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Abstract

Composers of music can express emotions and communicate with their audience in a multitude of
ways. They decide on which voices or instruments to use, arrange notes into melodies, and develop
recurring musical patterns. When a composition is performed and turned into sound, their decisions
are realized acoustically as sound events. Despite being easily understood by human listeners, teaching
a machine to perceive and process such musical sound events can be a challenging task. This thesis
studies computational techniques for detecting the activity of sound events in a music recording, i. e.,
identifying the exact moments in time when a certain event occurs. We focus on orchestral and opera
music, which are rarely considered in music processing research and particularly complex due to their
high degree of polyphony. In this context, we cover four different types of musical sound events, namely
singing, instrumental sounds, different pitches, and leitmotifs (special kinds of musical patterns used for
storytelling in opera). To detect the activity of these events within a recording, we design, implement,
and evaluate deep learning systems. In addition, we explore a range of techniques including hierarchical
classification, differentiable sequence alignments, and representation learning. Beyond evaluating the
accuracy of our detection systems, we aim at a deeper understanding of our models with regard to their
robustness and sensitivity to confounding effects.

The main contributions of this thesis can be summarized as follows: First, we investigate signal processing
and deep learning methods for detecting singing activity in opera recordings. Second, we extend this
scenario towards simultaneously detecting singer gender and voice type. We compare several techniques
for utilizing the hierarchical relationships between these classes and propose a novel loss formulation
for ensuring consistency of detection results across different hierarchy levels. Third, we apply such a
hierarchical technique to instrument activity detection. For this task, research progress is often limited
by the cost of obtaining manually annotated audio examples for training. To address this issue, we
demonstrate that hierarchical information reduces the need for fine-grained instrument annotations during
training of our detection models. Fourth, we show how the structure of certain orchestral music datasets
can be exploited to learn representations related to instrumentation, without requiring any instrument
annotations at all. Fifth, we consider the problem of detecting pitch activity and show how differentiable
sequence alignments can be used for learning from weak annotations. Finally, we perform classification
and detection of leitmotifs. We present deep learning systems that successfully detect leitmotif activity
and provide a detailed analysis of their generalization ability.
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Zusammenfassung

Musikkomponisten nutzen verschiedene Wege, um Emotionen auszudrücken und mit ihrem Publikum
zu kommunizieren. Sie entscheiden, welche Stimmen oder Instrumente zu verwenden sind, arrangieren
Noten zu Melodien, und entwickeln sich wiederholende musikalische Muster. Wenn eine Komposition
aufgeführt und klanglich umgesetzt wird, spiegeln sich diese Entscheidungen akustisch als Klangereignisse
wieder. Menschliche Zuhörer verstehen diese musikalischen Klangereignisse mühelos, für Maschinen ist
das hingegen schwer. Diese Dissertation behandelt rechnergestützte Verfahren zur Aktivitätserkennung
von Klangereignissen in Musikaufnahmen, d.h., zur Bestimmung der genauen Zeitpunkte, zu denen
ein bestimmtes Ereignis vorkommt. Wir konzentrieren uns dabei auf Orchester- und Opernmusik,
die in der Forschung zur Musikverarbeitung selten betrachtet werden und auf Grund ihres hohen
Polyphoniegrades eine besondere Herausforderung darstellen. In diesem Zusammenhang behandeln wir
vier verschiedene Typen von musikalischen Klangereignissen: Gesang, Instrumentenklänge, verschiedene
Tonhöhen und Leitmotive (bestimmte musikalische Muster, die in Opern die Handlung untermalen). Wir
entwerfen, implementieren und evaluieren Deep Learning Systeme zur Aktivitätserkennung. Darüber hinaus
untersuchen wir weitere Techniken wie hierarchische Klassifikation, differenzierbare Sequenzalignierung
und Repräsentationslernen. Wir evaluieren einerseits die Genauigkeit unserer Detektionssysteme und
streben andererseits ein tieferes Verständnis ihrer Robustheit und Anfälligkeit für Störfaktoren an.

Die Hauptbeiträge dieser Dissertation sind wie folgt: Erstens untersuchen wir Signalverarbeitungs- und
Deep Learning Verfahren zur Erkennung von Gesangsaktivität in Opernaufnahmen. Zweitens erweitern wir
dieses Szenario zur gleichzeitigen Erkennung von Geschlecht und Stimmlage der Sänger. Wir vergleichen
mehrere Techniken, welche die hierarchischen Beziehungen zwischen diesen Klassen ausnutzen, und führen
eine neuartige Kostenfunktion ein, welche die hierarchische Konsistenz der Detektionsergebnisse verbessert.
Drittens wenden wir derartige hierarchische Techniken auf die Erkennung von Instrumentenaktivität an.
Für diese Aufgabenstellung ist es besonders aufwändig, händisch annotierte Audiobeispiele zu sammeln.
Wir zeigen daher auf, wie hierarchische Lernverfahren den Bedarf an Instrumentenannotationen verringern
können. Viertens beschreiben wir, wie die Struktur bestimmter Orchesterdaten ausgenutzt werden kann,
um Instrumentierung ohne jegliche händische Annotationen zu repräsentieren. Fünftens behandeln wir
die Erkennung unterschiedlicher Tonhöhen und zeigen wiederum, wie differenzierbare Verfahren zur
Sequenzalignierung den Annotationsaufwand reduzieren. Abschließend betrachten wir die Klassifikation
und Detektion von Leitmotiven. Wir konstruieren Deep Learning Systeme, die Motifaktivität erfolgreich
erkennen und führen eine detaillierte Analyse ihrer Generalisierungseigenschaften durch.
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1 Introduction

Music is commonly understood as a combination of sounds, arranged artistically to create beauty and
express emotions.1 When creating a new piece of music, composers may employ different instruments or
human voices. They may choose the pitches to be played and organize them into melodies and harmonies.
Often, they repeat certain ideas and patterns in order to create a coherent experience for the audience.
When a musical composition is performed, it is transformed into acoustic waves (sounds) and these artistic
choices are realized as sound events. Microphones may be used to record mixtures of sounds, turning
them into audio signals to be listened to or to be processed by a machine. It usually requires no conscious
effort on behalf of a human listener to perceive when a certain instrument or singer is active, or to hear
different pitches within a music recording. For a machine, however, it can be hard to answer seemingly
simple questions like “Which instrument is playing here?” or “Is this a female or a male voice?”

In this thesis, we study computational methods for automatically detecting the activity of different musical
sound events within audio recordings. In other words, we build systems that can identify the time instances
where certain events occur over the course of a recording. Such systems are fundamental building blocks
for many applications in the field of music information retrieval (MIR), which examines computational
methods for processing and understanding music. For example, a method for detecting different pitches
might be used to analyze and evaluate the progress of a student who is learning to play a new instrument
[119] or to learn a model of expressive performances [89]. Automated detection systems may also be
helpful to enable navigating and searching in large music databases [17], or to enhance music listening
experiences by providing additional information and effects alongside a performance [124].

From a technical perspective, our goal is related to automatic sound event detection (SED)—the task
of detecting event activity in environmental audio recordings [137, 210]. Research on SED is typically
concerned with the sounds of cars, sirens, or crying toddlers. In contrast, we aim at musical sound event
detection, i. e., detecting the activity of musical sound classes within music recordings. In particular,
we consider four different musical sound event types, also illustrated on the left-hand side of Figure 1.1:
Singing activity, musical instrument activity, pitch activity, and activity of certain types of motifs. In all of
these cases, our goal is to convert a music recording into a representation of event activity over time, as
illustrated on the right-hand side of Figure 1.1.

1 music, n. and adj. In Oxford English Dictionary Online. Oxford University Press, 2023.
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Chapter 1. Introduction

Singing Instruments

MotifsPitches

Time

Ev
en

ts

Figure 1.1: In this thesis, we consider different types of musical sound events within an opera or orchestral performance (left-hand
side) and build computational methods to detect the activity of these events over time (right-hand side). Finally, we evaluate our
automatic approaches against reference annotations to identify correct (black regions) and wrong (red regions) predictions, as
illustrated on the right-hand side.

As our main application scenario, we consider orchestral and opera music. This style of music is rarely
studied in the field of MIR, which often focuses on scenarios with greater commercial relevance, such
as popular music. Orchestral sound mixtures feature a broad dynamic range, rhythmic and harmonic
complexity, and a high degree of polyphony, i. e., a large number of instruments and singers are active
simultaneously. In this context, composers often deliberately aim to make several sound sources appear as
one coherent whole, further complicating the identification of individual sound classes. For these reasons,
orchestral music represents a challenging scenario to identify the strengths and weaknesses of automatic
detection methods.

As our main technical tool for activity detection, we use data-driven methods, especially approaches based
on deep learning (DL). This has become the dominant paradigm in multimedia processing and is also
being applied to various musical detection problems [8, 84, 114] and other tasks in MIR [26, 148]. In
this thesis, we use several deep classification networks that learn to assign audio excerpts to different
categories, based on a set of training examples with given reference annotations. Besides applying deep
classification networks, which are a relatively common tool for SED, we also explore more advanced
techniques, as illustrated in Figure 1.2. In the context of singing and instrument activity detection, we
explore the use of hierarchical structures within DL-based systems. For pitch activity detection, we utilize
approaches for differentiable or “soft” sequence alignment. We also demonstrate the potential of using
cross-version datasets (i. e., datasets that contain multiple recordings/performances of the same musical
piece) for music representation learning. Finally, we put a particular focus on understanding our detection
systems, their robustness, and susceptibility to confounding effects.

In summary, this thesis covers a range of musical sound event detection tasks within a complex and
seldom considered orchestral scenario. We approach singing, instrument, pitch, and leitmotif activity

2



1.1. Structure and Main Contributions of this Thesis

Hierarchical
classification

Soft alignments
Cross-version learning Model

understanding

Figure 1.2: Main deep learning techniques considered in this thesis.

detection using data-driven methods and explore several advanced deep learning techniques to improve and
understand detection results. With this focus, the thesis lies at the intersection of MIR, signal processing,
and machine learning. The next section gives an overview of our main contributions.

