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ABSTRACT

The general goal of music synchronization is to automatically

align the multiple information sources such as audio record-

ings, MIDI files, or digitized sheet music related to a given

musical work. In computing such alignments, one typically

has to face a delicate tradeoff between robustness and accu-

racy. In this paper, we introduce novel audio features that

combine the high temporal accuracy of onset features with the

robustness of chroma features. We show how previous syn-

chronization methods can be extended to make use of these

new features. We report on experiments based on polyphonic

Western music demonstrating the improvements of our pro-

posed synchronization framework.

Index Terms— Music synchronization, onset features,

chroma features, audio alignment

1. INTRODUCTION

In digital music libraries and private music collections, there

is an increasing number of documents available for a given

musical work. These documents may comprise various au-

dio recordings, MIDI files or score representations. Music

information retrieval (MIR) aims at developing techniques

and tools for organizing, understanding and searching this

multimodal information in a robust, efficient and intelligent

manner. In this context, various alignment and synchroniza-

tion procedures have been proposed with the common goal

to automatically link several types of music representations,

thus coordinating the multiple information sources related to

a given musical work [4, 5, 6].

In general terms, music synchronization denotes a proce-

dure which, for a given position in one representation of a

piece of music, determines the corresponding position within

another representation. Depending upon the respective data

formats, one distinguishes between various synchronization

tasks [5]. For example, audio-audio synchronization refers to

the task of time aligning two different audio recordings of a

piece of music. These alignments can be used to jump freely
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between different interpretations, thus affording efficient and

convenient audio browsing. The goal of MIDI-audio synchro-

nization is to coordinate MIDI note events with audio data.

The result can be regarded as an automated annotation of the

audio recording with available MIDI data.

In the design of synchronization algorithms, one has to

deal with a delicate tradeoff between robustness and temporal

accuracy. As first contribution, we introduce a novel class of

12-dimensional onset features, which combine the robustness

of conventional chroma features [1] with the accuracy of con-

ventional one-dimensional onset features [2]. These features

are obtained by identifying pitch-based onset information on

the chroma level (Sect. 2). As second contribution, we intro-

duce a synchronization framework that allows for improving

the overall synchronization accuracy without losing robust-

ness (Sect. 3). Here, the idea is to making the best of each

feature type when combining the various information. Our

experiments show that our synchronization procedure, which

integrates conventional chroma features as well as our novel

onset features, significantly improves the accuracy in partic-

ular for piano music while not collapsing for music that does

not contain clear note attacks (Sect. 4). Further related work

will be discussed in the respective sections.

2. AUDIO FEATURES

In order to synchronize different music representations, one

needs to find suitable feature representations being robust

towards those variations that are to be left unconsidered in

the comparison. In this context, chroma-based features have

turned out to be a powerful tool for synchronizing harmony-

based music, see [4, 5]. In summary, chroma features encode

the short-time energy distribution over the 12 traditional pitch

classes of the equal-tempered scale encoded by the attributes

C, C♯, D, . . .,B. Furthermore, chroma features can be made

invariant to dynamic variations by normalization. For de-

tails we refer to the literature [5]. In the following, the first

six measures of the Etude No. 2, Op. 100, by Friedrich

Burgmüller will serve us as our running example, see Fig. 1a,

denoted by the identifier Burg2. Fig. 1b shows a normalized

chroma representation of an audio recording of Burg2.

In the following, we describe another class of highly ex-

pressive audio features that indicate note onsets along with
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Fig. 1. (a) First six measures of Burgmüller, Op. 100, Etude

No. 2. (b) - (g) feature representations of a corresponding

audio recording (see Sect. 2 for a description).

their respective pitch affiliation [5]. The feature extraction

procedure is motivated by the observation that for many in-

struments such as the piano or the guitar, playing a note re-

sults in a sudden energy increase (attack phase).

