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Universiẗat Bonn, Institut f̈ur Informatik III
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ABSTRACT

In the last few years, several algorithms for the automatic
alignment of audio and score data corresponding to the
same piece of music have been proposed. Among the ma-
jor drawbacks to these approaches are the long running
times as well as the large memory requirements. In this
paper we present an algorithm, which solves the synchro-
nization problem accurately and efficiently for complex,
polyphonic piano music. In a first step, we extract from
the audio data stream a set of highly expressive features
encoding note onset candidates separately for all pitches.
This makes computations efficient since only a small num-
ber of such features is sufficient to solve the synchroniza-
tion task. Based on a suitable matching model, the best
match between the score and the feature parameters is
computed by dynamic programming (DP). To further cut
down the computational cost in the synchronization pro-
cess, we introduce the concept of anchor matches, matches
which can be easily established. Then the DP-based tech-
nique is locally applied between adjacent anchor matches.
Evaluation results have been obtained on complex poly-
phonic piano pieces including Chopin’s Etudes Op. 10.

1. INTRODUCTION

Modern digital music libraries consist of large document
collections containing music data of diverse characteris-
tics and formats. For a single piece of music, the library
may contain the musical score, several compact disc recor-
dings of a performance, and various MIDI files. Inhomo-
geneity and complexity of such music data make content-
based browsing and retrieval in digital music libraries a
difficult task with many yet unsolved problems. Here,
synchronization algorithms which automatically link data
streams of different data formats representing a similar
kind of information are of great importance. In this paper,
we consider the fundamental case that one data stream,
given as a MIDI file, represents the score of a piece of
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music and the other data stream, given as a WAV file, rep-
resents a recorded performance of the same piece of mu-
sic. The latter data is also simply referred to asaudio.
Thesynchronization taskthen amounts to associating the
note events given by the score data stream with their oc-
currences in the audio file.

Score and audio data fundamentally differ in their re-
spective structure and content, making score-to-audio syn-
chronization a difficult task. On the one hand, the score
consists of note parameters such as pitch, onset times, or
note durations, leaving a lot of space for various interpre-
tations concerning, e. g., the tempo, dynamics, or multi-
note executions such as trills. On the other hand, the
waveform-based CD recording of some performance en-
codes all the information needed to reproduce the acous-
tic realization — note parameters, however, are not given
explicitly. Therefore, all present approaches to score-to-
audio synchronization (see Section 2) proceed in two sta-
ges: In the first stage, suitable parameters are extracted
from the score and audio data streams making them com-
parable. In the second stage, an optimal alignment is com-
puted by means of dynamic programming (DP) based on
a suitable local distance measure.

The approach discussed in this paper also follows along
these lines. However, we put special emphasis on the effi-
ciency of the involved algorithms — concerning running
time as well as memory requirements. In contrast to pre-
vious approaches, we use a sparse set of highly expressive
features, which can be efficiently extracted from the au-
dio data stream. Due to its expressiveness, this feature set
allows for an accurate synchronization with high time res-
olution (around 20 ms). Due to its sparseness, it facilitates
a time and memory efficient alignment procedure (based
on0 to 20 feature vectors per second depending on the re-
spective segment of the piece of music). In our research
we have concentrated on polyphonic piano music of ar-
bitrary genre and complexity. This allows us to exploit
certain characteristics of the piano sound to be used in the
feature extraction. Our underlying concept, however, may
be transferred to other music as well by modifying the fea-
ture set.

In the second stage, we use dynamic programming (DP)
to compute the actual score-to-audio alignment. Our sug-
gested matching model differs from the the classical con-
cept of dynamic time warping (DTW) employed in the



synchronization algorithms suggested in [6, 7]. Since we
prefer to have missing matches over having bad or wrong
matches, we do not force the alignment of all score notes
but rather allow note objects to remain unmatched. Fur-
thermore, we present efficiently computable local score
functions which relate the audio features to the note pa-
rameters of the score data. Here we are led by the fol-
lowing simple but far-reaching principle: The score data
will guide us in what to look for in the audio data stream.
In other words, all information contained in the extracted
audio features, which is not reflected by the score data,
remains unconsidered by the local score function.