1.1 Structure and Main Contributions of this Thesis

This thesis is organized as follows. In Chapter 2, we cover fundamentals relevant to all parts of the thesis.
These include a description of different audio representations, fundamentals of activity detection for
musical and general sound events, as well as a case study of two representative approaches for a standard
musical sound event detection task.

We then begin the main part of the thesis in Chapter 3, where we investigate singing voice detection (SVD),
i. e., detecting the presence or absence of singing over the course of a music performance. We compare an
approach based on traditional machine learning techniques (using hand-crafted features and a random forest
classifier) with a DL-based approach using convolutional neural networks (CNNs). In our experiments,
we put a particular focus on understanding the effect of dataset size and variability on the classifiers’
performance. To this end, we utilize a cross-version dataset of 16 performances of Richard Wagner’s
tetralogy of operas Der Ring des Nibelungen, which is also used in subsequent chapters. We find that
both the classical and the DL-based approach yield comparable results, although both show a tendency to
overfit to the specific musical pieces in the training data.

We continue our exploration of SVD in Chapter 4, where we extend the scenario towards also detecting
singer gender and voice type. We formalize this as a hierarchical classification problem and describe
several approaches that utilize the class hierarchy for detection. In particular, we present additional loss
terms for improving the hierarchical consistency of results. Our experiments demonstrate that a joint
classification strategy using these additional loss terms is able to provide strong and consistent detection
results with a single deep classifier.

3



Chapter 1. Introduction

In Chapter 5, we explore this hierarchical approach further and apply it to the even more challenging
problem of instrument activity detection (IAD). In addition to considering a larger class hierarchy, we
provide extensive additional analyses of the impact of hierarchical classification and our consistency
losses. To perform our experiments, we collect a cross-version dataset of orchestral recordings with
aligned instrument activity annotations. However, obtaining such reference annotations is a cumbersome
and costly process. We show that utilizing hierarchical detection approaches allows us to learn from
fewer fine-grained instrument annotations. We also analyze our model in detail and find that it exploits
confounding effects between instrument classes that are often active at the same time.

In Chapter 6, we circumvent the need for having any sound event annotations at all and instead perform
representation learning on orchestral music recordings. We propose a learning strategy that exploits
the correspondences between different versions of a piece, as provided by cross-version datasets. Even
though our strategy does not require instrument activity annotations (and can thus be trained on larger,
unannotated datasets compared to our system in Chapter 5), we show that it is able to capture aspects of
instrumentation and outperforms an alternative strategy that does not utilize cross-version information.

In Chapter 7, we consider pitches as our events of interest. We present an approach that can utilize weakly-
aligned annotations for learning, i. e., annotations that are not perfectly in-sync with the music recording.
The approach is based on a differentiable approximation of the classical dynamic time warping algorithm.
We show that our method performs favorably compared to another, more complicated state-of-the-art
algorithm for the same setting. We further demonstrate that it easily generalizes to alignment problems
beyond pitch detection, thus opening up the possibility of learning from weakly-aligned data for various
MIR tasks.

In the two final chapters, Chapter 8 and Chapter 9, we consider special kinds of musical patterns, called
leitmotifs, as the events to be detected. Leitmotifs are musical ideas used for storytelling in opera or
film soundtracks. They are particularly difficult to detect, because they may change significantly in key,
rhythm, timbre and other musical aspects over the course of a piece. In Chapter 8, we consider a simplified
scenario, where leitmotifs are classified based on pre-segmented excerpts. Subsequently, in Chapter 9, we
extend this to a more realistic scenario where leitmotifs are detected throughout an entire performance,
including simultaneous motif activity. In both cases, we show that our automated approaches are effective,
provided the piece being analyzed has been included during training. However, we also find that our
systems overfit to certain spectral statistics while ignoring aspects that a human listener would attend to.
This limits their capability to generalize to unseen musical pieces.

Finally, we conclude this thesis in Chapter 10 with a summary and detailed discussion of promising
directions for future work.
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2 Fundamentals

Some excerpts of Section 2.2 have been adopted from [105], while some
parts of Section 2.3 build upon [106]. The first author Michael Krause is
the main contributor to these articles, which he wrote in collaboration with
his supervisor Meinard Müller and Christof Weiß.

In this chapter, we introduce fundamental concepts that are relevant to all subsequent parts of the thesis.
We begin by reviewing typical ways of digitally representing audio and music signals in Section 2.1. In
particular, we describe (music) audio as waveforms before covering time-frequency representations such as
the short-time Fourier transform, log-frequency spectrograms and constant-Q transforms. In Section 2.2,
we discuss related work on activity detection for music and general audio signals. Finally, in Section 2.3,
we focus on singing voice activity detection as a representative example of a common musical sound event
detection problem. We briefly describe two existing approaches for this task, which also play a role in
later chapters of the thesis.

2.1 Audio Representations

We now introduce the most important representations of music audio considered in this thesis, providing a
high-level and intuitive explanation. For more details, we refer to the textbook by Müller [145], whose
notation we adopt.

2.1.1 Waveforms

Human listeners typically perceive music (or any kind of sound) through their ears, which capture variations
of air pressure caused by vibrating objects such as the strings of an instrument or the vocal folds of a singer.
Plotting the air pressure change over time, one obtains a graphical representation of music audio, called
the waveform. Mathematically, a waveform may be described as a function 𝑓 : R→ R, mapping time in
seconds 𝑡 ∈ R to amplitudes 𝑓 (𝑡) ∈ R. Figure 2.1 shows the waveform of a short excerpt from an opera
performance, which we will consider as our running example in this chapter. The excerpt lasts for around
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Figure 2.1: An excerpt from an opera
performance in waveform representation,
serving as the running example in this
chapter. Below the waveform plot, a blue
bar indicates the activity and lyrics sung
by a soprano singer in this excerpt.
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seven seconds and contains a soprano singing a line in German (“Mutig dünkt mich der Mann”) from
seconds 0.5 to 4.5, with soft string accompaniment throughout.

To process musical sounds on a computer, a microphone may be used to capture audible vibrations in a
similar fashion. However, since digital computers are unable to directly store analog signals, one requires
two additional steps to convert these signals into digital representations: sampling and quantization.
Sampling refers to the process of only storing some measurements of 𝑓 at certain points in time. This way,
𝑓 is transformed into a finite sequence 𝑥 : [1 : 𝑇] → R of amplitude values, where [1 : 𝑇] := {1, 2, . . . , 𝑇}
are indices to the measurements taken. Quantization, on the other hand, refers to the process of mapping
these real-valued amplitudes to a finite set of possible amplitudes Γ ⊂ R, such that these values may be
represented on a digital computer. Thus, a waveform is digitally described as a function 𝑥′ : [1 : 𝑇] → Γ.

We refer to [145] for a detailed description of possible sampling and quantization strategies. In this
thesis, we always adopt a uniform sampling procedure, where samples from 𝑓 are taken at regular time
intervals, leading to a sampling rate of 𝐹s samples per second of audio. The choice of 𝐹s is important,
as it determines the highest frequency oscillation from 𝑓 that may be recovered from 𝑥. We typically
choose 𝐹s = 22 050 Hz, such that 𝑥 captures frequencies of up to 11 025 Hz (according to the Nyquist
theorem; enough to cover the main frequency content of all event classes we wish to detect). We usually
do not further specify the exact quantization strategy used. In the following, to simplify notation, we omit
the quantization step, extend 𝑥 to be defined on the whole domain of Z via zero-padding, and denote the
resulting function again as 𝑥.

2.1.2 Short-Time Fourier Transform

As illustrated in Figure 2.1, the waveform representation provides only limited clues for determining the
parts of a music recording where certain events (such as singing) are active. Because of this, we often
consider time-frequency representations in this thesis. These reveal information about the frequency
content at different time steps of a signal, enabling the localization of event activity throughout a recording.
The most common such audio representation is the short-time Fourier transform (STFT).
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Figure 2.2: The magnitude spectrogram
of our running example. In the part of the
excerpt containing singing, the frequency
fluctuations produced by the singer are
clearly visible. The remainder of the
excerpt shows sounds produced by the
string accompaniment. For this plot, a
window size of 𝑁 = 4096, a hop size of
𝐻 = 512 and a standard Hann window
were used. Magnitudes are plotted on
a logarithmic decibel scale, with +0 dB
corresponding to the maximal magnitude
in the excerpt.
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To compute the discrete STFT, a waveform 𝑥 is divided into overlapping analysis frames of length 𝑁 ∈ N
using a hop size 𝐻 ∈ [1 : 𝑁 − 1] (typically 𝐻 = ⌊𝑁/2⌋). In each of these frames, the waveform is
weighted with some window function 𝑤 : [0 : 𝑁 − 1] → R (e. g., a standard Hann window) and correlated
with complex exponentials at different frequency indices 𝑘 ∈ [0 : 𝐾], where 𝐾 = 𝑁/2 corresponds to the
Nyquist frequency of 𝐹s/2. Formally, the discrete STFT X ∈ CZ ×𝐾 of the waveform 𝑥 is given by

X(𝑛, 𝑘) :=
𝑁−1∑︁
𝑙=0

𝑥(𝑙 + 𝑛𝐻)𝑤(𝑙) exp(−2𝜋𝑖𝑘𝑙/𝑁) (2.1)

for time indices 𝑛 ∈ Z and frequency indices 𝑘 ∈ [0 : 𝐾]. For details, we refer to [145]. Notably, the hop
size parameter 𝐻 controls the number 𝐹s/𝐻 of frames per second in X, also called frame rate. Furthermore,
the size 𝑁 of the analysis window controls the trade-off between time and frequency resolution in X.
A smaller 𝑁 allows for more exact localization of events in time, whereas a larger 𝑁 provides more
fine-grained information of the frequency content inside an analysis frame.

