed while fixing

θ = 90◦, leading to a peak being detected at φ = 180◦. Subsequently the elevation-spectrogram

is computed while fixing φ = 180◦, leading to a peak being detected at θ = 45◦.

(a) Azimuth-spectrogram for θ = 90◦ (b) Elevation-spectrogram for φ = 180◦

Figure 4.21: 3D localization for an 8 kHz source signal with DOA φ = 180◦ and θ = 45◦.

Side note: An alternative, perhaps more accurate 3D localization method would be to perform

the TWA for all φ and θ simultaneously and subsequently compute the 2D focusedness over all

azimuth and elevation angles for each subband and spectrogram frame. The DOA estimates

would then be 2D points, allowing us to obtain a 2D PDF. The main problem with this approach
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is that it is very expensive from a computational standpoint. However, a more efficient future

implementation of the TWA could enable its use.

Using the signal from Figure 4.21 and performing DOA estimation with subband processing at

various SNR leads to the results shown in Figure 4.22, where the true azimuth and elevation

angles have been indicated with a black line. A clear peak is visible at or close to both the

correct azimuth and elevation angles.

(a) PDF of azimuth estimation for θ = 90◦

(b) PDF of elevation estimation for φ = 180◦

Figure 4.22: PDFs of the azimuth- and elevation-spectrograms from Figure 4.21 for various SNR.

We will now explore azimuth as well as elevation detection for the previously used drum groove,

female speech, piano concerto excerpt and male speech signals. The incoming azimuth angle is

φ = 180◦ in all cases and the incoming elevation is θ1/2/3/4 = 23◦/45◦/67◦/90◦, respectively. First,

detection of the azimuth angle is carried out and subsequently elevation detection is performed

using the previously derived azimuth estimate. The results are displayed in Figure 4.23, where

the angles in brackets indicate the fixed azimuth and elevation angles used for the TWA. It can

be observed that azimuth estimation deteriorates for low values of θ, since the modulation index

is reduced. Regardless, all the azimuth angles are detected reliably. The elevation estimation

PDFs show two peaks at θ = 0◦ and θ = 90◦. Further investigation is needed to explain these

phenomena. Ignoring the peaks at the sides in all cases except for the male speech signal allows

for determination of the elevation angles with reasonable precision.

Subsequently, we performed 3D DOA estimation for two simultaneous sources. We placed the

simple drum groove and the piano concerto excerpt at the same azimuth φ = 180◦ and at different

elevations θ1/2 = 23◦/67◦. The results are depicted in Figure 4.24. It can be observed that two

sources with the same azimuth and different elevations can be localized individually.

Finally, we performed 3D DOA estimation for two sources at completely different positions.

62 Master Thesis, Jeremy Lawrence



4.5 LOCALIZATION IN 3D SPACE

We placed the female speech signal at φ1 = 45◦ and θ1 = 45◦ and the male speech signal at

φ2 = 180◦ and θ2 = 67◦. The results of this simulation can be found in Figure 4.25. Localization

of the female speech signal is very precise, however, the elevation of the male speech signal is

barely detectable and has a large error. We believe this is due to the male speech signal being

difficult to localize overall, as our previous tests have shown.

The simulations show that 3D localization is possible in theory, however, it is less precise than

azimuth estimation. Additionally, azimuth estimation becomes less accurate as the elevation

angle approaches 0◦, since the modulation index is reduced. Simulations with additive noise

furthermore revealed that elevation estimation is very sensitive to noise and therefore difficult

to reliably implement in practice. Increasing the rotational diameter of the microphone may

help decrease the inaccuracies and noise sensitivities of 3D localization, assuming the resulting

increase in wind noise does not outweigh the benefits of the larger modulation index. Additional

improvements in the combination method of the individual subband and spectrogram frame

DOA estimations may also contribute to improvements of localization in 3D space.
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(a) Drum groove, detection at φ̂ = 176◦ (θ = 90◦)

(b) Female speech, detection at φ̂ = 179◦ (θ = 90◦)

(c) Concerto excerpt, detection at φ̂ = 179◦ (θ = 90◦)

(d) Male speech, detection at φ̂ = 178◦ (θ = 90◦)

(e) Drum groove, detection at θ̂1 = 23◦ (φ = 176◦)

(f) Female speech, detection at θ̂2 = 43◦ (φ = 179◦)

(g) Concerto excerpt, detection at θ̂3 = 66◦ (φ = 179◦)

(h) Male speech, detection at θ̂4 = 90◦ (φ = 178◦)

Figure 4.23: 3D localization for various source signals with varying elevation.
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(a) Drum groove + concerto excerpt, detection at φ̂ = 179◦ (θ = 90◦)

(b) Drum groove + concerto excerpt, detections at θ̂1/2 = 23◦/66◦ (φ = 179◦)

Figure 4.24: 3D localization of two sources at the same azimuth and different elevations.