First, the audio signal is decomposed into 88 subbands

corresponding to the musical notes A0 to C8 (MIDI pitches

p = 21 to p = 108) of the equal-tempered scale, as in the

chroma feature calculation. Then, 88 local energy curves are

computed by convolving each of the squared subbands with

a suitable window function. Finally, for each energy curve

the discrete temporal derivative is calculated and half-wave

rectified (positive part of the function remains). The signif-

icant peaks of the resulting curves indicate positions of sig-

nificant energy increase in the respective pitch subband. An

onset feature is specified by the pitch of its subband and by the

time position and height of the corresponding peak. Fig. 1c

shows the resulting onset representation obtained for our run-

ning example Burg2. Note that the set of onset features is

sparse while providing information of very high temporal ac-

curacy. On the downside, the extraction of onset features is a

delicate problem involving fragile peak picking operations.

To enhance the robustness of the pitch-based onset fea-

tures, we add up the features belonging to pitches of the same

pitch class, as motivated by the chroma features. We first

evenly split up the time axis into segments of a fixed length

and take a suitable logarithm of the onset values, which ac-

counts for the logarithmic sensation of sound intensity. For

each segment, we add up the logarithmic values over all

pitches that correspond to the same chroma. The resulting

12-dimensional features will be referred to as CO (chroma

onset) features, see Fig. 1d. To make the CO feature invari-

ant to dynamic variations while keeping low level onsets we

employ a locally adaptive normalization strategy. First, we

compute the norm of each 12-dimensional CO feature vector,

see Fig. 1e (blue curve). Then, for each time frame, we as-

sign the local maxima of the sequence of norms over a time

window that ranges one second to the left and one second

to the right, see Fig. 1e (red curve). Finally, we divide the

sequence of CO features by the sequence of local maxima in

a pointwise fashion, see Fig. 1f. The resulting features are re-

ferred to as LNCO (locally adaptive normalized CO) features.

Intuitively, LNCO features account for the fact that onsets of

low energy are less relevant in musical passages of high en-

ergy than in passages of low energy. In summary, the octave

identification makes LNCO features robust to timbre and

extraction errors while still encoding 12-dimensional highly

accurate onset information. At this point, we emphasize that

the opposite variant of first computing chroma features and

then computing onsets from the resulting chromagrams is not

as successful as our strategy. The major reason for this is that

by first changing to the coarser chroma representation one

may already loose valuable onset information. For example,

suppose a clear onset in the C3 pitch band and some smearing

in the C4 band. Then, the smearing may overlay the onset on

the chroma level, which may result in missing the onset in-

formation. However, by first computing onsets for all pitches

separately and then merging this information, the onset of the

C3 pitch band will be clearly visible on the chroma level.

In view of synchronization applications, we further pro-

cess the LNCO feature representation by introducing an addi-

tional temporal decay. To this end, each LNCO feature vector

is copied n times and the copies are multiplied by decreas-

ing positive weights (in our experiments we chose n = 10
with weights (1,

√
0.9,

√
0.8, . . . ,

√
0.1)). Then, the n copies

are arranged to form short sequences of n consecutive feature

vectors of decreasing norm starting at the time position of the
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Fig. 2. (a)-(c) Illustration of the effect of the decay opera-

tion on the cost matrix level. (d) Cchroma, (e), CDLNCO (f)

Cchroma + CDLNCO for Burg2.

original vector. The overlay of all these decaying sequences

results in a feature representation, which we refer to as DL-

NCO (decaying LNCO) feature representation, see Fig. 1g.

The benefit of these additional temporal decays will become

clear in the synchronization context described in Sect. 3. Note

that in the DLNCO feature representation, one does not lose

the temporal accuracy of the LNCO features—the onset posi-

tions still appear as sharp left edges in the decays.

3. SYNCHRONIZATION ALGORITHM

In this section, we show how our novel DLNCO features

can be used to significantly improve the temporal accu-

racy of previous chroma-based synchronization strategies

without sacrificing their robustness. While we consider the

case of MIDI-audio synchronization in the following, other

cases such as audio-audio synchronization may be handled

in the same fashion. Most synchronization algorithms [4, 6]

rely on some variant of dynamic time warping (DTW) and

can be summarized as follows. First, the two music data

streams to be aligned are converted into feature sequences,

say V := (v1, v2, . . . , vN ) and W := (w1, w2, . . . , wM ),
respectively. Then, an N × M cost matrix C is built up by

evaluating a local cost measure c for each pair of features,

i. e., C(n,m) = c(vn, wm) for 1 ≤ n ≤ N, 1 ≤ m ≤ M .