X is a complex-valued representation, encoding information about both magnitudes and phases for different
time and frequency indices. For event detection, we usually consider only the magnitude spectrogram
Y ∈ RZ ×𝐾 computed as

Y := |X|. (2.2)

Finally, the magnitudes in Y are often rescaled to account for the logarithmic perception of loudness by
human listeners.

Figure 2.2 shows a magnitude spectrogram of the running example. The vertical axis corresponds to
different frequencies, while the horizontal axis corresponds to the time axis of the recording. Levels of gray
indicate magnitudes. We can observe rich harmonic structures (parallel horizontal lines, corresponding
to integer multiples of a fundamental frequency) throughout the whole excerpt, produced by the string
accompaniment. In addition, we can clearly identify the beginning and end of the singer’s activity from
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the characteristic vibrato patterns (wave-like structures in the spectrogram corresponding to expressive
frequency modulations). Thus, the STFT is better suited than the raw waveform for identifying the activity
of different events in the audio, but it does not directly solve the detection task. We will often use variants
of the STFT as inputs to our detection systems.

2.1.3 Log-Frequency Representations

Throughout this thesis, we use variants of the STFT that account for the logarithmic perception of pitch by
human listeners. These variants provide a view that is closer to human perception by using a logarithmic
frequency axis.

One class of such alternative representations is the log-frequency spectrogram, which can be understood
as a magnitude STFT with a logarithmic frequency axis. It may be computed from Y in different ways,
including bin re-assignment, application of a filterbank, or interpolation along the frequency axis. Here,
we briefly discuss the latter option. For that, we rescale the linear frequency axis of Y onto a logarithmic
axis using interpolation (e. g., linear or cubic). We may, for example, choose the center frequencies of
musical pitches as the targets for our rescaled axis. Dividing an octave into 𝑏 bins and starting with a
minimal frequency of 𝑓min, we can compute the center frequency for a bin 𝑑 ∈ [0 : 𝐷 − 1] on a rescaled
axis with 𝐷 bins as

𝐹 (𝑑) := 2𝑑/𝑏 · 𝑓min. (2.3)

The upper plot in Figure 2.3 gives an example of a log-frequency spectrogram computed in this fashion,
where 𝑓min = 164 (the center frequency of pitch E3), 𝑏 = 120 bins per octave are used (i. e., 10 bins for
each semitone in an equal-tempered scale), and a total of 𝐷 = 720 bins are considered (up to the pitch E9).
Compared to Figure 2.2, this visualization puts more emphasis on lower frequencies, making it easier to
identify the fundamental frequency trajectory sung by the singer in this excerpt. Furthermore, octaves are
now equidistant on the vertical axis, corresponding to human perception. However, as the magnitudes are
obtained as interpolated values from Y, this representation is blurry and imprecise, in particular for higher
pitches.

Intuitively, one would like to use smaller window sizes to analyze upper frequencies (ensuring high
temporal resolution) and larger window sizes to capture lower frequencies (providing high frequency
resolution). This is realized by the constant-Q transform (CQT), which ensures that the ratio between the
center frequency 𝐹 (𝑑) and the bandwidth2 for a bin 𝑑 on the logarithmic frequency axis stays constant for
all bins. The CQT has been proposed as a log-frequency representation specifically suited for music signals
by Brown in [20]. In this thesis, we use a fast algorithm for computing the CQT described in [21, 184].
We refer to the original publications for detailed formulas and derivations. The CQT is parameterized
by a hop size 𝐻, as well as 𝑏, 𝑓min, and 𝐷 as described above. The analysis window size 𝑁 depends

2 Roughly: The range of frequencies being covered by one bin.
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Figure 2.3: Different log-frequency rep-
resentations of the running example. The
upper plot shows a log-frequency spectro-
gram obtained from the magnitude spec-
trogram plotted in Figure 2.2 by linear
rescaling of the frequency axis onto a
pitch axis. The lower plot shows a CQT
representation, computed with 𝐻 = 512.
In both plots, the lowest and highest
pitches considered are E3 and E9, re-
spectively, while 120 pitch bins are used
per octave (10 per semitone).
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on the bin 𝑑 (details are provided in the original publications). The lower plot in Figure 2.3 shows a
CQT representation of our running example. We can observe a finer-grained representation of the upper
frequency structures compared to the interpolated spectrogram, making it easier to identify the singer’s
vibrato in this example. On the other hand, the lower frequency structures are blurred out in time due to
the use of a larger window size compared to Y.

Finally, the harmonic constant-Q transform (HCQT) is a variant of the CQT representation. It was
proposed as an appropriate input to neural networks for MIR tasks by Bittner et al. [13]. Here,
multiple CQTs—computed using different 𝑓min—are stacked together along a third dimension, see also
Figure 2.4. In practice, one usually chooses integer multiples or fractions of a reference 𝑓min, i. e.,
1/2 · 𝑓min, 𝑓min, 2 · 𝑓min, 3 · 𝑓min and so on. In this way, magnitudes belonging to different harmonics and
sub-harmonics of the same frequency are stacked on top of each other along the third axis. The resulting
three-dimensional tensor is used as input for a learnable convolutional kernel. Since such kernels cover
only a small receptive field along the time and frequency dimensions of the input, they are not usually able
to capture different harmonics when applied to a standard CQT. When applied to an HCQT, however, the
kernels can process the magnitudes of different (sub-)harmonics in addition to local time and frequency
variations. As such, the HCQT is an appropriate input representation for DL systems that detect harmonic
sound events. It has been used, e. g., for instrument recognition [84].
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Figure 2.4: Conceptual overview of an
HCQT representation for the running ex-
ample. Several CQTs corresponding to
different harmonics are computed and
stacked together along a third dimension.

2.2 Activity Detection

As outlined in Chapter 1, this thesis is about detecting the activity of musical sound events within audio
recordings. From a technical perspective, our aim has strong connections with sound event detection (SED),
a task studied in the field of general audio processing. In this section, we will give an overview of research
into SED and event detection in MIR, focusing on the most relevant aspects for this thesis.

SED is concerned with identifying the time instances throughout an audio recording where certain event
classes occur. This is in contrast to related tasks like scene classification or audio tagging, where the
aim is to assign one or several classes to an entire audio excerpt without temporal granularity. A typical
application of SED is environmental sound scene analysis, where ambient sound events like car noise,
sirens, or chatter must be recognized. Such systems may be employed, e. g., for robotic applications [151],
noise monitoring in urban environments [176], or as an essential building block for smart home devices
[55]. Other works consider bird call monitoring, which can be useful for environmental preservation
initiatives [34, 141, 195].

Depending on the application scenario involved, one may require different levels of granularity from the
output of an SED system. In some cases, only a single sound event is active at a time, whereas in others,
several different event types may be active simultaneously, thus leading to a multi-label problem.3 In
addition, some systems model and evaluate event onsets and offsets, while others detect only the presence
or absence of a class. Systems may also account for simultaneous activity of several events from the same
class, e. g., by providing the count of active events per class as an additional output. The appropriate
granularity for an SED system depends on the specific detection scenario as well as the annotations for
available datasets, and affects the evaluation metrics that must be used. For a detailed introduction to
SED, we refer to the tutorial by Mesaros et al. [137] and the textbook by Virtanen et al. [210, in particular
Section 8.3]. A comprehensive review of different evaluation metrics for SED is provided in [136].

3 In the literature on SED, these scenarios are called monophonic and polyphonic SED, respectively. To prevent confusion,
we avoid those terms and always use the words “monophonic” and “polyphonic” in their original, musical sense.
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Most SED systems follow a common processing pipeline that begins with data preparation and feature
extraction. In this context, audio recordings are usually divided into frames and transformed into some
feature domain, e. g., a log-frequency representation. See [210, Chapter 4] for an overview. These features
are input to a recognition model that yields frame-wise event predictions. Finally, the model outputs may
undergo a post-processing step (e. g., a median filter or hidden Markov model to remove outliers and
incorporate temporal context) before being evaluated against reference annotations.

With regard to recognition models used, traditional approaches such as non-negative matrix factorization
or spectrogram cross-correlation dominated the field of sound event detection until recently, as described
in the survey by Stowell et al. [194]. As with many tasks in audio signal processing, recent years have seen
deep neural networks (DNNs) become the dominant approaches for SED [137]. Usually, these are used
in supervised learning schemes, where the networks are optimized on a training set of recordings with
reference event annotations. In this context, annotations may be given per-frame (called strong annotations)
or per-excerpt (called weak annotations). Weak annotations are easier to obtain but less accurate [137].
Network architectures that have been considered include basic fully connected networks, recurrent neural
networks (RNNs), or convolutional neural networks (CNNs), as well as combinations of these [25]. More
recent approaches make use of techniques such as dilated convolutions [121] or transformers [215]. We
refer to [233] for an overview of neural networks for SED . Novel systems are proposed frequently and
evaluated for standard (non-musical) SED scenarios at the yearly DCASE challenges.4 Current research
directions include extending the SED problem towards simultaneously detecting events and localizing their
sound sources in a scene [161, 162], learning from weak rather than strong annotations [208], improving
generalization when applying trained models to new environments or recording conditions [79, 138], and
exploring augmentation strategies such as mixing of training examples [1, 240].

As for musical sound event detection, an exemplary task considered in the literature is singing voice
activity detection, where regions containing singing activity must be identified, see also the following
Section 2.3 and Chapter 3. Another task is beat tracking, where musical beats are considered as sound
events. Here, only peak positions and no duration information must be predicted. Extending this task,
Böck et al. [14] proposed an RNN that jointly detects beat and downbeat positions. Other works focus
on detecting chords throughout music recordings, which can be useful for music analysis or automatic
accompaniment [158]. One may also consider music transcription tasks as a variant of sound event
detection. For instance, in drum transcription, individual drum hits are considered as sound events to be
detected. For a comprehensive overview of recent drum transcription approaches, we refer to Wu et al.
[230].