As for classical DTW, the running time as well as the
memory requirements in the second stage are proportional
to the product of the lengths of the two sequences to be
aligned. In view of efficiency it is therefore important to
have sparse feature sets leading to short sequences. The
synchronization algorithm can be accelerated considerably
if one knows matches prior to the actual DP computation.
To account for such kind of prior knowledge, we intro-
duce the notion ofanchor configurationswhich may be
thought of as note objects having some salient dynamic or
spectral properties, e. g., some isolated fortissimo chord
with some salient harmonic structure or some long pause.
The counterparts of such note objects in the audio data
streams can be determined by a linear-time linear-space
algorithm which efficiently provides us with so-called an-
chor matches. The remaining matches can then be com-
puted by much shorter, local DP computations between
these anchor matches.

The rest of this paper is organized as follows. After
a brief overview of related approaches in Section 2, we
describe the two stages: the feature extraction in Sec-
tion 3 and the alignment procedure in Section 4. Then,
in Section 5, we describe how to improve the efficiency
of our synchronization by introducing the concept of an-
chor matches. The synchronization results as well as the
running time behavior of our algorithm for complex poly-
phonic piano pieces including Chopin’s Etudes Op. 10 are
presented in Section 6. Section 7 concludes the paper with
a summary and perspectives on future work.

2. RELATED WORK

There are several problems in computational musicology
which are related to the synchronization problem such as
automatic score following, automatic music accompani-
ment, performance segmentation or music transcription.
Due to space limitations the reader is referred to [1, 6] for
a discussion and links to the literature. There, one also
finds a description of other conceivable applications of
score-to-audio alignment. We now summarize recent ap-
proaches from the relatively new field of automatic score-
to-audio synchronization as described in [1, 6, 7].

All three approaches proceed in the two stages men-
tioned above. Turetsky et al. [7] first convert the score data
(given in MIDI format) into an audio data stream using a
synthesizer. Then, the two audio data streams are ana-

lyzed by means of a short-time Fourier transform (STFT)
which in turn yields a sequence of suitable feature vec-
tors. Based on an adequate local distance measure permit-
ting pairwise comparison of these feature vectors, the best
alignment is derived by means of DTW.

The approach of Soulez et al. [6] is similar to [7] with
one fundamental difference: In [7], the score data is first
converted into the much more complex audio format — in
the actual synchronization step the explicit knowledge of
note parameters is not used. Contrary, Soulez et al. [6]
explicitly use note parameters such as onset times and
pitches to generate a sequence of attack, sustain and si-
lence models which are used in the synchronization pro-
cess. This results in a more robust algorithm with respect
to local time deviations and small spectral variations.

Since the STFT is used for the analysis of the audio
data stream, both approaches have the following draw-
backs: Firstly, the STFT computes spectral coefficients
which arelinearly spread over the spectrum resulting in a
bad low-frequency resolution. Therefore, one has to rely
on the harmonics in the case of low notes. This is prob-
lematic in polyphonic music where harmonics and funda-
mental frequencies of different notes often coincide. Sec-
ondly, in order to obtain a sufficient time resolution one
has to work with a relatively large number of feature vec-
tors on the audio side. (For example, even with a rough
time resolution of46 ms as suggested in [7] more than
20 feature vectors per second are required.) This leads to
huge memory requirements as well as long running times
in the DTW computation.

In the approach of Arifi et al. [1], note parameters such
as onset times and pitches are extracted from the audio
data stream (piano music). The alignment process is then
performed in the score-like domain by means of a suitably
designed cost measure on the note level. Due to the ex-
pressiveness of such note parameters only a small number
of features is sufficient to solve the synchronization task,
allowing for a more efficient alignment. One major draw-
back of this approach is that the extraction of score-like
note parameters from the audio data — a kind of music
transcription — constitutes a difficult and time-consuming
problem, possibly leading to many faultily extracted audio
features. This makes the subsequent alignment step a del-
icate task.

3. COMPUTATION OF SPARSE FEATURE SETS

Before we describe the first stage, the extraction step, it
is helpful to recall some facts concerning the music to be
aligned. As mentioned before, we consider polyphonic pi-
ano music of any genre and complexity. This allows us to
exploit certain characteristics of the piano sound. How-
ever, dealing with piano music is still a difficult task due
to the following facts (see, e. g., [2, 3] for more details):

• Striking a single piano key already generates a com-
plex sound consisting not only of the fundamental
pitch and several harmonics but also comprising in-



harmonicities caused by the keystroke (mechanical
noise) as well as transient and resonance effects.

• Especially due to the usage of the right (sustain-
ing) pedal, the note lengths in piano performances
may differ considerably from the note lengths spec-
ified by the score. This results in complex sounds
in polyphonic music which are not reflected by the
score. Furthermore, pedaling also has a great effect
on the timbre (sound spectrum) of a piano sound.