Finally, an optimum-cost alignment path is determined from

this matrix via dynamic programming, which encodes the

synchronization result. See [5] for a detailed account on

DTW in the music context. For an illustration, we refer to

Figs. 2d-2f, which show various cost matrices along with

optimal alignment paths for our Burg2 example.

We now introduce three different cost matrices, where the

third one is a simple combination of the first and second one.

The first matrix Cchroma is a conventional cost matrix based on

normalized chroma features and the cosine distance [4, 5], see

Fig. 2d. The second cost matrix CDLNCO is based on DLNCO

features as introduced in Sect. 2. To compare two DLNCO

feature vectors, v and w, we now use the Euclidean distance

cDLNCO(v, w) := ||v − w||, see Fig. 2e. At this point, we need

to make some explanations. First, recall that each onset has

been transformed into a short vector sequence of decaying

norm. As an example, Figs. 2a and 2b show DLNCO features

for the very beginning of Burg2 for an audio and a MIDI ver-

sion, respectively. Using the Euclidean distance to compare

two such decaying sequences leads to a diagonal corridor of

low cost in CDLNCO in the case that the directions (i. e., the

relative chroma distributions) of the onset vectors are simi-

lar, see Fig. 2c. This corridor is tapered to the lower left and

starts at the precise time positions of the two onsets to be com-

pared. Second, note that CDLNCO reveals a grid like structure

of an overall high cost, where each beginning of a corridor

forms a small needle’s eye of low cost. Third, sections in the

feature sequences with no onsets lead to regions in CDLNCO

having zero cost. In other words, only significant events in

the DLNCO feature sequences take effect on the cost matrix

level and the structure of CDLNCO regulates the course of a

cost-minimizing alignment path in event-based regions to run

through the needle’s eyes of low cost.

The cost matrix Cchroma accounts for the rough harmonic

flow of the two representations, whereas CDLNCO exhibits on-

sets of the same chroma class. The sum C = Cchroma +
CDLNCO yields a cost matrix that accounts for both types of

information. Note that in regions with no onsets, CDLNCO

is zero and the combined matrix C is dominated by Cchroma.

Contrary, in regions with significant onsets, C is dominated

by CDLNCO. Therefore, the component Cchroma regulates the

overall course of the cost-minimizing alignment path and ac-

counts for a robust synchronization, whereas the component

CDLNCO locally adjusts the alignment path and accounts for

high temporal accuracy.

4. EXPERIMENTS

In this section, we report on some of our synchronization

experiments, which have been conducted on a corpus of

harmony-based Western music. To allow for a reproduction

of our experiments, we used pieces from the RWC music

database [3]. In the following, we consider 16 representa-



RWC ID (Comp./Interp., Instr.) Chroma DLNCO Chroma+
DLNCO

mean std mean std mean std

Burg2 (Burgmüller, piano) 50 48 21 17 18 14
C025 (Bach, piano) 27 33 18 27 14 12
C028 (Beethoven, piano) 54 58 131 318 29 40
C031 (Chopin, piano) 57 64 22 68 22 33
C032 (Chopin, piano) 30 47 12 9 13 21
C029 (Schumann, piano) 46 72 94 264 15 36
Average over piano 44 54 50 117 19 26
C003 (Beethoven, orchestra) 116 96 241 338 116 98
C015 (Borodin, strings) 79 68 268 356 82 56
C022 (Brahms, orchestra) 50 54 26 52 17 20
C044 (Rimski-Korsakov, flute/piano) 41 17 22 19 27 15
C048 (Schubert, voice/piano) 55 50 70 173 31 34
Average over non-piano 68 57 125 188 55 45
J001 (Nakamura, piano) 34 59 17 37 14 15
J038 (HH Band, big band) 45 46 85 204 31 64
J041 (Umitsuki Quart., sax/bass/perc.) 39 67 37 117 23 55
P031 (Nagayama, electronic) 68 50 124 217 46 43
P093 (Burke, voice/guitar) 91 95 71 103 40 58
Average over jazz/pop 55 63 67 136 31 47