Works on musical sound event detection often focus on event presence or onsets, but do not account for
offsets, since these are often ill-defined (e. g., in the case of note events fading out). A notable exception is
[245], where onsets and offsets are explicitly modeled in the context of singing transcription. As another
peculiarity, musical sound events are often highly correlated with background accompaniment or other

4 http://dcase.community/
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simultaneous events in a rhythmic or harmonic fashion (see also Chapter 9). This is in contrast to most
environmental SED settings, where events typically occur independently from each other. Furthermore,
musical scenarios are often inherently subjective and may allow for multiple correct answers. For example,
when detecting local key in a music recording, several different detection results may be musically plausible
[224]. Thus, when implementing and evaluating musical sound event detection systems, the properties of
the underlying musical concepts must be kept in mind.

In this thesis, we will cover singing, musical instruments, pitches, and leitmotifs as the musical sound
events to be detected. In most cases, we investigate multi-label scenarios where multiple events may be
active at the same time. Our systems detect the presence or absence of different event classes and do not
output onsets, offsets, or event counts. Our datasets provide strong annotations, though we also explore
techniques to utilize different variants of weak annotations (see Chapter 7). From a technical perspective,
most of our approaches are based on DNNs.

2.3 Case Study: Detecting Singing Activity

In this section, we focus on singing voice detection (SVD) as an exemplary musical sound event detection
task. SVD is commonly formulated as a frame-wise, binary classification problem [114]. Thus, we are
interested in identifying all frames where one or several singers are active, but we do not separately
evaluate onsets or offsets, nor do we count the number of singers who are singing simultaneously in one
frame.

From a technical perspective, one may generally distinguish two types of approaches for SVD. In the
first, traditional machine learning classifiers are applied to hand-crafted features. In the second, neural
networks learn to extract features from data. The engineering involved in the first approach is cumbersome,
but may lead to more directly interpretable systems compared to the feature learning employed in neural
networks. We will now describe representatives of both types on a conceptual level, while emphasizing
the differences between the two paradigms. For this thesis, we have also reimplemented the approaches
presented here. We provide more details on our reimplementations in Section 3.3.

2.3.1 Feature-Engineering Approach

Traditional systems for SVD [39, 170, 171] usually consist of two stages—the extraction of hand-crafted
audio features and the supervised training of standard machine learning classifiers. Often, mel-frequency
cepstral coefficients (MFCCs) are used as features, combined with classifiers such as support vector
machines or decision trees [170, 209]. MFCCs are computed by performing an additional Fourier analysis
step on the individual frames of a log-frequency spectrogram. The first few coefficients of the resulting
vector yield a compact representation of the timbral characteristics of an audio frame and have proven
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useful in speech processing applications. We refer to [36] for further information on MFCCs. Additional
detail on machine learning classifiers is found in standard textbooks.

Lehner et al. [116] showed that considering further hand-crafted features can surpass the results obtained
with MFCCs in isolation. In particular, they proposed a so-called fluctogram representation, which is
well-suited for capturing vibrato-like modulations in different frequency bands, as commonly produced
by professional singers (see the illustrations in Section 2.1). They further added features that describe,
for each frequency band, the magnitude variance (called spectral flatness) and concentration (spectral
contraction), and a feature sensitive to gradual spectral changes (vocal variance). These features serve as
input to a random forest classifier [127].

As an illustrative example of traditional feature engineering, we now describe the computation of their
fluctogram feature in greater detail, see also Figure 2.5. To capture the wave-like structures that characterize
vibrato singing in a spectrogram, they begin by computing a log-frequency representation (Figure 2.5a)
with 𝑓min = 164, 𝑏 = 120, and 𝐷 = 720, based on a magnitude spectrogram computed with 𝑁 = 2205 and
𝐻 = 441 from a waveform sampled at 𝐹s = 22 050 Hz (leading to a frame rate of 50 Hz). The authors
proceed to divide the frequency axis into 17 overlapping bands. Concretely, they extract bands of width
240 bins each (corresponding to two octaves), with an overlap of 30 bins (three semitones), leading to
17 bands in total (see Figure 2.5b). The bins in each band are weighted with a Bartlett window, thus
emphasizing the contribution of the central bins in each band (Figure 2.5c). Subsequently, for each band,
the cross-correlation between every frame and its successor is computed, while shifting the successor
frame up and down by up to 5 bins (half a semitone, using zero padding for the shift operation). The
correlation values obtained using different shift indices are compared (Figure 2.5d) and the optimal shift
indices are stored (Figure 2.5e). The resulting representation captures vibrato patterns within the different
frequency bands (Figure 2.5f). Finally, a variance filter is applied to each band in time direction (in a
centric fashion, taking the variance of 40 values at a time) and the feature sequence is downsampled by
taking every 10th frame (Figure 2.5g). The resulting fluctogram variance feature consists of vectors with
17 variance values at a frame rate of 5 Hz, where a large variance indicates the presence of vibrato.

The fluctogram feature highlights both the advantages and limitations of hand-engineered features for
event activity detection. On the one hand, this feature responds to clearly defined and musically relevant
signal characteristics (vibrato patterns). Thus, one can be confident about the kinds of signals that this
feature works well with (namely, singing recordings with heavy use of vibrato) and the kinds of signals for
which it will fail (singing without vibrato, e. g., rap). On the other hand, new problem domains require
careful engineering of appropriate features, which may be costly. As an alternative, we now discuss a
DL-based approach that foregoes the need for hand-crafted features.
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a)

b) c)

d) e)

f) g)

= 0.3, = 0.4, = 0.7, ...

Figure 2.5: Computation of the fluctogram feature as proposed by Lehner et al. [116]. A log-frequency spectrogram (a) is
divided into bands (b), which are weighted with a window function (c). Each frame inside each band is correlated with its
successor at different shift indices (d) and the optimal shit index per frame and band is stored (e). The resulting representation
captures vibrato (f). Finally, a variance filter is applied in time direction (g).
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2.3.2 Deep Learning Approach

Recently, SVD systems relying on DNNs have become popular [115, 117, 118, 181, 219], with CNNs being
among the most effective types of network architectures [139, 181, 182]. In general, a DNN is a function
𝑓𝜃 with parameters 𝜃 (also known as the weights of the neural network), which are optimized to meet some
quality criterion on some dataset. Most neural networks for SVD are functions that map a spectrogram-like
representation of an audio excerpt to a scalar in the interval [0, 1], thus 𝑓𝜃 : R𝑇×𝐾 → [0, 1], where 𝑇
is the number of frames and 𝐾 is the number of frequency bins in the input spectrograms. The output
scalar usually corresponds to the predicted probability for singing activity in the center frame of the
input. Finally, the quality criterion, often called the loss function, is some discrepancy between the output
�̂� = 𝑓𝜃 (Y) ∈ [0, 1] of the network on some input Y ∈ R𝑇×𝐾 and the correct target (label) 𝑦 ∈ {0, 1} for
Y (as determined by a human annotator). A common choice is the binary cross-entropy loss function

LBCE( �̂�, 𝑦) = − (𝑦 · log( �̂�) + (1 − 𝑦) · log(1 − �̂�)) , (2.4)

which is minimized when the prediction �̂� and target 𝑦 are equal. During training of a neural network, this
loss is minimized over a training dataset D = (Y𝑖 , 𝑦𝑖)𝑖∈[1:𝑁 ] containing 𝑁 pairs of inputs Y𝑖 and targets
𝑦𝑖 , leading to a total loss of

L =
1
𝑁

𝑁∑︁
𝑖=1

LBCE ( 𝑓𝜃 (Y𝑖), 𝑦𝑖) . (2.5)

In practice, 𝑓𝜃 is usually constructed as a concatenation of differentiable functions5 such that the gradients
of L with regard to the weights 𝜃 may be computed using the back-propagation algorithm. L can then be
efficiently minimized using first-order methods like stochastic gradient descent. For a detailed introduction
into these techniques, we refer to textbooks like [62].

As an illustrative example of DNNs for activity detection, we outline a state-of-the-art system for SVD
proposed by Schlüter et al. [181, 182]. Their model follows the architectural paradigm of VGGNet [190],
a popular CNN for computer vision applications like image classification. In this paradigm, several
stacked convolutional and max-pooling layers process the network input and learn to automatically extract
features—in contrast to the approach using hand-crafted features described above. These extracted features
are subsequently passed through several dense layers that finally produce the prediction �̂�. Compared to
the fluctogram, this network architecture is not designed to be sensitive to a particular signal characteristic.
Instead, the network may extract arbitrary features that would otherwise need to be hand-crafted. Further
extensions of this architecture may improve SVD results, such as a recently proposed approach by
Zhang et al. [242] combining recurrent and convolutional layers.

5 More exactly, sub-differentiable functions, since many standard DNN building blocks (e. g., max-pooling or the rectified
linear unit (ReLU)) are not fully differentiable.

19



Chapter 2. Fundamentals

Table 2.1: Network architecture used for
the singing activity detection system in
[181, 182].