(a) Female speech + male speech, detections at φ̂1/2 = 45◦/181◦ (θ = 90◦)

(b) Female speech + male speech, detection at θ̂1 = 46◦ (φ = 45◦)

(c) Female speech + male speech, detection at φ̂2 = 52◦ (φ = 181◦)

Figure 4.25: 3D localization of two sources at different azimuth and elevations.
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Chapter 5

Direction of Arrival Estimation -

Practical Verification

We will now attempt to verify the proposed DOA estimation approach in practice using our

REM prototype. Section 5.1 provides details about the REM and subsequently Section 5.2

addresses the additional difficulties we are expected to face when the idealizing assumptions we

made during the derivation of our approach are not met. Section 5.3 elaborates on the utilized

practical setup and finally Section 5.4 and Section 5.5 show the results of our experiments.

5.1 REM Prototype

Figure 5.1: 3D model (left) and photograph (right) of the REM prototype.
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The REM prototype is depicted in Figure 5.1 and a schematic showing the connections and

components of the REM can be found in Figure 5.2.

Figure 5.2: Electronic components and signal flow diagram of the REM prototype.

The equator of the REM is equipped with an LED, a photodiode and two omnidirectional

SPH0645LM4H MEMS microphones which each record at a sampling rate of fs = 48kHz and

have the frequency response shown in Figure 5.3 (3.072MHz graph). Although the REM features

two microphones we will only be utilizing one audio signal in this thesis since we wish to perform

Figure 5.3: Frequency response of the SPH0645LM4H MEMS microphone (image from [19]).
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DOA estimation using a single microphone.

The internal photodiode passes an external LED during rotation and the recorded light peaks

allow the internal Raspberry Pi to determine the rotational speed as well as the starting phase

with high precision. The rotation is driven by a brushless DC (BLDC) motor which is controlled

by an electronic speed controller (ESC). The ESC does not allow for direct adjustment of the

rotational speed but instead is set to a certain power level which causes the microphone to rotate

at a certain speed depending on air resistance, friction and battery voltage. This causes minor

fluctuations in rotational speed over time which are recorded and taken into account by the

TWA. The minimum stable operating speed of the REM is approximately 20RPS. Although

the maximum speed we have achieved is roughly 200RPS, we will limit the maximum speed to

40RPS for the sake of audio quality. More details regarding the REM can be found in [22].

5.2 Real World Considerations

In the previous chapter we made many simplifying assumptions to facilitate the derivation of our

DOA estimation algorithm. We will now give a brief overview of these assumptions and point

out in which way they may not hold in the real world:

1. The amplitude A in Equation (3.12) was assumed to be constant since plane waves have the

same amplitude regardless of where in space we place the microphone. In reality, however,

the amplitude decreases with increasing distance to the sound source, which in our case

would result in a periodic modulation of A.

2. We assumed all sound waves to be plane waves. In practical settings, however, sound waves

will always have a slight curvature regardless of how distant the sound source is. As a

consequence the TWA will not perfectly compensate the frequency modulation for a given

direction unless the distance to the sound source is also known and taken into account.

3. The microphone was assumed to be perfectly omnidirectional, however, real world micro-

phones are never perfectly omnidirectional. In addition, the sphere of our REM prototype

acts as an acoustic barrier as the microphone is facing away from a sound source. Both of

these effects result in an additional frequency-dependent modulation of the amplitude A.

4. The assumption was made that the microphone is in a free field. In realistic environments,

however, we will always have frequency-dependent acoustic reflections and acoustic scat-

tering. As a consequence, any sound source will never arrive from only one direction but

multiple frequencies within the sound source will arrive from multiple, different directions

with different levels of distortion.
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(a) Effects of amplitude modulation (b) Effects of wavefront curvature

Figure 5.4: Azimuth spectrograms for an 8 kHz sound source placed 20 cm from the microphone.

(a) 0.2m distance (b) 1m distance

(c) 2m distance (d) 1000m distance

Figure 5.5: Azimuth spectrograms for an 8 kHz sound source placed at multiple distances.
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We will now investigate the influence of violations of these assumptions when performing DOA

estimation in practice. Figure 5.4a and Figure 5.4b show the impacts of 1. and 2. on the azimuth

spectrogram of an 8 kHz sound source placed 20 cm from the microphone with a 10 cm rotational

diameter. The true DOA is indicated with a red vertical line.

It can be observed that amplitude modulation results in a minor deviation of the sidebands above

the main frequency towards the left and below it towards the right. The wavefront curvature has

a much stronger impact on the unmodulation accuracy, making it significantly more challenging

to determine the exact DOA when observing the azimuth-spectrogram.