• The piano has a large pitch range as well as dy-
namic range. The respective sound spectra are not
just translated, scaled, or amplified versions of each
other but differ fundamentally in their respective
structure depending on pitch and velocity.

To make the alignment robust under such spectral, dy-
namic and temporal variations, we only consider pitch and
onset information for our audio features. The extraction of
such features is based on the following fact: Striking a pi-
ano key results in a sudden energy increase (attack phase).
This energy increase may not be significant relative to the
entire energy — in particular if the keystroke is soft and
the generated sound is masked by the remaining signal.
However, the energy increase relative to the spectral bands
corresponding to the fundamental pitch and harmonics of
the respective key may still be substantial. This observa-
tion suggests the following general feature extraction pro-
cedure (cf. [8], for a similar approach):

• First decompose the audio signal into spectral bands
corresponding to the fundamental pitches and har-
monics of all possible piano keys.

• Then compute the positions of significant energy in-
creases for each band. These positions constitute
candidates for note onsets.

Note that, opposed to the approach in [1], we do not try
to extract further note parameters from the audio file. The
alignment will purely be based on these onset candidates.

We now describe our feature extraction in detail. For
convenience, we identify the notes A0 to C8 of a standard
piano with the MIDI pitchesp = 21 to p = 108. For ex-
ample, we speak of the note A4 (frequency440 Hz) and
simply write p = 69. Besides the fundamental pitch of
a notep, we also consider the first two harmonics, which
can be approximated by the pitchesp+12 andp+19. The
generalization of our concepts to a constant or variable,
note-dependent number of higher harmonics is straight-
forward (cf. Section 4.2).

3.1. Subband Decomposition

In decomposing the audio signal we use a filter bank con-
sisting of88 bands corresponding to the piano notesp =
21 top = 108. Since a good signal analysis is the basis for
our further procedure, the imposed filter requirements are
stringent: To properly separate adjacent notes, the pass-
bands of the filters should be narrow, the cutoffs should
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Figure 1. Magnitude responses for the elliptic filters cor-
responding to the MIDI notes 60, 70, 80, and88 to 92
(sampling rate4410 Hz).

be sharp, and the rejection in the stopband should be high.
In addition, the filter orders should be small to allow for
efficient computation. In order to design a set of filters
satisfying these requirements for all MIDI notes in ques-
tion, we work with three different sampling rates:22050
Hz for high frequencies (p = 93, . . . , 108), 4410 Hz for
medium frequencies (p = 57, . . . , 92), and882 Hz for low
frequencies (p = 21, . . . , 56). Each filter is implemented
using an eighth-order elliptic filter with1 dB passband rip-
ple and50 dB rejection in the stopband. To separate the
notes we use aQ factor (ratio of center frequency to band-
width) of Q = 25 and a transition band half the width of
the passband. Figure 1 shows the magnitude response of
some of these filters.

Elliptic filters have excellent cutoff properties as well
as low filter orders. However, these properties are at the
expense of large phase distortions and group delays. Since
in our offline scenario the audio signals are entirely known
prior to computations, one can apply the following trick:
After filtering in the forward direction, the filtered signal
is reversed and run back through the filter. The result-
ing output signal has precisely zero phase distortion and
a magnitude modified by the square of the filter’s magni-
tude response. Further details may be found in standard
text books on digital signal processing such as [5].

We have found this filter bank to be robust enough to
work for a reasonably tuned piano. For out-of-tune pianos
one may easily adjust the center frequencies and band-
widths as suggested in [8].

3.2. Onset Detection

After filtering the audio signal, we compute the short-time
root-mean-square (STRMS) power for each of the88 sub-
bands. To this end, we convolve each squared subband
signal with a Hann window of suitable length. In our
experiments, we picked the three different window sizes
of 101, 41, and21 samples depending on the sampling
rates22050, 4410, and882 Hz, respectively. The result-
ing curves are further lowpass-filtered and downsampled
by factors50, 10, and10, respectively. Finally, the first-
order difference function is calculated and half-wave rec-
tified (i. e., taking only the positive part of the function).
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Figure 2. First four measures of Op. 100, No. 2 by
Friedrich Burgm̈uller.
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Figure 3. (a) Audio signal of a performance of the score
shown in Figure 2. (b) Filtererd audio signal w.r.t. to the
pitch p = 72. (c) Onset signalOS72 with detected peaks
indicated by circles.