Layer (Kernel size), (Strides) Output Shape Parameters

Input (115, 80)

Conv2D (3, 3), (1, 1) (113, 78, 64) 640
Batch normalization (113, 78, 64) 256
Conv2D (3, 3), (1, 1) (111, 76, 32) 18 464
Batch normalization (111, 76, 32) 128
MaxPool2D (3, 3), (3, 3) (37, 25, 32)
Conv2D (3, 3), (1, 1) (35, 23, 128) 36 992
Batch normalization (35, 23, 128) 512
Conv2D (3, 3), (1, 1) (33, 21, 64) 73 792
Batch normalization (33, 21, 64) 256

Conv2D (3, 18), (1, 1) (31, 4, 128) 442 496
Batch normalization (31, 4, 128) 512
MaxPool2D (1, 4), (1, 4) (31, 1, 128)
Flatten (3968)

Dropout 0.5 (3968)
Dense (256) 1 016 064
Batch normalization (256) 1024
Dropout 0.5 (256)
Dense (64) 16 448
Batch normalization (64) 256
Dropout 0.5 (64)
Dense (1) 65

Output: Sigmoid (1)

The network architecture used by Schlüter et al. is given in Table 2.1. It takes log-frequency spectrogram
patches6 for excerpts of 1.64 s audio as input, computed at a frame rate of 70 Hz and with 80 bins reaching
from 𝑓min = 27.5 Hz to 8000 Hz. Thus, their input representation is a matrix of size (115, 80). The
network consists of five 2D-convolutional layers (Conv2D in Table 2.1), which locally correlate their input
with learnable filter kernels that may extract arbitrary features. Each convolutional layer is followed by a
custom non-linear activation function7 and batch normalization [87], which normalizes the kernel outputs
to conform to some (learned) mean and variance and has been shown to improve the convergence behavior
of DNN training [178]. In addition, max-pooling layers layers are used that reduce the input dimension
and introduce some degree of translation invariance. A detailed account of convolution and max-pooling
operations in neural networks is provided in [43]. The result of the convolutional and max-pooling layers
is subsequently flattened, i. e., concatenated into a single one dimensional feature vector. This vector is
then processed by three dense layers (often also called fully-connected layers) with learnable weights,
which further transform and reduce the dimension of the feature vector. The dense layers are interspersed
with dropout operations, which randomly set a fraction of layer outputs (here, 50%) to zero during training.
This has been shown to improve the generalization behavior of DNNs [192]. The scalar output of the final
dense layer is processed by a sigmoid activation function, which produces predictions in the range [0, 1],
as described above. In total, the network has around 1.6 million learnable weights.
6 Note that Schlüter et al. use a mel-filterbank to obtain their input representation, as opposed to the interpolation-based

method described in Section 2.1.
7 Schlüter et al. use a custom variant of a leaky ReLU activation.
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The neural network models discussed in later chapters of this thesis employ similar building blocks as
well as some additional layer types which have not been explained above (such as dilated convolutions or
recurrent layers). For detailed explanations of the neural network building blocks, we refer to standard
textbooks on deep learning, such as [62].

To conclude, the DL system discussed in this section learns to automatically extract features, based on
training data provided. This may have both advantages and disadvantages. In contrast to the feature
engineering approach discussed before, no difficult and domain-specific feature design is necessary.
However, since the neural network can learn to extract arbitrary features from its input data, it is hard to
characterize the kinds of singing recordings that the trained system would work well for and those for
which it will fail. In particular, the network may learn to respond to confounding factors that are correlated
with singing activity in the training dataset, but which are not actual properties of the singing voice (e. g.,
loudness, see [182]). We will revisit such issues throughout all chapters of this thesis.
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3 Singing Activity Detection in Opera Recordings

This chapter is based on [106]. The first author Michael Krause is the main
contributor to this article. In collaboration with his supervisor Meinard Müller
and Christof Weiß, he devised the ideas, designed the experiments, and
wrote the paper. Furthermore, Michael Krause implemented all approaches
and conducted the experiments.

Automatically detecting the presence of singing in music audio recordings is a central task within MIR.
While recent machine learning systems produce high-quality results on this task, the reported experiments
are usually limited to popular music and the trained systems often overfit to confounding factors. In
this chapter, we aim to gain a deeper understanding of such machine learning methods and investigate
their robustness in a challenging opera scenario. To this end, we compare two state-of-the-art methods
for singing voice detection (SVD) based on supervised learning: A traditional approach relying on
hand-crafted features with a random forest classifier, as well as a deep learning approach relying on
CNNs (as described in Section 2.3). To evaluate these algorithms, we make use of a cross-version dataset
comprising 16 recorded performances of Richard Wagner’s four-opera cycle Der Ring des Nibelungen.
This scenario allows us to systematically investigate the ability to generalize to unseen versions, musical
works, or both. In particular, we study the trained systems’ robustness depending on the acoustic and
musical variety, as well as the overall size of the training dataset. Our experiments show that both systems
can robustly detect singing voice in opera recordings even when trained on relatively small datasets with
little variety.

3.1 Introduction

Singing constitutes a central component of many musical traditions. Identifying segments of singing
activity—often denoted as singing voice detection (SVD)—therefore provides essential information about
the content and structure of music recordings and may also serve as a pre-processing step for tasks such as
lyrics alignment [110, 193] or lyrics transcription [65]. SVD has historically received a lot of attention
within the field of MIR [9, 83]. The majority of SVD systems are designed for and evaluated on popular
music [114, 115, 118, 150, 171]. However, Scholz et al. [183] showed that data-driven SVD methods
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usually do not generalize well to other genres not seen during training, implying that the popular music
focus limits the general applicability of SVD systems.

Particular differences exist between popular and classical music, which is due to the distinct singing
techniques and instrumentations involved. Within classical music, opera recordings constitute challenging
scenarios where singing voices are often embedded in a rich orchestral texture. As a peculiarity of classical
music, several recorded versions (i. e., recordings, performances) of a musical work are usually available.
Such cross-version scenarios provide great opportunities for testing the robustness of MIR algorithms
in different tasks [52, 146] and their capability for generalizing across different versions [139, 224].
In particular, such cross-version analyses have shown that machine learning algorithms can overfit to
characteristics of certain versions or musical works [224]. In the light of these observations, we want to
investigate whether—and to what extent—SVD algorithms suffer from such overfitting effects. While one
obtains good evaluation results with state-of-the-art SVD systems, previous investigations have shown that
these systems sometimes over-adapt to confounding factors such as loudness [182] or singing style [183].
Therefore, we cannot generally expect these systems to generalize to unseen musical scenarios. Following
these lines, our case study yields insights into the generalization behavior of machine learning systems,
the aspects of training data that are relevant for building robust systems, and the benefits of deep learning
against traditional machine learning approaches, which may be relevant beyond the SVD task. With this,
our study may serve as an inspiration for similar research on other data-driven approaches to MIR, audio,
and speech processing.

In this chapter, we aim to gain a deeper understanding of two state-of-the-art SVD methods, which
represent two commonly used strategies: The traditional strategy based on hand-crafted features [39]
and the strategy based on DL [182], respectively (previously described in Section 2.3). To analyze these
systems, we make use of a cross-version scenario comprising the full cycle Der Ring des Nibelungen by
Richard Wagner (four operas, 11 acts) in 16 different versions, thus leading to a novel dataset spanning
more than 200 hours of audio in total. In this scenario, different versions vary with regard to singers’
timbre and singing style, musical interpretation, and acoustic conditions, whereas different operas vary in
singing registers and characters, lyrics, and orchestration. We exploit this scenario in a series of systematic
experiments in order to analyze the robustness of the two algorithms depending on the musical and acoustic
variety, as well as on the size of the training dataset. Our results indicate that both systems perform
comparably well and are capable of generalizing across versions and operas—despite the complexity
of the scenario and the variety of the data. This result shows that SVD systems based on traditional
techniques may perform on par with DL-based approaches while having practical advantages such as
lower computational costs and higher stability against random effects. Moreover, we find a small tendency
for both systems to overfit to specific musical material, as well as a tendency for the DL-based system to
benefit from large dataset sizes. With these general observations, our experimental results may inform the
use of SVD algorithms in other musical scenarios beyond the opera context.
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The chapter is organized as follows: Section 3.2 covers related work on singing voice detection in opera
settings. In Section 3.3, we describe our re-implementations of the two SVD systems used for our
experiments. Section 3.4 provides an overview of our cross-version dataset. Section 3.5 contains our
experimental results and discusses their implications. Section 3.6 concludes the chapter.

3.2 Related Work

In this section, we discuss prior work on SVD for opera recordings. For an overview of approaches that
have been proposed for SVD, we refer to Section 2.3.

While most SVD approaches were developed and tested on popular music datasets, there is some previous
work focussing on SVD for opera recordings. For example, Dittmar et al. [39] performed SVD experiments
within an opera scenario comprising recordings of C. M. von Weber’s opera Der Freischütz. Using the
feature set and classifier setup outlined in Section 2.3, they showed that bootstrap training [150] helps to
overcome genre dependencies. In particular, they report frame-wise F-measures up to 0.95, which still
constitutes the state of the art for SVD in opera recordings. They further showed that the existence of
different versions can be exploited for improving SVD results by performing late fusion of the individual
versions’ results. Mimilakis et al. [139] used a cross-version scenario comprising three versions of Richard
Wagner’s opera Die Walküre (first act) for evaluating three SVD models based on deep learning. As one
contribution of this chapter, we perform experiments using both a traditional and a DL-based system and
in both cases outperform the results reported in [139]. Furthermore, we substantially extend the scenario
of [139] to the full work cycle Der Ring des Nibelungen by adding the other acts and operas of the Ring
cycle, as well as 13 further versions (see Section 3.4). We use this extended dataset to perform a series of
systematic experiments, analyzing our two systems in depth.

3.3 Singing Voice Detection Methods

In this chapter, we consider two approaches to SVD, one based on traditional machine learning [39] and
one based on DL [182], see also Section 2.3. In our re-implementations of these methods, we aimed to be
as faithful to the original publications as possible. A conceptual overview of both methods is given in
Figure 3.1.