Figure 5.5 depicts the azimuth-spectrograms for multiple microphone-source distances when both

1. and 2. are taken into account. It can be observed that at a distance of 1m the distortions

have already drastically reduced and the DOA is clearly visible for the 1m, 2m and 1000m case.

Therefore these effects can already be neglected at relatively low microphone-source distances

(a) First microphone - low frequencies (b) First microphone - high frequencies

(c) Second microphone - low frequencies (d) Second microphone - high frequencies

Figure 5.6: Directivity of both microphones for various frequencies.
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when performing DOA estimation. However, a more accurate implementation which takes both

amplitude modulation and curved wavefronts into account is required if we wish to accurately

reconstruct sound sources in addition to their localization.

Let us now address concern 3.: We measured the directional characteristics of our REM prototype

for frequencies 125Hz, 250Hz, 500Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz in an anechoic chamber.

All these frequencies were played by a speaker placed at approximately 1m distance from the

microphone and the microphone was rotated by 45◦ after each measurement has been taken.

The results of these measurements can be found in Figure 5.6.

As it can be observed, both microphones within the REM exhibit very similar directional

characteristics. Additionally, higher frequencies are attenuated more as the microphone is facing

away from a sound source. An unanticipated discovery is the strong directivity concerning the

1000Hz and particularly the 500Hz frequency as it remains unclear what induces the pronounced

attenuation towards the rear of the microphone. One hypothesis is that this may have been

caused by standing waves within the anechoic chamber, which may also explain the measured

asymmetric directivity. Further investigation using an omnidirectional reference microphone is

needed to definitively verify or disprove this hypothesis.

Nevertheless, we can conclude that the directivity of the microphone causes additional frequency-

dependent amplitude modulation when recording an audio source during rotation, which will

increase the effects shown in Figure 5.4a. To counteract these artifacts it would be necessary to

take the precise directional characteristics of the microphone into account, however, the TWA

currently lacks the ability to perform amplitude modulation compensation. Hence, we set aside

the incorporation of the REM directivity into the TWA for future research.

Finally, let us briefly address concern 4.: Acoustic reflections and scattering are perhaps the most

difficult distortions to compensate. Perfect compensation would require an intractable amount of

knowledge regarding the precise acoustic properties of the space surrounding the microphone.

Therefore, to reduce the impacts of acoustic scattering and reflections, we chose to perform all of

our practical measurements in an anechoic chamber. This will give us a baseline performance

which we can compare against when performing DOA estimation in more realistic, reverberant

environments in the future.

5.3 Experiment Setup

Our practical measurements were carried out in an anechoic chamber which the FAU LMS chair

kindly provided us access to. It features a reverb time of < 30ms and a reflection coefficient

< 0.1 for frequencies above 200Hz. Additionally, the approximate dimensions of the room

were measured as W×L×H = 2.75m×2.5m×2.4m and the temperature inside of the room as
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19◦C. The REM prototype was placed at the center of the room at a height of 1.2m and two

Genelec 1029A loudspeakers were positioned at the same height at various spatial points to

simulate one or two audio sources. The initial setup is depicted in Figure 5.7a. Additionally, we

tested localization accuracy of an audio signal placed at 45◦ elevation. This setup is shown in

Figure 5.7b.

(a) Setup in the horizontal plane (b) Setup with 45◦ speaker elevation

Figure 5.7: Microphone and speaker placement in the utilized anechoic chamber.

The loudspeakers were connected to a computer via a Steinberg UR44C audio interface which

was placed in the neighbouring room, from which the microphone and the microphone motor

were also controlled wirelessly. Each test consisted of placing the speakers at certain predefined

points, spinning the microphone to the desired speed and subsequently playing a test file. For

each speaker arrangement three microphone speeds were tested: 24RPS, 32RPS and 42RPS.

The self noise at these speeds was measured at a distance of 20 cm as 45 dB, 51 dB and 56 dB,

respectively.

The loudspeakers were set to a volume such that the sound pressure level at the microphone

center was roughly 95 dB for a distance of 139 cm between the microphone center and the speaker

membrane. The utilized test file consisted of a concatenation of the audio samples listed in

Table 5.1. Each sample was approximately 2 s long and normalized to -0.1 dB. The samples

‘125Hz’ - ‘8 kHz’ are sinusoidal tones of the given frequency, ‘Combined’ is a combination of all

the previous tones, ‘Pink noise’ is randomly generated pink noise, ‘Male speech’ and ‘Female

speech’ are speech samples of a male and female speaker reading the phrase,“The audiovisual

sector is very important”, ‘Drum groove’ is a simple drum groove, ‘Classical music’ is a short

excerpt from the 1st movement of Rachmaninoffs 2nd piano concerto where both the piano and

the orchestra are active and ‘Sine sweep’ is an exponential sine sweep in the range 1 kHz - 5 kHz.