Altogether, we obtain for each notep a rectified difference
signal, also denoted asonset signaland written asOSp,
which expresses the local energy increase in the subband
corresponding to pitchp. The time resolution depends on
the sampling rate. In our case, each sample of the onset
curve corresponds to50/22050 = 2.3 ms,10/4410 = 2.3
ms, and10/882 = 11.3 ms, respectively. As an illustra-
tion, Figure 3 shows in (a) the waveform of some audio
signal representing a performance of the score depicted in
Figure 2. The filtered audio signal with respect to the pitch
p = 72 (C5,523 Hz) is shown in (b) and the correspond-
ing onset curveOS72 in (c).

3.3. Peak Picking

The local maxima orpeaksof the onset signalOSp indi-
cate the positions of locally maximal energy increases in
the respective band. Such peaks are good candidates for
onsets of piano notes of pitchesp, p− 12, or p− 19. (Re-
call that besides the fundamental pitch we consider two
harmonics.) In theory, this sounds easy. In practice and
for complex piano pieces, however, one has to cope with
“bad” peaks not generated by onsets: Resonance and beat
effects (caused by the interaction of strings) often lead
to additional peaks in the onset signals. Furthermore, a
strongly played piano note may generate peaks in sub-
bands that do not correspond to harmonics (e. g., caused
by mechanical noise). The distinction of such “bad” peaks
and peaks coming from onsets is frequently impossible
and the peak picking strategy becomes a delicate problem.

Since in general the “bad” peaks are less significant then
the “good” ones, we use local thresholds (local averages)
to discard the peaks below these thresholds.

In (c) of Figure 3 the peaks of the onset signalOS72

are indicated by a number, circles indicating which peaks
were chosen by the peak picking strategy. Peak7 and10
correspond to the note C5 (p = 72) played in the right
hand. Peaks2, 3, 4, 8, and11 correspond to the first har-
monics of the note C4 (p = 60) played in the left hand.
It can be seen that the first harmonics of the first and fifth
C4 in the left hand caused the two peaks1 and5, which
were rejected by our local threshold constraints. This also
holds for the “bad” peaks6 and9.

After a suitable conversion, we obtain a list of peaks
for each piano notep. Each peak is specified by a triple
(p, t, s) wherep denotes the pitch corresponding to the
subband,t the time position in the audio file, ands the
size expressing the significance of the peak (or velocity
of the note). For computing the score-to-audio alignment,
only these peak sequences are required — the audio file
as well as the subbands are no longer needed. This con-
siderably reduces the amount of data (e. g., a mono audio
signal of sampling rate22050 Hz requires30–50 times
more memory than the corresponding peaks).

4. SYNCHRONIZATION ALGORITHM

As a preparation for the actual synchronization step, we
divide the notes of the score intoscore bins, where each
score bin consists of a set of notes with the same musical
onset time. For example, for the score in Figure 2 the first
score bin isS1 := {48, 52, 55} containing the first three
notes, and so on. Similarly, we divide up the peak lists
into peak bins. To this end, we evenly split up the time
axis into segments of length50 ms. Then we define peak
bins by assigning each peak to the segment corresponding
to its time position. Finally, we discard all empty peak
bins. Altogether we obtain a listS = (S1, S2, . . . , Sn) of
score bins and a listP = (P1, P2, . . . , Pm) of peak bins
wheren andm denote the respective number of bins. The
division into peak bins seems to introduce a time resolu-
tion of 50 ms. As we will see in Section 4.3, this is not the
case since we further process the individual notes after the
bin matching procedure.

4.1. Matching Model

The next step of the synchronization algorithm is to match
the sequencesS of score bins and the sequenceP of peak
bins. Before doing so, we have to specify a suitable match-
ing model.

Due to note ambiguities in the score such as trills or
arpeggios as well as due to missing and wrong notes in the
performance, not every note object of the score needs to
have a realization in the audio recording. There also may
be “bad” peaks extracted from the audio file. Therefore,
as opposed to classical DTW, we do not want to force ev-
ery note bin to be matched with a peak bin and vice versa.



As in our alignment we only consider note onsets, where
a note given by the score is associated with the onset time
of the corresponding physical realization, each note of the
score should be aligned with at most one time position in
the audio data stream. Furthermore, notes with the dif-
ferent musical onset times should be assigned to different
physical onset times. These requirements lead to the fol-
lowing formal notion of a match:

Definition: A matchbetweenS andP as defined above
is a partial mapµ : [1 : n] → [1 : m] that is strictly
monotonously increasing.