Closely following [39], we first realize a traditional SVD system relying on hand-crafted features and a
random forest classifier (RFC). In our re-implementation, we take special care in reproducing the exact
feature set, comprising 110 feature dimensions with a feature rate of 5 Hz. Each feature vector incorporates
information from 0.8 s of audio (with the exception of the vocal variance feature covering 2.2 s). For the
RFC, we use 128 trees per forest as in [39] and use standard settings wherever possible [127, 159] (this
leads to minor differences in sampling the training data per decision tree and the feature set per decision
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Figure 3.1: Conceptual overview of the
two methods for singing voice detection
considered in this chapter. While the
CNN-based approach operates directly
on mel-spectrogram excerpts, the RFC
requires an additional feature extraction
step. Both approaches output continuous
predictions which are post-processed us-
ing a median filter and thresholding. For
technical details, we refer to Section 2.3
and [39, 182].
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node compared to [39]). In order to test the validity of our re-implementation, we performed an experiment
where we train and test on the public Jamendo8 corpus, for which results were also reported in [39].
Jamendo is a dataset of over six hours of popular music recordings (published under creative commons
licenses), which has been used for experiments on SVD and other tasks like music tagging [15]. In our
experiment, we obtain a frame-wise accuracy of 0.887 and a frame-wise F-measure (with singing as the
relevant class) of 0.882. This is close to the accuracy of 0.882 and F-measure of 0.887 as reported in [39]
for the same scenario.

For our re-implementation of the DL-based system, we follow the description in [182]. We take special
care in reproducing the input representation, the model architecture and the training scheme (since the
convolution-activation-batch normalization order is not explicitly stated in [182], we use a potentially
different order). To resolve ambiguities in [182], we also consulted a previous publication by the
authors [181] and their public source code. As opposed to [182], we do not use any input augmentation in
order to ensure comparability with the RFC approach where no such augmentations are used. The results
in [182] are reported on an internal dataset. However, for the related method proposed in [181] the authors
report an error rate of 9.4% (i. e. an accuracy of 0.906) when training and testing on the Jamendo corpus
(no data augmentation). Our re-implementation achieves a comparable accuracy of 0.913 for the same
scenario.

8 https://zenodo.org/record/2585988#.YDNvfmhKhaQ
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3.4. Dataset and Training Scenarios

Both systems output continuous values between 0 and 1 (sigmoid probabilities for the CNN and the
fraction of agreeing decision trees for the RFC). Inspired by several SVD approaches [39, 181, 182], we
post-process the results of both the RFC and the CNN using a median filter. As suggested in [39], we use
a filter length of 1.4 s and binarize the output with a fixed decision threshold of 0.5. The CNN system
outputs predictions at a rate of 70 Hz. To ensure comparability to the RFC-based approach, we, therefore,
downsample the CNN predictions to 5 Hz for comparison.

Since neither [39] nor [182] make use of a separate validation set for optimizing hyperparameters, we
follow this convention. For the RFC-based system, we try to avoid overfitting by averaging over many
trees, each of which is based on a different subsets of the training data. For the CNN-based system, we
compute the training loss on mini-epochs of 1000 batches instead of the entire training set. Because of
this, we can use early stopping on the training loss to try to prevent overfitting.

Both the traditional and the DL system involve random effects: For the CNN, this includes parameter
initialization and random sampling of batches, whereas for the RFC, the choice of features at each split is
randomized. Thus, each run of these algorithms produces slightly different results. In our experiments, we
compensate for such random effects by averaging all results over multiple runs of the respective algorithm.

The two approaches differ in the computational resources required for training and testing. The computations
for individual trees in the RFC can easily be parallelized and run on a standard CPU. The CNN requires
a GPU or TPU for efficient training and testing. For example, when training both systems on the same
training set of around 200 h of audio (excluding feature computation), the RFC finishes after requiring
eight minutes runtime and 3.5 GB of RAM on a desktop computer, while the CNN requires around two
hours of training time and 3 GB VRAM on a medium-sized cluster node. These numbers are highly
implementation- and hardware-specific, but they demonstrate that the classical system requires less
computation time than the deep learning approach. Inference can be parallelized for both approaches and
takes less than a second for the RFC and about one minute for the CNN on roughly 70 min of test audio.

3.4 Dataset and Training Scenarios

In this section, we present our cross-version opera dataset, which we use for our systematic experiments in
different training–test configurations. This dataset is also used in subsequent chapters of this thesis. Here,
we will give an overview of the dataset and our procedure for obtaining singing activity annotations. In
Chapter 5, we will explain how we obtained instrument activity annotations for a subset of the dataset and
in Chapter 8, we will describe how we annotated leitmotif activity.

Within Western classical music, Richard Wagner’s tetralogy Der Ring des Nibelungen WWV 86 constitutes
an outstanding work, not least because of its extraordinary length (see Figure 3.2). Spanning the four operas
Das Rheingold (WWV 86 A), Die Walküre (WWV 86 B), Siegfried (WWV 86 C), and Götterdämmerung
(WWV 86 D), the cycle unfolds an interwoven plot involving many different characters. The characters
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Figure 3.2: Cross-version dataset com-
prising 16 versions of Wagner’s Der Ring
des Nibelungen WWV 86. As test data,
we use the first act of the second opera
Die Walküre (WWV 86 B1) in the ver-
sion conducted by Karajan (red). Train-
ing data stems either from the same ver-
sion but other operas (opera split, yellow),
from the same act in other versions (ver-
sion split, blue), or from other operas
in other versions (neither split, green).
The hatched green cells (B2) indicate a
variant of the neither split, where the
training data stems from another act of
the same opera .
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are represented by different singers with the orchestra adding a rich texture of accompaniment, preludes,
and interludes, thus making singing voice detection in recordings of the Ring a challenging task. For our
experiments, we make use of a cross-version dataset comprising 16 recorded performances—denoted as
versions—of the Ring, each consisting of 13:30 up to 15:30 h of audio data (see Figure 3.2 and [237] for
an overview). All versions are structurally identical, i. e. there are no missing or repeated sections.

To enable comparability between versions, we produced manual annotations of musical measure positions
for versions P-Ka, P-Ba, and P-Ha as listed in Figure 3.2 (see [222] for details). We transferred these
measure annotations to the remaining versions using an automated alignment procedure [238]. We then
used the resulting measure positions to generate audio-based singing voice annotations. To this end, we
start from the libretto’s phrase segments and manually annotate the phrase boundaries as given by the
score (in musical measures or beats). To transfer the boundaries to the individual versions, we rely on
the measure annotations, refined to the beat level using score-to-audio synchronization [51] within each
measure. We use these beat positions to transfer the singing voice segments from the musical time of
the libretto to the physical time of the performances. The accuracy of the resulting annotations depends,
on the one hand, on the accuracy of the measure annotations, which have typical deviations in the order of
100 ms for the manual measure annotations [222] and 200 ms for the transferred measure annotations [238].
On the other hand, score-to-audio synchronization within a measure may introduce further inaccuracies.
This is an important consideration for putting any experimental results into context, e.g., for a feature rate
of 5 Hz (200 ms) and an average length of a singing voice segment of, say, 4 s, an inaccuracy of one frame
already results in a frame-wise error rate of 5%.

For the first act of Die Walküre (WWV 86 B1) in version P-Ka conducted by Karajan (DG 1998), we
manually refined the phrase boundaries, thus accounting for both alignment errors and imprecision of
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singers. We chose this act (B1) since our manual measure annotations are most reliable here, as described
in [222]. Moreover, its content is roughly balanced between singing characters, with one female (Sieglinde)
and two male singers (Siegmund and Hunding), and with singing activity covering about half its duration
(37 of 67 min). In our experiments, we always use this recording and its more accurate annotations for
testing (red box in Figure 3.2).

Inspired by [224], our novel dataset allows us to systematically test the generalization capabilities of our
SVD systems in different training–test configurations. To this end, we split our dataset along different axes
(Figure 3.2). In the opera split, we train our methods on other operas in the same version and, thus, need to
generalize to different musical works (yellow cells in Figure 3.2). In the version split, we use the same act
in other versions for training so that the methods need to generalize to a different musical interpretation,
different singers, and different acoustic conditions (blue cells). In the neither split, neither the test opera
nor the test version is seen during training so that the systems have to generalize across both dimensions.
In our experiments, we consider different variants of these splits, utilizing, e. g., varying numbers of
training versions, operas, or acts. Furthermore, we also exclude in some experiments the second and third
act of Die Walküre (B2 & B3) since the individual singers (characters) from the first act (B1) re-appear in
these acts. When considering all versions or all operas (except Die Walküre B1, B2, & B3) for training, we
refer to this as a full split. Compared to our scenario, Mimilakis et al. [139] used the same test recording
(B1 in version P-Ka), but considered only a version split with the two versions P-Ba and P-Ha (conducted
by Barenboim and Haitink, respectively) used for training and validation. We extend this configuration in
a systematic fashion in order to study individual aspects of generalization within the opera scenario.

3.5 Experiments

In the following, we describe our experiments using the systems described in Section 3.3, taking advantage
of the different split possibilities offered by our dataset as described in Section 3.4. We average all results
over five runs in order to balance out effects of randomization during training, as discussed in Section 3.3.
For comparability, we always use the first act of Die Walküre (B1) in the version by Karajan (P-Ka) as our
test set as highlighted in Figure 3.2.

3.5.1 Training on Different Versions

We begin with a variant of the version split as used in [139], which only considers the first act of Die
Walküre, WWV 86 B1. Here, the training set consists of version P-Ba (Barenboim) only. On the test set
(version P-Ka, Karajan), Mimilakis et al. [139] reported a frame-wise F-measure of 0.80 (we only refer to
the results of the zero-mean CNN evaluated in [139], which is most similar to our CNN approach). Using
our CNN implementation within the same scenario, we achieve an F-measure of 0.948. The reasons for
this substantial improvement remain unclear. With the RFC system, we obtain a comparable result of
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Figure 3.3: Results for both systems when
training on different (individual) versions
of the test act (version split).
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0.941, which is similar to the F-measures reported in [39] for the Freischütz opera scenario. From this
experiment, we conclude that both a traditional and a DL-based system—when properly implemented and
fairly compared—can achieve strong results that are roughly on par with each other.