In the case of simultaneous playback of the male and female speech samples the male speech

sample was replaced by a different sample where a speaker reads the phrase, “Did we uhm... did
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One source
Two sources
Channel 1

Two sources
Channel 2

125Hz 125Hz 1 kHz
250Hz 1 kHz 250Hz
500Hz 500Hz 1 kHz
1 kHz 1 kHz 1 kHz
2 kHz 2 kHz 1 kHz
4 kHz 1 kHz 4 kHz
8 kHz 8 kHz 1 kHz

Combined Pink noise Male speech
Pink noise Female speech Male speech
Male speech Drum groove Classical music
Female speech Classical music Female speech
Drum groove
Classical music
Sine sweep

Table 5.1: Used audio samples for single source and two source localization.

we hire interns?”.

The utilized speaker placements are listed in Table 5.2. The given angles refer to the azimuth

relative to the position of the blue speaker in Figure 5.7a plus 90◦. Furthermore, positive angles

refer to anti-clockwise movement with respect to the 90◦ reference point, i.e. the black speaker in

Figure 5.7a is placed at a 180◦ azimuth angle. We attempted to maximize the distance between

the speakers and the microphone which lead to minor variations in the microphone-speaker

distance in certain configurations due to the small room space. Note that the microphone-speaker

distance was measured with respect to the microphone center and the speaker membrane.

Speaker 1 Speaker 2
Microphone-speaker
distance

Single source 90◦ - 139 cm
180◦ - 139 cm

90◦ + 45◦ elevation - 139 cm

Two sources 90◦ 180◦ 139 cm
90◦ 270◦ 130 cm
90◦ 112.5◦ 111 cm

90◦ + 45◦ elevation 180◦ 139 cm

Table 5.2: Utilized speaker placements for single source and two sources localization

The following two sections will show the accuracy for our single source and subsequently two

sources localization, as well as compare these findings to the simulations performed in Chapter 4.
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5.4 Localization of a Single Source

The self noise created by the REM was found to be a combination of wind noise, which has pink

noise characteristics, and motor noise, which can be described as a low frequency hum at the

rotational frequency and its overtones. The SNRs at the rotational speeds 24RPS/34RPS/42RPS

were estimated to be approximately SNR = −3.8 dB/ − 9.2 dB/ − 12.6 dB. Due to these low

SNRs we expect that localization of complex signals will prove difficult.

Let us first focus on the localization in the horizontal plane for φ = 90◦ and φ = 180◦: The

125Hz signal was not detectable under any circumstances, which we believe is due to it being

overpowered by the REM self noise. Localization of the 250Hz signal is not very accurate and

detection was only possible when using slower rotational speeds. The localization accuracy

gradually improves as the source frequency increases up to 2 kHz, where we see the best results.

At 4 kHz, however, we start seeing the detection peaks either split in two parts or getting

shifted by approximately 20◦. This phenomenon becomes worse for the 8 kHz signal, which

makes localization impossible. Similar splitting of the peaks can be seen in the combined signal.

Figure 5.8 shows the localization performance of four signals at three rotational speeds each.

The full DOA estimation results for every signal can be found in Appendix A. Note that we

omitted the numerical values of the y-axis in all plots, since we only find the shape of the PDF

to be of importance.

(a) 125Hz (φ = 90◦) (b) 250Hz (φ = 90◦)

(c) 2 kHz (φ = 90◦) (d) Combined (φ = 180◦)

Figure 5.8: Azimuth estimation for various sources.

Another interesting finding is the ‘phantom peak’ at the left of the 24RPS plot in Figure 5.12a

and Figure 5.12b. Numerous phantom peaks could be found in other plots as well and it is so

far unclear whether these are due to acoustic reflections being localized, acoustic resonance of

objects within the anechoic chamber or the REM prototype itself, standing waves, coincidence or

other phenomena. Numerous overtones could be observed when investigating the spectra of the
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recorded frequencies, suggesting that some sort of resonance took place. More research is needed

to find and prevent the cause of these phantom peaks.

A possible explanation for the poor performance of high frequencies can be found when observing

the azimuth-spectrograms for the well localized 2 kHz signal and the poorly localized 8 kHz

signal. Figure 5.9 depicts these azimuth-spectrograms for φ = 180◦ and 34RPS, where the

true DOA has been indicated with a black line. The characteristic shape from Figure 4.2 is

clearly visible in these spectrograms, however, the sidebands do not perfectly disappear when

approaching the correct DOA. This was to be expected, since the TWA does not compensate

for wavefront curvature, amplitude modulation and acoustic scattering as well as reflections.