Average over all 55 58 79 145 34 38

Table 1. Alignment accuracy for the three different synchro-

nization procedures (Chroma, DLNCO, Chroma+DLNCO)

on the test database obtained from the RWC database [3]. All

values are given in milliseconds.

tive pieces, which are listed in Table 1. These pieces are

divided into three groups: six classical piano pieces, five clas-

sical pieces of various instrumentations, and five jazz pieces

and pop songs. Note that while pure piano music typically

comprises the concise note attacks the DLNCO features are

designed for, such information is often missing especially

in string and general orchestral music. We now show that

our extended synchronization framework leads to significant

improvements for piano music, while not losing on accuracy

for music lacking in clear note attacks.

In the following, we use three different synchroniza-

tion procedures based on chroma features only, on DL-

NCO features only, and a combination of these features

(Chroma+DLNCO), see Sect. 3. In each experiment we use

50 features per second, i.e., the features have a temporal res-

olution of 20ms. To automatically determine the accuracy of

our synchronization procedures, we used pairs of MIDI and

audio versions of each of the 16 pieces listed in Table 1. Here,

the audio versions were generated from the MIDI files using a

high-quality synthesizer. Thus, for each synchronization pair,

the note onset times in the MIDI file are perfectly aligned

with the onset times in the respective audio recording. We

randomly distorted the MIDI files by splitting up the MIDI

files into N segments of equal length (in our experiment we

used N = 20) and stretching or compressing each segment

by a random factor within an allowed distortion range (in

our experiments we used a range of ±30%). We refer to

the resulting MIDI file as the distorted MIDI file in contrast

to the original annotation MIDI file. We synchronized the

distorted MIDI file and the associated audio recording and

used the resulting alignment path to adjust the note onset

times in the distorted MIDI file and to obtain a third MIDI

file referred to as realigned MIDI file. The accuracy of the

synchronization result is then determined by comparing on-

set times of corresponding notes in the realigned MIDI file

and the annotation MIDI file. For each of the 16 pieces

and for each synchronization procedure Table 1 shows the

mean value and the standard deviation over all absolute onset

differences. Note that using a combination of chroma and

DLNCO features significantly improves the synchronization

accuracy: the average onset error for piano music drops from

44ms (Chroma) to 19ms (Chroma+DLNCO). For orchestral

or pure string music without clear note attacks, the DLNCO

features do not yield any valuable information. For example,

in the case of Borodin’s String Quartet (C015), the onset error

increases from 79ms (Chroma) to 269ms (DLNCO) when us-

ing only the onset features. However, in the combined case,

the chroma features overrule the corrupt DLNCO features

leading to an onset error of 82ms (Chroma+DLNCO) that is

comparable to the chroma only case.

In conclusion, our experiments show that the combina-

tion of using chroma and DLNCO onset features significantly

improve the synchronization accuracy for music with clear

note attacks and does not degrade for music which lacks this

information. At this point, one may object that one typically

obtains better absolute synchronization results for synthetic

audio material (which was used to completely automate our

evaluation) than for real audio recordings. We also tested

our synchronization on real audio recordings of all 16 pieces,

which actually led to similar results as the synthesized exam-

ples. Sonifications of the MIDI-audio synchronization results

for the real audio files of the 16 pieces have been made avail-

able on the website http://www-mmdb.iai.uni-bonn.

de/projects/syncDLNCO/.

For the future, we will incorporate other types of fea-

tures that capture local rhythmic information and smooth note

transitions for orchestral, string, or brass music [7]. Here,

our synchronization framework allows for making the best of

each feature type when combining the various information.
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