In the previous experiment, we chose version P-Ba (Barenboim) as the training version. To investigate the
impact of this choice, we repeat the same experiment while changing the training version. Figure 3.3 shows
results for both systems. Dots correspond to mean results averaged over five runs of the same experiment
while vertical bars indicate the corresponding standard deviations over those runs. We observe that the
choice of training versions has an impact on the test F-measure. The resulting F-measures range from
0.913 for the RFC (version P-Sw) to 0.948 for the CNN (version P-Ba). Furthermore, one can observe
that the standard deviations over the runs for individual experiments are higher in the CNN than in the
RFC case (see the blue and red vertical bars). In all scenarios, the results are above 0.91 F-measure, which
shows that both traditional and deep learning approaches are capable of generalizing from one version
to another version of the same work. Nevertheless, the choice of the training version affects test results,
up to around 0.03 F-measure. From a practical point of view, such a difference may seem negligible at
first, but when considering a full performance of the Ring lasting around 15 hours, a difference of 0.03
F-measure can affect roughly 27 min of audio.

The previous results raise the question whether our systems could benefit from increasing the acoustic and
interpretation variety in the training set by training on multiple versions. Figure 3.4 shows results when
systematically increasing the number of training versions of the same act (B1) used in the version split.
In order to suppress the effect of the particular choice of versions, we repeat each experiment five times
and, in each run, randomly sample (without replacement) from all possible versions to create a training set
with the specified number of versions. For both classifiers, adding one additional training version leads to
improved results. However, adding further training versions does not yield clear improvements. Moreover,
these small differences have to be seen in light of the annotation accuracy as discussed in Section 3.4.
Adding one additional training version seems to sufficiently prevent the systems from adapting to the
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Figure 3.4: Results for both systems when
training on varying numbers of versions
of the test act (version split).
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Figure 3.5: Results for both systems when
training on varying numbers of versions
of an act (B2) that is different from the
test act (neither split).
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characteristics of individual versions. Additionally, the RFC seems to be more sensitive to the choice
of training version: The standard deviation over runs with only one version is larger for the RFC (0.007
percentage points) than for the CNN (0.001), as indicated by the vertical bars around the left-most dots.

3.5.2 Training on Different Musical Material

In the experiments reported so far, we made use of the version split where training and test set consist of
the same musical material (B1) in different versions. We now want to test generalization to a different
musical content and, to this end, use a different act for training (second act of Die Walküre, B2) than
for testing—a variant of the neither split (green hatched cells in Figure 3.2). As before, we successively
increase the number of training versions used. The curves in Figure 3.5 indicate the results, which are
worse in general compared to Figure 3.4. The RFC system now benefits slightly more from additional
training versions, while the CNN seems unaffected by this. Although the CNN yields better results
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Figure 3.6: Results for both systems when
training on different (individual) acts from
the test version (opera split).
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than the RFC, neither system reaches its efficacy on the version split. A possible explanation for this
may be that both systems might overfit to the musical material in the training act, adapting, e.g., to the
instrumentation or the singing characters (high or low register, male or female voice) as appearing in the
training data. The small but consistent gap between the curves of the same color in Figures 3.4 and 3.5
could be attributed to such work-related overfitting. We understand such small differences to illustrate a
trend in the learning behaviors of our methods (though, as mentioned before, these differences may still be
of practical relevance when considering an entire performance).

To investigate the impact of such work-related overfitting in more detail, we now examine specific variants
of the opera split where we use the test version (P-Ka, Karajan) for training but take one act from another
opera (A, C, or D—excluding B) as the training act, respectively. Compared to the previous experiment,
the musical generalization is now harder (a different opera, rather than different acts from the same opera)
but the acoustic generalization is less hard (same version). The results of this experiment (see Figure 3.6)
are generally worse than for training on a different act of the same opera (cf. Figure 3.5). While the
F-measure for the RFC depends only slightly on the particular choice of the training act, this effect is
stronger for the CNN. Most prominently, we observe substantial drops when using C1 or C2 (first and
second act of Siegfried) or D0 (Prologue to Götterdämmerung) for training the CNN. This provides insights
into specific challenges of generalization: In C1, only male characters (Siegfried, Mime, Wanderer) are
singing. In C2, this is similar, except for several short appearances of the character “Waldvogel” (soprano).
In D0, in contrast, mainly female singers are singing. All these cases result in a more challenging
generalization to B1, where both female and male characters appear. We also observe a drop for the RFC
when training on act D2, which does not occur for the CNN. One reason for this difference could be the
prominence of the men’s choir (Mannen) over large parts of D2, which is mostly absent from the rest of
the work cycle. Choir singing could negatively affect, e.g., the fluctogram features used as input to the
RFC (which are sensitive to vibrato) but could be accounted for by the automated feature extraction of the
CNN. In general, the RFC-based system, which relies on hand-crafted features (capturing vibrato and
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Table 3.1: F-measures on the test set for
both systems, using the full variants of
the split, respectively.

Opera Split Version Split Neither Split

CNN 0.948 0.951 0.952
RFC 0.938 0.946 0.940

other singing characteristics), seems to be more robust to different singers and registers in training and test
data. The CNN, in contrast, seems to generalize better to other musical content with the same characters
and registers (as in Figure 3.5) and to choir singing. Furthermore, we can again observe that the standard
deviation over CNN runs is higher than for the RFC (see vertical bars). Nevertheless, all results are well
above an F-measure of 0.9, meaning that even without training examples for a certain gender of singers,
both methods can robustly detect singing in unseen recordings.

3.5.3 Training on Full Splits

We now extend these experiments to the full splits as shown in Figure 3.2 (solid cells). Table 3.1 shows
the corresponding results. Let us first discuss the full opera split, where we train the systems on all acts
from the three other operas (A, C, D) in the test version P-Ka, Karajan (yellow cells in Figure 3.2). We
observe F-measures of 0.948 (CNN) and 0.938 (RFC), respectively. Next, we consider the full version
split, where we train on all other versions for the test act B1 (blue cells in Figure 3.2). Here, we obtain
results of 0.951 for the CNN and 0.946 for the RFC, which are slightly better than for the opera split. This
confirms our observation that work-related overfitting effects (e.g., to singers’ register or gender) help to
obtain better results in a version split compared to an opera split. For the neither split, we use all acts of A,
C, and D in all versions except P-Ka for training (solid green cells in Figure 3.2). In this case, we observe
F-measures of 0.952 (CNN) and 0.940 (RFC). Here, interestingly, the CNN performs similar as in the
version split, though neither test act nor test version are seen during training. In contrast, the RFC yields
an F-measure close to its result on the opera split. With more versions and operas available, the CNN
seems to compensate for the missing test act in the training set. As before, all results are high in general,
meaning that both systems work for all considered splits.

To better understand the important aspects of the training set—especially in the case that less versions and
works are available—we now present an extension of the neither split where we successively increase the
number of training versions and operas, always using all acts of an opera (Figure 3.7). In each of the five
experiment runs, we randomly sample among the versions and operas used for the training set. In this
visualization, we omit the vertical bars indicating standard deviations for better visibility. For the RFC
(blue curves), we observe that the results are almost identical for different numbers of training operas (solid
vs. dashed and dotted curves), but slightly improve for higher numbers of training versions. The CNN,
in contrast, benefits from using more operas in the case that more training versions are available as well.

Summarizing these results, we find that the CNN has a slightly stronger tendency than the RFC to overfit
to the musical material of the training set. We further see that the RFC-based system primarily exploits
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Figure 3.7: Results for both sys-
tems when training on varying num-
bers of versions and operas (solid,
dashed, and dotted curves) that are
different from the test version and
act (neither split), using the full
data for training.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.920

0.925

0.930

0.935

0.940

0.945

0.950

0.955

0.960

F
-m

ea
su

re
o

n
te

st
se

t

CNN

RFC

1 Training Opera

2 Training Operas

3 Training Operas

Figure 3.8: Results when training
on varying numbers of versions
and operas as in Figure 3.7 (neither
split), using sub-sampling of the
training datasets to the same size.
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acoustic variety present in multiple training versions. In comparison, the CNN seems to also exploit
variety in musical material and singing characters stemming from different operas. As a consequence,
the CNN trained on the full training data of the neither split can generalize better to other operas and,
thus, better compensate for the missing test act during training. We further find that the results for the
CNN system vary more across runs, especially in the case that only few training versions and acts are
used. As mentioned above, however, the results for all experiment settings are consistently high, meaning
that both methods are feasible for singing voice detection in opera, even if only little training data variety
is available.

3.5.4 Impact of Dataset Size

In our previous experiments, we systematically added training versions and operas, which led to an increase
not only of the variety of training data, but also of the training dataset’s size. To separately study the two
effects, we repeat the experiment from Figure 3.7 while randomly sub-sampling all training datasets to
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have equal size (of about as many input patches as obtained from a single act of a single version). Results
are shown in Figure 3.8. For the RFC (blue), results are almost identical as in Figure 3.7. For the CNN,
we observe smaller improvements in Figure 3.8 than in Figure 3.7 for increasing the number of training
versions and operas. Therefore, the improvement seen in Figure 3.7 appears to stem mainly from the
training dataset’s size rather than from its variety. This suggests a fundamental difference between the two
systems: While the CNN benefits from a larger amount of training data, the RFC is widely unaffected by
this. For the RFC, a certain variety in training data seems to be sufficient for reaching an optimal efficacy.

3.5.5 Transfer between Pop and Opera Datasets

We finally compare system results when training on datasets from another genre of music. Specifically, we
use the Jamendo dataset already discussed in Section 3.3. We expect generalization between the pop and
opera styles to be poor, since SVD methods are known to be heavily genre specific [183] and, in particular,
opera singers employ singing techniques that are distinct from those found in Western popular music.
Consequently, when training on the Jamendo training corpus and evaluating on our own test set, we
observe a low F-measure of 0.457 for the RFC (not better than random choice) and a medium result of
𝐹 = 0.795 for the CNN. When using the training set of the full neither split of our dataset (see Figure 3.2)
and testing on the Jamendo test set instead, we obtain 𝐹 = 0.693 for the RFC and 𝐹 = 0.692 for the CNN.
Thus, generalizing from opera to pop works better for the RFC and worse for the CNN, but genre-specific
overfitting is evident in both scenarios.