Regardless, in the 2 kHz case we clearly see that the main frequency approaches a maximum at

the correct DOA. In the 8 kHz case we also observe that the main frequency has a maximum

at φ = 180◦, however, numerous sidebands also show clearly defined maxima in an asymmetric

fashion, making it difficult to determine the DOA without knowledge of the source frequency. We

believe that these artifacts and the asymmetry are caused by the larger directivity of the REM

for higher frequencies. This increases the amplitude modulation when recording high frequencies,

magnifying the effects shown in Figure 5.4a. Therefore we conclude that the directivity of the

REM must be taken into account for the localization of high frequencies.

(a) 2 kHz (φ = 180◦) (b) 8 kHz (φ = 180◦)

Figure 5.9: Real azimuth-spectrogram for 2 kHz and 8 kHz source signals at 34RPS.

Detection of the 8 kHz signal would be easy if we had knowledge of the source frequency, as we

could simply search for the maximum within the frequency bin most closely associated with

8 kHz. This motivates the usage of a stationary reference microphone placed at or close to the

center of the REM, since it would allow us to determine all incoming frequencies without any

Doppler shifts. Therefore we would not have to rely on the focusedness for DOA estimation and

could instead choose to, for example, correlate the azimuth spectrogram with one spectrogram

frame of the reference microphone. We set aside this idea for future research.

Localization of the pink noise signal was not possible, which matched our expectations. However,

the male voice, female voice and drum groove could also not be localized. Occasionally there
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are peaks at approximately the right positions, but we believe these are coincidences. As far

as we are concerned the inability to locate these complex signals is due to an insufficient SNR,

especially since previous simulations showed that speech localization was only possible for higher

rotational speeds where there is an even lower SNR. On the other hand, the classical music signal

was localized very accurately, making it the only real world signal that could be detected. The

exponential sine sweep was also localized with reasonable precision for lower rotational speeds.

The results of the last two signals matched our expectations and are depicted in Figure 5.10 for

φ = 90◦.

(a) Classical music (φ = 90◦) (b) Sine sweep (φ = 90◦)

Figure 5.10: Azimuth estimation for the classical music and sine sweep sources.

Let us now address the third single source localization with DOA φ = 90◦ and θ = 45◦. The

azimuth estimation was very comparable to the previous results with two small differences:

Splitting of the peaks was less pronounced, therefore localization of the single frequencies was

more accurate except in the case of the 2 kHz source signal, and localization of the exponential

sine sweep was less accurate. It is unclear what causes the improvement in localization accuracy,

since we expected azimuth localization to become worse due to the decreased overall modulation

index as a result of the elevation. A possible explanation is that changing the speaker placement

reduced some form of resonance in the anechoic chamber.

In a subsequent step we performed elevation estimation for all signals which had reliable and

reasonably accurate azimuth estimation results. We chose the detected azimuth angles when

applying the TWA. We found that elevation estimation did not produce any conclusive results

regardless of the source signals. Figure 5.11 shows the results for two source signals, where

the φ-values in brackets indicate the used azimuth angles when applying the TWA. Two clear

(a) Classical music (φ = 89◦/89◦/88◦) (b) 4 kHz (φ = 93◦/92◦/92◦)

Figure 5.11: Elevation estimation accuracy for the 4 kHz and classical music sources.
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peaks are visible in the case of the 4 kHz signal, however, their origin could not be determined.

Interestingly, the general shape of the elevation estimation curves matches the simulations in that

there are two peaks at θ = 0◦ and θ = 90◦. More research is needed to explain these phenomena.

We conclude that single source localization in the horizontal plane is accurate most of the time

for sound sources which mainly consist of constant tones in the mid frequency range. The

24RPS and 34RPS speeds clearly outperformed the 42RPS case, however, it is difficult to

ascertain which of the slower speeds performs better, as there are multiple instances in which one

outperforms the other and vice versa. Performance may improve in general if the combination

method of the individual subband predictions is adjusted such that bad DOA guesses are not

included in the PDF, e.g. by only considering the subbands containing constant frequencies or

having a certain SNR, and the TWA is extended to take into account amplitude modulation.

This may also reduce the occurrence of phantom and split peaks as well as open the door for

elevation estimation.

5.5 Localization of Two Sources

We will now examine the azimuth estimation results for two simultaneous audio sources. Note

that we will omit the elevation estimation as it produced similarly inconclusive results as for

the single source localization. The full results for all speaker placements, rotational speeds and

source signal combinations are once again shown in Appendix A.