The fact that objects inS or P may not have a counter-
part in the other data stream is modeled by definingµ as
a partial function and not as a total one. The monotony of
µ reflects the requirement of faithful timing: if a note bin
in S precedes a second one this should also hold for the
µ-images of these bins.µ being a function and strictness
of µ ensures that each note bin is assigned to at most one
peak bin and vice versa.

4.2. Score Measures

In general there are many possible matches betweenS and
P . To compute the “best” match we need some measure to
assign a quality to a match. Similar to DTW, we introduce
a local scored measuring the similarity between a note
bin Si and a peak binPj . There are many possibilities for
adequate score functions depending upon which aspects
of the match are to be emphasized. Recall that the note
bin Si is the set of notes of the same musical onset time,
where each note is given by its pitchp. The peak binPj

consists of peaks corresponding to its time segment. Each
peak is specified by a triple(q, t, s), whereq denotes the
pitch of the corresponding subband,t the time position,
ands the size of the peak. Then we define the local score
d(i, j) := d(Si, Pj) by

d(i, j) :=
∑

p∈Si

∑

(q,t,s)∈Pj

(δp,q + δp+12,q + δp+19,q) · s,

whereδa,b equals one ifa = b and zero ifa 6= b for any
two integersa andb. Note that the sumδp,q + δp+12,q +
δp+19,q is either one or zero. It is one if and only if the
peak(q, t, s) appears in a subband pertaining to the fun-
damental pitch or either one of the harmonics of the note
p. In this case, the peak(q, t, s) contributes to the score
d(i, j) according to its sizes. In other words, the local
scored(i, j) is high if there are many significant peaks in
Pj pertaining to notes ofSi. Note that the peaks not cor-
responding to score notes are left unconsidered byd(i, j),
i. e., the score data indicates which kind of information
to look for in the audio signal. This principle makes the
score function robust against additional or erroneous notes
in the performance as well as “bad” peaks. Since the note
and peak bins typically contain only very few (around1 to
10) elements,d(i, j) can be computed efficiently.

Finally, we want to indicate how to modify the defi-
nition of d to obtain other local score functions. In an

obvious way, one can account for a different number of
harmonics. Moreover, one can introduce note-dependent
weights to favor certain harmonics over others. For ex-
ample, the fundamental pitch dominates the piano sound
spectrum over most of its range, except for the lower two
octaves where most of the energy is in the first or even
second harmonics. This suggests to favor the fundamental
pitch for the upper notes and the first or second harmonics
for the lower ones. Omitting the factors in the above defi-
nition ofd(i, j) leads to a local score function which, intu-
itively spoken, is invariant under dynamics, i. e., strongly
played notes and softly played notes are treated equally.

4.3. Dynamic Programming and Synchronization

Based on the local score functiond, the global score of a
matchµ betweenS andP is given by the sum

∑
(i,j):j=µ(i) d(i, j).

To compute the score-maximizing match betweenS and
P , we use dynamic programming (DP). To this end, we
recursively define the global score matrixD = (Di,j) by

Di,j := max{Di,j−1, Di−1,j , Di−1,j−1 + d(i, j)}
and D0,0 := Di,0 := D0,j := 0 for 1 ≤ i ≤ n and
1 ≤ j ≤ m. Then the score-maximizing match can be
constructed fromD by the following procedure:

i := n, j := m, µ defined on ∅
while (i > 0) and (j > 0) do
if D(i, j) = D(i, j − 1) then j := j − 1

else if D(i, j) = D(i− 1, j) then i := i− 1
else µ(i) := j, i := i− 1, j := j − 1

return µ

Note that this procedure indeed defines a matchµ in the
sense of our matching model defined in Section 4.1. After
matching the note bins with the peak bins, we individually
align the notes ofSi to time positions in the audio file,
improving the time resolution of50 ms imposed by the
peak bins: For a notep ∈ Si, consider the subset of all
peaks(q, t, s) ∈ Pµ(i) with q = p, q = p + 12, or q =
p+19. If this subset is empty, the notep is left unmatched.
Otherwise, assign the notep ∈ Si to the time positiont
belonging to the peak(q, t, s) of maximal sizes within
this subset. The final assignment of the individual notes
constitutes the synchronization result.

As an example, Figure 4 illustrates the synchronization
result of the score data shown in Figure 2 and the audio
data shown in part (a) of Figure 3. Observe that notes
with the same musical onset time may be aligned to dis-
tinct physical onset times. (This takes into account that a
pianist may play some notes of a chord a little earlier in
order to accentuate these notes.) Finally, we want to point
out that the assigned time positions generally tend to be
slightly delayed. The reason is that it takes some time to
build up a sound after a keystroke and that we actually
measure the maximal increase of energy. In general, this
delay is larger for lower pitches than for higher pitches.
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Figure 4. (a) Synchronization result for the audio file of
Figure 3. The matched notes are indicated by the vertical
lines. (b) Enlargement of a segment of (a).