Generally speaking, signals that could be localized in the previous section could also be detected

when a second source was present. Likewise, localization was not possible for signals that

previously could not be detected. Additionally, as before, we see occasional phantom peaks,

which may be caused by a multitude of different reasons. Interestingly, the presence of a second

source appears to slightly reduce the occurrence of split peaks for 4 kHz and 8 kHz source signals.

The proposed DOA estimation approach easily detects both sound sources when they are spaced

at least 90◦ apart in the horizontal plane. In the case of them being spaced at 22.5◦, however,

the peaks merged in the 1 kHz + 250Hz and 1 kHz + 4 kHz cases. Another interesting finding is

that the peak appeared between the two true DOA angles when both speakers played the same

1 kHz tone. Finally, in some cases both peaks were shifted, but the relative angle between the

peaks corresponded to the relative angle between the speakers. This suggests that there is a

possibility that the zero point, which is detected by the REM, is not perfectly stable. However,

these shifts are mostly observable at all three rotational speeds, indicating that these shifts have

another origin. The most noteworthy results are depicted in Figure 5.12, where the left lines

in the plots correspond to the first signal mentioned in their respective caption. Furthermore,

θ = 90◦ applies to all signals if not stated otherwise.

78 Master Thesis, Jeremy Lawrence



5.5 LOCALIZATION OF TWO SOURCES

(a) 1 kHz + 250Hz (φ1 = 90◦, φ2 = 270◦) (b) 1 kHz + 1 kHz (φ1 = 90◦, θ1 = 45◦, φ2 = 180◦)

(c) 2 kHz + 1 kHz (φ1 = 90◦, φ2 = 112.5◦) (d) 1 kHz + 4 kHz (φ1 = 90◦, φ2 = 270◦)

(e) 8 kHz + 1 kHz (φ1 = 90◦, φ2 = 112.5◦) (f) Drums + classical music (φ1 = 90◦, φ2 = 180◦)

Figure 5.12: Azimuth estimation for two sources placed at various positions.

We conclude that sources that can be localized individually can also be located when other

sources are present. Localization is possible even when the speakers are placed 22.5◦ from each

other in most cases. Improvements in the utilized DOA estimation approach may increase the

accuracy and reliability of localization, especially if these improvements lead to fewer peak shifts,

as this reduces the possibility of peaks merging.
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Chapter 6

Conclusions

The aim of this thesis was to perform sound source localization using the previously developed

REM prototype. We saw this application as a first step towards allowing more complex spatial

sound field analysis, since the detection of the DOA of sound sources may subsequently allow for

their separation. To date, the research that has been conducted on the topic of DOA estimation

using a single moving microphone is scarce and the only tested practical verification we are aware

of is limited to localizing single, known frequencies.

We found that the circular rotation of a microphone introduces a periodic Doppler frequency

shift into recorded signals. The phase of this frequency shift depends on the azimuth angle of

an incoming sound source, while the degree to which the frequency is shifted is dependent on

the elevation angle. Previous research estimates the phase of this periodic frequency shift to

perform azimuth estimation. The limitations of this approach are the difficulty of localizing low

frequencies and more complex sources, as well as not allowing for the removal of the distortions

introduced by the microphone movement. To overcome these issues we first showed that a

frequency modulated signal can be expressed as a weighted sum of Bessel functions spaced at the

rotational frequency of the REM around any source frequency. The higher the modulation index

of our frequency modulation, the more the energy of the source frequency is spread into these

sidebands. In this context we introduced the focusedness as a measure of how concentrated or

distributed the energy of a frequency is.

In a next step, we showed that frequency modulation can not only be introduced by a periodic

circular microphone movement, but also by modifying the sampling rate of a stationary micro-

phone. This knowledge allowed us to derive the TWA, which enables the compensation of the

periodic Doppler frequency shift introduced into a recorded sound source given its azimuth and

elevation angle by precisely time-shifting and interpolation the individual audio samples. An

unknown sound source with an unknown DOA can then be localized by applying this algorithm

for multiple azimuth and elevation angle guesses and finding the combination of angles at which
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the focusedness is maximized. Additionally, this approach allows for the reconstruction of the

source signal.

A second method of removing the distortions introduced by the microphone movement was

presented, which acts on the spectrogram of the audio signal rather than the individual audio

samples. Here, a modulation matrix and unmodulation matrix was derived by investigating

how individual frequencies are modified when modulated, which allows for transformation of

individual spectrogram frames into the modulated and unmodulated domain by vector-matrix

multiplication. This approach has the potential of compensating the Doppler shifts much faster

from a computational standpoint and potentially opens the door for defining an optimization

problem which separates multiple audio sources given knowledge of their DOA. Unfortunately,

the matrix-based approach was not applicable using our prototype since we found that more

precise motor speed control is needed to use this method efficiently.