5. EFFICIENCY AND ANCHOR MATCHES

Recall that running time as well as memory requirements
of DP are proportional to theproduct of the number of
score and peak bins to be aligned. This makes DP ineffi-
cient for long pieces (cf. Section 6). Classical techniques
for speeding-up DP computations are based on introduc-
ing global constraints which, however, does not improve
the complexity substantially.

The best possible complexity for a synchronization al-
gorithm is proportional to thesumof the number of score
and peak bins. Such a result may be achieved by using
techniques employed in areas such asscore following(see,
e. g., [4]) which may be regarded as a kind of online syn-
chronization. Such algorithms, however, are extremely
sensible towards wrong or missing notes, local time devi-
ations, or erroneously extracted features, which can result
in very poor synchronization results for complex, poly-
phonic music.

The quality of the computed alignment and the robust-
ness of the synchronization algorithm are of foremost im-
portance. Consequently, increasing efficiency of the algo-
rithm should not degrade the synchronization result. To
substantially increase the efficiency, we suggest the fol-
lowing simple but powerful procedure: First, identify in
the score certain configurations of notes, also referred to
asanchor configurations, which possess salient dynamic
and/or spectral properties. Such a configuration may be
some isolated fortissimo chord, a note or chord played af-
ter or before some long pause, or a note with a salient
fundamental pitch. Due to their special characteristics, an-
chor configurations can be efficiently detected in the cor-
responding audio file using a linear-time/linear-space al-
gorithm. From this, compute score-to-audio matches, re-
ferred to asanchor matches, for the notes contained in an
anchor configuration. Finally, align the remaining notes.
This can be donelocally by applying our DP-based syn-
chronization algorithm on the segments defined by two
adjacent anchor matches. The acceleration of the over-
all procedure will depend on the distribution of the anchor
matches. The best overall improvements are obtained with
evenly distributed anchor matches. For example,n − 1
anchor matches dividing the piece into equally long seg-

ments speeds up the accumulated running time for all local
DP computations by a factorn. The memory requirements
are even cut down by a factor ofn2 since only the score
matrix of the active local DP computation has to be stored.

Of course, finding suitable anchor configurations is a
difficult research problem by itself (cf. Section 7). For
the moment, we use a semiautomatic ad-hoc approach in
which the user has to specify a small number of suitable
anchor configurations for a given piece of music. We have
implemented several independent detection algorithms for
different types of anchor configurations which are applied
concurrently in order to decrease the detection error rate.
Pauses in the audio data as well as isolated fortissimo
chords are detected by suitably thresholding the ratio be-
tween short-time and long-time signal energy computed
with a sliding window. Additionally, since pauses as well
as long isolated chords correspond to segments with a
small number of note onsets, such events can be detected
in our peak lists from the extraction step (see Section 3.3)
by means of a suitable sparseness criterion. Notes of salient
fundamental pitch, i.e., notes whose fundamental pitch
does not clash with harmonics of other notes within a large
time interval, may be detected by scanning through the
corresponding subband using an energy-based measure.
To further enhance detection reliability, we also investi-
gate the neighborhoods of the detected candidate anchor
matches comparing notes before and after the anchor con-
figuration to the corresponding subband peak information.
Then we discard candidate anchor matches exhibiting a
certain likelihood of confusion with the surrounding note
objects or peak events. The resulting anchor matches may
be presented to the user for manual verification prior to
the local DP matching stage.

6. EXPERIMENTS AND RESULTS

A prototype of our synchronization algorithm has been
implemented in MATLAB. For the evaluation we used
MIDI files representing the score data and corresponding
CD recordings by various interprets representing the au-
dio data. Our test material consists mainly of classical
polyphonic piano pieces of various lengths ranging from
several seconds up to10 minutes. In particular, it con-
tains complex pieces such as Chopin’s Etudes Op. 10 and
Beethoven’s piano sonatas.

It has already been observed in previous work that the
evaluation of synchronization results is not straightforward
and requires special care. First, one has to specify the
granularity of the alignment, which very much depends
on the particular application. For example, if one is inter-
ested in a system that simultaneously highlights the cur-
rent measure of the score while playing a corresponding
interpretation (as a reading aid for the listener), an align-
ment deviation of a note or even several notes might be
tolerable. However, for musical studies or when used as
training data for statistical methods a synchronization at
note level or even onset level might be required.

Intuitive objective measures of synchronization qual-



ity are the percentage of note events correctly matched,
the percentage of mismatched notes, or the deviation be-
tween the computed and optimal tempo curve. (The out-
put of a synchronization algorithm may be regarded as
a tempo deviation ortempo curvebetween the two in-
put data streams.) However, such a measure will fail if
the note events to be aligned do not exactly correspond
(such as for trills, arpeggios, or wrong notes). In this case,
the measure might give a low grade (bad score), which
is not due to the quality of the algorithm but due to the
nature of the input streams. One would then rate a syn-
chronization as “good” if the musically most important
note events are aligned correctly. Unfortunately, such an
evaluation requires manual interaction, making the proce-
dure unfeasible for large-scale examinations. Similarly,
the measurement of tempo curves requires some ground
truth about the desired outcome of the synchronization
procedure. The design of suitable objective measures,
which allow a systematic and automatic assessment of the
synchronization results, is still an open research problem
and out of our scope.

In this paper, we evaluate our synchronization results
mainly via sonificationas follows: Recall that the input
of our synchronization algorithm is a MIDI file represent-
ing the score and a WAV file representing the audio data.
The algorithm aligns the musical onset times given by the
score (MIDI file) with the corresponding physical onset
times extracted from the audio file. According to this
alignment, we now modify the MIDI file such that the mu-
sical onset times correspond to the physical onset times.
In doing so we only consider those notes of the score that
are actually matched and disregard the unmatched notes.
Then we convert the modified MIDI file into an audio file
by means of a synthesizer. If the synchronization result is
accurate, the thus synthesized audio data stream runs syn-
chronously with the original performance. To make this
result comprehensible (audible) we produce a stereo au-
dio file containing in one channel the mono version of the
original performance and in the other channel a mono ver-
sion of the synthesized audio file. Listening to this stereo
audio file will exhibit, due to the sensibility of the human
auditory system, even smallest temporal deviations of less
than50 ms between note onsets in the two version. To
demonstrate our synchronization results we made some of
the material available at

www-mmdb.iai.uni-bonn.de/download/sync/,

where we provide the score data (as a MIDI file), the au-
dio data as well as the sonification of the synchronization
result of several classical piano pieces including the25
Etudes Op. 100 by Burgm̈uller, the12 Etudes Op. 10 by
Chopin, and several sonatas by Beethoven. Even for these
complex pieces, our synchronization algorithm computes
accurate global alignments, which are more than sufficient
for applications such as the retrieval scenario, the reading
aid scenario or for musical studies. Moreover, most on-
sets of individual notes are matched with high accuracy —
even for passages with short notes in fast succession being

blurred due to extensive usage of the sustain pedal. (Lis-
ten, e. g., to the synchronization result of the Revolution
Etude Op. 10, No. 12, by Chopin). Furthermore, aligning
sudden tempo changes such as ritardandi, accelerandi, or
pauses generally poses no problem to our algorithm.

Our current algorithm is sensitive towards some spe-
cific situations, where it may produce some local mis-
matches or may not be able to find any suitable match.
Firstly, pianissimo passages are problematic since softly
played notes do not generate significant energy increases
in the respective subbands. Therefore, such onsets may be
missed by our extraction algorithm. Secondly, a repetition
of the same chord in piano and forte is problematic. Here,
the forte chord may cause “bad” peaks (see Section 3.3),
which can be mixed up with the peaks corresponding to
the softly played piano chord. Such problematic situa-
tions may be handled by means of a subsequent algorithm
which is based on spectral features rather than based on
onset features. A direct comparison to the approach in
[1] showed that our algorithm is not only more robust and
more efficient — concerning the extraction step as well
as the synchronization step — but also results in a more
accurate alignment.

We now give some examples to illustrate the running
time behavior and the memory requirements of our MAT-
LAB implementation. Tests were run on an Intel Pentium
IV, 3 GHz with 1 GByte RAM under Windows 2000. Ta-
ble 1 shows the running times for several pieces where
the pieces are specified by the first column. Here, “Scale”
consists of a C-major scale played four times in a row in
different tempi, “Bu02” is the Etude No. 2, Op. 100, by
F. Burgm̈uller (see also Figure 2). “Ch03” and “Ch12”
are Etude No. 3, Op. 10 (“Tristesse”) and Etude No. 12,
Op. 10 (“Revolution”) by F. Chopin. Finally, “Be01” and
“Be04” are the first and fourth movement of Beethoven’s
sonata Op. 2, No. 1. The second column shows the num-
ber of notes in the score of the respective piece and the
third column the length in seconds of some performance
of that piece. In the fourth and fifth columns one finds the
number of note bins and peak bins (see Section 4). The
next column shows that the running time for the peak ex-
traction, denoted byt(peak), is about linear in the length
of the performance. Finally, the last column illustrates that
the actual running timet(DP) of the DP algorithm is, as
expected, roughly proportional to the product of the num-
ber of note bins and peak bins. The running time of the
overall synchronization algorithm is essentially the sum of
t(peak) andt(DP). The sonifications of the correspond-
ing synchronization results can be found on our web page
mentioned above.