Using the TWA and focusedness-based localization we performed simulations which showed that

our method of localization outperformed the accuracy of previous research when a large SNR

is present. To overcome the lack of accuracy in low SNR situations we proposed splitting the

spectrogram of the recorded audio into multiple frequency bands and performing focusedness-

based DOA estimation on each band and spectrogram frame separately. In a subsequent step

the PDF of all the DOA estimation points is estimated and the final DOA prediction is obtained

from the peaks of this PDF. This modification significantly improved DOA estimation accuracy

in low SNR situations and enabled the localization of multiple sources. Our simulations showed

that this approach could detect up to four sources reliably in 2D space and two sources in 3D

space as long as the source signals feature sufficiently constant frequencies.

Finally, we verified the proposed localization approach in practice using the REM placed in an

anechoic chamber with one and two audio sources. We found that localization of one or two

signals was possible and accurate for signals with many constant tones in the mid frequency

range and speakers placed no closer than 22.5◦ apart. However, there were also many unexpected

artifacts: Phantom peaks occasionally occurred in the PDFs, DOA detection peaks sometimes

shifted by a few degrees and the peaks detected for higher frequencies split into multiple parts.

The discovery of these artifacts suggests further research is necessary. Improvements in the

accuracy of the motor speed as well as wind and motor noise suppression may help overcome the

DOA detection peak shifts and the phantom peaks. This will also open the door for the utilization

of matrix-based unmodulation, greatly improving the speed of the localization. Additionally,

modifications of the TWA to compensate not only the Doppler shifts, but also the frequency-

dependent amplitude modulation may prevent the peaks detected for higher frequencies to

split into multiple parts. The presented approach could be further improved by proposing a

more intelligent method of combining the individual subband DOA predictions into a final

DOA prediction by taking into consideration the REM self noise and the presence of constant
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frequencies as well as the SNR within each subband.

Another avenue for future research is combining the REM with a stationary reference microphone.

The current method relies on the focusedness to determine the DOA since the REM has no

knowledge of the true source frequencies, however, the azimuth and elevation angles with

maximum focusedness do not necessarily correspond to the true DOA for complex source signals.

A stationary reference microphone would provide the REM with knowledge of the true source

frequencies, allowing us to only search for the DOA of specific frequencies rather than the

entire spectrum. This approach has the potential of drastically improving DOA estimation

accuracy, since a large quantity of random DOA guesses due to noisy subbands containing no

DOA information are removed. Additionally, if the stationary microphone is placed, for example,

above the REM, it would allow for the differentiation of sounds arriving above and below the

rotational plane, enabling localization in full 3D space.

Finally, the topic of source separation using the REM also warrants further exploration. We

showed that the matrix-based unmodulation approach allows us to define an optimization problem

which could potentially enable the separation of two or more audio sources, assuming we have

perfect knowledge of their DOA. If this method is successful it would be a major breakthrough

in spatial sound field analysis, as we would be able to localize and reconstruct individual audio

sources using only a single microphone. This would allow the REM to perform similar audio

processing applications to that of a spherical microphone array at a fraction of the hardware

cost.
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List of Abbreviations

BLDC BrushLess DC

CoG Center of Gravity

DFT Discrete Fourier Transform

DOA Direction Of Arrival

EMA Equatorial Microphone Array

ESC Electronic Speed Controller

PDF Probability Density Function

REM Rotating Equatorial Microphone

RIR Room Impulse Response

RMSE Root Mean Square Error

RPS Rotations Per Second

SNR Signal-to-Noise Ratio

TKEO Teager-Kaiser Energy Operator

TWA Time Warping Algorithm
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Appendix A

Direction of Arrival Estimation - Full

Results of the Practical Verification

Here the full results of the experiments from Section 5.3 can be found. Figure A.1, Figure A.2 and

Figure A.3 show the results of the azimuth estimation for a single speaker placed at respective

positions φ = 90◦/180◦/90◦ and θ = 90◦/90◦/45◦. Figure A.4 depicts the elevation estimations

for the signals that were detected reliably from Figure A.3. The used φ-values for the elevation

estimation are shown in brackets under each figure for the 24RPS, 34RPS and 42RPS cases,

respectively.