Table 2 shows how running time and memory require-
ments of the DP computations decrease significantly when
using suitable anchor configurations (see Section 5). The
third column of Table 2 shows the respective list of an-
chor matches which were computed prior to DP compu-
tation. Here an anchor match is indicated by its assigned
time position within the audio data stream. The compu-
tation time of these anchor matches is negligible relative



Piece #notes len. #bins #bins t(peak) t(DP)
(sec) (notes) (peaks) (sec) (sec)

Scale 32 20 32 65 3 0.4
Bu02 480 45 244 615 22 37
Ch03 1877 173 618 1800 114 423
Ch12 2082 172 1318 2664 116 714
Be01 2173 226 1322 2722 149 716
Be04 4200 302 2472 3877 201 2087

Table 1. Running time of our synchronization algorithm
for various piano pieces.

Piece len. list of anchor matches t(DP) MR
(sec) (positions given in sec) (sec) (MB)

Ch03 173 - 423 8.90
98.5 222 3.20

42.5, 98.5, 146.2 142 1.45
42.5/74.7/98.5/125.3/146.2 87 0.44

Be01 226 - 716 28.79
106.5 363 8.24

53.1/106.5/146.2/168.8/198.5 129 1.54
Be04 302 - 2087 76.67

125.8 1042 20.4
55.9/118.8/196.3/249.5 433 5.09

Table 2. Accumulated running time and memory require-
ments of the local DP computations using anchor matches.

to the overall running time. The fourth column shows
the accumulated running time for all local DP computa-
tions. As can be seen, this running time depends heavily
on the distribution of the anchor matches. For example, in
the “Ch03” piece, one anchor match located in the mid-
dle of the pieces roughly accelerates the DP computation
by a factor of two. Also the memory requirements (MR),
which are dominated by the “largest” local DP computa-
tion, decrease drastically (see the last column of Table 2).

7. CONCLUSIONS

In this paper we have presented an algorithm for auto-
matic score-to-audio synchronization for polyphonic pi-
ano music. In view of efficiency and accuracy, we ex-
tracted from the audio files a sparse but expressive set of
features encoding candidates for note onsets separately for
all pitches. Using note and peak bins, we further reduced
the number of objects to be matched. The actual align-
ment was computed by dynamic programming based on
a suitable matching model, an efficiently computable lo-
cal score measure, and subsequent individual note treat-
ment. The synchronization results, evaluated via sonifi-
cation, are accurate even for complex piano music. To
increase the efficiency of the synchronization algorithm
without degrading the alignment quality, we introduced
the concept of anchor matches which can be efficiently
computed by a semi-automatic approach.

Despite considerable advances, there are still many open
research problems in automatic score-to-audio alignment.
One of our goals is to design robust linear-time/linear-
space synchronization algorithms producing high-quality

alignments. To this end, one could try to automatically
extract anchor configurations by means of, e. g., statisti-
cal methods and by using additional dynamics parame-
ters. For relatively short segments one could then try to
use linear-time score-following techniques instead of DP.

Our sonification only gives an overall feeling of syn-
chronization quality. For the future, it would be impor-
tant to design objective quality measures and to build up
a manually annotated evaluation database, allowing the
measurement of technology progress and overall perfor-
mance.

Automatic music processing is extremely difficult due
to the complexity and diversity of music data. One gen-
erally has to account for various aspects such as the data
format (e. g., score, MIDI, PCM), the genre (e. g., pop mu-
sic, classical music, jazz), the instrumentation (e. g., or-
chestra, piano, drums, voice), and many other parameters
(e. g., dynamics, tempo, or timbre). Therefore, a universal
algorithm yielding optimal solutions for all kinds of mu-
sic is unrealistic. For the future it seems to be promising
to build up a system that incorporates different, competing
strategies instead of relying on one single strategy in order
to cope with the richness and variety of music.
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