Figure A.5, Figure A.6, Figure A.7 and Figure A.8 show the results of the azimuth esti-

mation for two speakers placed at respective positions φ1 = 90◦, θ1 = 90◦/90◦/90◦/45◦,

φ2 = 180◦/270◦/112.5◦/180◦ and θ2 = 90◦. The elevation estimations have been omitted

due to their inconclusive nature similarly to the results from Figure A.4.
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(a) 125Hz (b) 250Hz

(c) 500Hz (d) 1 kHz

(e) 2 kHz (f) 4 kHz

(g) 8 kHz (h) Combined

(i) Pink noise (j) Male speech

(k) Female speech (l) Drum groove

(m) Classical music (n) Sine sweep

Figure A.1: Azimuth estimation for a single source placed at φ = 90◦, θ = 90◦.
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(a) 125Hz (b) 250Hz

(c) 500Hz (d) 1 kHz

(e) 2 kHz (f) 4 kHz

(g) 8 kHz (h) Combined

(i) Pink noise (j) Male speech

(k) Female speech (l) Drum groove

(m) Classical music (n) Sine sweep

Figure A.2: Azimuth estimation for a single source placed at φ = 180◦, θ = 90◦.
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(a) 125Hz (b) 250Hz

(c) 500Hz (d) 1 kHz

(e) 2 kHz (f) 4 kHz

(g) 8 kHz (h) Combined

(i) Pink noise (j) Male speech

(k) Female speech (l) Drum groove

(m) Classical music (n) Sine sweep

Figure A.3: Azimuth estimation for a single source placed at φ = 90◦, θ = 45◦.
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(a) 250Hz (φ = 95◦/93◦/-) (b) 500Hz (φ = 90◦/87◦/92◦)

(c) 1 kHz (φ = 89◦/89◦/89◦) (d) 4 kHz (φ = 93◦/92◦/92◦)

(e) 8 kHz (φ = 93◦/93◦/92◦) (f) Combined (φ = 92◦/91◦/90◦)

(g) Classical music (φ = 89◦/89◦/88◦)

Figure A.4: Elevation estimation for a single source placed at φ = 90◦, θ = 45◦.
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(a) 125Hz (left) + 1 kHz (right) (b) 1 kHz (left) + 250Hz (right)

(c) 500Hz (left) + 1 kHz (right) (d) 1 kHz (left) + 1 kHz (right)

(e) 2 kHz (left) + 1 kHz (right) (f) 1 kHz (left) + 4 kHz (right)

(g) 8 kHz (left) + 1 kHz (right) (h) Pink noise (left) + male speech (right)

(i) Female speech (left) + male speech (right) (j) Drum groove (left) + classical music (right)

(k) Classical music (left) + female speech (right)

Figure A.5: Azimuth estimation for two sources placed at φ1 = 90◦, θ1 = 90◦ (left) and φ2 = 180◦,
θ2 = 90◦ (right).
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(a) 125Hz (left) + 1 kHz (right) (b) 1 kHz (left) + 250Hz (right)

(c) 500Hz (left) + 1 kHz (right) (d) 1 kHz (left) + 1 kHz (right)

(e) 2 kHz (left) + 1 kHz (right) (f) 1 kHz (left) + 4 kHz (right)

(g) 8 kHz (left) + 1 kHz (right) (h) Pink noise (left) + male speech (right)

(i) Female speech (left) + male speech (right) (j) Drum groove (left) + classical music (right)

(k) Classical music (left) + female speech (right)

Figure A.6: Azimuth estimation for two sources placed at φ1 = 90◦, θ1 = 90◦ (left) and φ2 = 270◦,
θ2 = 90◦ (right).
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(a) 125Hz (left) + 1 kHz (right) (b) 1 kHz (left) + 250Hz (right)

(c) 500Hz (left) + 1 kHz (right) (d) 1 kHz (left) + 1 kHz (right)

(e) 2 kHz (left) + 1 kHz (right) (f) 1 kHz (left) + 4 kHz (right)

(g) 8 kHz (left) + 1 kHz (right) (h) Pink noise (left) + male speech (right)

(i) Female speech (left) + male speech (right) (j) Drum groove (left) + classical music (right)

(k) Classical music (left) + female speech (right)

Figure A.7: Azimuth estimation for two sources placed at φ1 = 90◦, θ1 = 90◦ (left) and
φ2 = 112.5◦, θ2 = 90◦ (right).
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(a) 125Hz (left) + 1 kHz (right) (b) 1 kHz (left) + 250Hz (right)

(c) 500Hz (left) + 1 kHz (right) (d) 1 kHz (left) + 1 kHz (right)

(e) 2 kHz (left) + 1 kHz (right) (f) 1 kHz (left) + 4 kHz (right)

(g) 8 kHz (left) + 1 kHz (right) (h) Pink noise (left) + male speech (right)

(i) Female speech (left) + male speech (right) (j) Drum groove (left) + classical music (right)

(k) Classical music (left) + female speech (right)

Figure A.8: Azimuth estimation for two sources placed at φ1 = 90◦, θ1 = 45◦ (left) and φ2 = 180◦,
θ2 = 90◦ (right).
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