3.6 Conclusions

Summarizing our experimental findings, we conclude that machine learning approaches, both relying on
traditional techniques and deep learning, are useful for building well-performing SVD systems, which
are capable of generalizing to unseen musical works, versions, or both at the same time. Both systems
achieve F-measures in the order of 0.94 and their results do not drop below 0.91, even when considering
training datasets with little musical or acoustic variety. While these are strong results for a challenging
SVD scenario, we find a tendency of both systems to overfit to the specific musical material in the training
set. Moreover, we observe that both systems benefit from a certain amount of acoustic variety in the
training dataset. Nevertheless, overfitting to musical or acoustic characteristics does not lead to complete
degradation of results in our scenario. For practical applications, the traditional approach based on
random forest classifiers requires fewer resources and training time and is more robust to random effects
of different training runs. In contrast, the CNN-based method leads to slightly better results in most
scenarios, especially when a large training dataset is available.

In a manual analysis, we could trace back most of the remaining errors made by our systems to difficult
situations where annotation errors and musical ambiguities play a major role. One source of such ambiguity
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is the discrepancy between a phrase-based and a note-based consideration of singing voice segments,
i.e., the question whether a short musical rest within a singing phrase should be considered as singing.
Further ambiguities arise about whether to include breathing as singing or how to deal with choir passages.
In the present study, breathing is mostly excluded from singing since our semi-automatic transfer relies on
chroma features. Choir passages are included as singing but only occur in acts D2 and D3. However, as our
annotations are based on phrases in the libretto, we could not differentiate, e.g., between silence and singing
within sung phrases. Manual annotation could provide more accurate ground truth but is only feasible for
smaller datasets. These and other challenges of annotation indicate that both systems are already close to a
“glass ceiling” of SVD efficacy, where the definition of the task itself becomes problematic.

Such encouraging results close to the “glass ceiling” cannot generally be expected for other MIR tasks
such as, e.g., the recognition of a specific register (soprano, mezzo, alto, tenor, baritone, or bass; see also
Chapter 4) or even a specific singer or character (such as Siegfried or Sieglinde). The hand-crafted features
used in the RFC-based system have been specifically designed to work well for SVD and may not perform
equally well on such more advanced tasks. Thus, DL-based approaches may yet outperform classical
systems in those contexts. Therefore, it may be promising to extend our studies to such further tasks and
to more complex scenarios (including other composers and genres). More generally, the experimental
procedures presented in this chapter can be applied to various domains of audio and music processing
where different data splits are possible. In future work, these procedures may contribute to understanding
the benefits of deep learning against traditional machine learning and identifying the aspects of training
data that are relevant for building robust systems.
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4 Hierarchical Approaches for Detecting Singing
Activity, Gender, and Type

This chapter is based on [102]. The first author Michael Krause is the main
contributor to this article. In collaboration with his supervisor Meinard
Müller, he devised the ideas, developed the formalization, and wrote the
paper. Furthermore, Michael Krause implemented all approaches and
conducted the experiments.

Traditionally, work on singing voice detection (SVD) has focused on identifying singing activity in music
recordings, as was also our goal in the previous Chapter 3. In this chapter, our aim is to extend this
task towards simultaneously detecting the presence of singing voice as well as determining the singer’s
gender and voice type. We describe and compare four strategies for utilizing the hierarchical relationships
between these levels. In particular, we introduce a novel loss term that promotes consistency across
hierarchy levels. We evaluate the strategies on our Ring dataset containing over 200 hours of complex
opera recordings with various singers of different genders and voice types, with a particular focus on
hierarchical consistency. Our experiments show that by adding our loss term, a joint classification strategy
using a single neural network achieves slightly improved evaluation scores and far more consistent results.

4.1 Introduction

SVD has been a long standing task in the field of MIR [83]. Prior work has focused on increasing the
accuracy for detecting singing activity in music recordings [114, 116, 181], see also the previous Chapter 3.
Aside from mere activity, however, singing voice can be classified with regard to a multitude of aspects
related to singing styles and techniques. Western opera, for example, is performed by singers with certain
voice types (e. g., baritone, tenor, soprano) who may sing individually or simultaneously, creating a
complex sound mixture of singing and orchestral music. In this context, we propose to simultaneously
detect singing activity, singer gender, and voice type in music recordings. A system for detecting gender
and voice type may be useful for annotating recorded and live performances in order to enhance audience
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Figure 4.1: Class hierarchy as considered in this chapter (number of hierarchy levels 𝐻 = 3).

experience or to aid in navigating music collections. It may also be useful as a pre-processing step for
tasks such as singer identification.

In our scenario, the classes under consideration form hierarchical relationships, as illustrated in Figure 4.1.
As a main contribution of this chapter, we describe four different strategies for classification of singing
voice that incorporate hierarchical information in different ways. In particular, we compare these strategies
with regard to consistency of their predictions across hierarchy levels and discuss a joint classification
strategy requiring only a single neural network which uses a novel loss to promote consistency. The
strategies are comprehensively evaluated using our large dataset of over 200 hours of audio recordings
from Richard Wagner’s cycle of operas Der Ring des Nibelungen.

We make the following contributions: First, we introduce a novel hierarchical classification problem
by extending singing voice detection towards singer gender and voice types. Second, motivated by this
problem, we formalize an appropriate hierarchical class model and provide evaluation and hierarchical
consistency measures (Section 4.3). Third, we describe four strategies to approach this problem that utilize
the hierarchical relationships between classes in different ways (Section 4.4). In particular, we propose a
novel loss term that promotes consistent predictions. Finally, we evaluate these strategies in the context of
a dataset containing over 200 hours of complex opera music (Section 4.5). We show that the joint strategy
using our additional loss achieves strong and consistent results.

4.2 Related Work

Historically, SVD has received a lot of attention from the MIR community and numerous approaches have
been proposed over the years, see also Section 3.2. Few works have considered finer grained classes, such
as the classification of singing gender [228]. For applications beyond music processing, some researchers
have considered the automatic classification of singers according to gender or voice type [144, 163], but
this is usually constrained to short, isolated excerpts of singing. Here, we want to detect and classify
singing activity across entire music recordings.
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Several works have investigated singing voice detection for opera [39, 139], without considering finer
grained classes. Other works have focused on identifying emotion [155] or melody [201] from opera
recordings.

Hierarchical classification has been explored for tasks such as bird call classification [34], singing
transcription [245] or general sound event detection [88, 234]. It has also been considered in the wider
machine learning literature [11, 220]. Often, however, these works rule out simultaneous class activity or
do not evaluate results with regard to hierarchical inconsistencies. We refer to [189] for a comprehensive
overview of pre-DL hierarchical classification approaches.

4.3 Hierarchical Class Model

We begin by formalizing our class hierarchy and detection task. Let C = {V, M, F, M1, M2, M3, F1, F2, F3}
be the set of all classes in our scenario. These classes are organized in a hierarchy, where 𝐻 is the total
number of hierarchy levels and Cℎ are the classes at hierarchy level ℎ ∈ [1 : 𝐻]. The lowest level ℎ = 1
corresponds to the most specific classes, whereas the highest level ℎ = 𝐻 corresponds to the most general
one. We assume that (Cℎ)ℎ∈[1:𝐻 ] forms a partition of C. In our case, 𝐻 = 3 and the hierarchy levels
correspond to voice type (ℎ = 1), singer gender (ℎ = 2), and singing activity (ℎ = 3), respectively. In
particular, we have C1 = {M1, M2, M3, F1, F2, F3},C2 = {M, F}, and C3 = {V}.

For a class 𝑐 ∈ C we write 𝑐↑ for the immediate parent of 𝑐 in the class hierarchy (e. g., F2↑ = F).
Additionally, we write 𝑐↓ for the set of immediate children of 𝑐 (e. g., M↓ = {M1, M2, M3}).

We formulate our singing detection task as a frame-wise, multi-label classification problem. Formally, let
I be the set of items under consideration. In our case, the elements of I are audio frames. We describe
our reference annotations as well as predictions made by some detection model as families

(
I𝑐

)
𝑐∈C of

subsets I𝑐 ⊆ I. For 𝑖 ∈ I𝑐 we say that class 𝑐 is active for frame 𝑖. Note that the sets I𝑐 for different 𝑐
need not be disjoint (i. e., multiple singers with different genders and voice types may be active for the
same audio frame), and there may be items 𝑖 ∈ I that are not contained in any set I𝑐 (i. e., there may be
audio frames without any singing). In this way, we account for our multi-label scenario.9

Generally, we would like the I𝑐 to be in some sense consistent with the hierarchical structure of C. For
example, an item 𝑖 ∈ I𝑐 should also be an element of I𝑐↑. We will refer to this requirement as bottom-up
consistency. Likewise, if 𝑖 ∈ I𝑐, then there should be some child 𝑐′ ∈ 𝑐↓ such that 𝑖 ∈ I𝑐′ . We will call that
top-down consistency. We now introduce three measures that capture the degree of bottom-up consistency
(𝛾↑𝑐), top-down consistency (𝛾↓𝑐), or both (𝛾𝑐) for the set I𝑐.

9 In the terminology adopted by [189], we are dealing with a hierarchically multi-label problem on a tree with full depth
labeling.
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First, for a subset C′ ⊆ C, we introduce the notation

IC′ =
⋃
𝑐∈C′

I𝑐 . (4.1)

Now, for any ℎ > 1 and 𝑐 ∈ Cℎ, we define the following consistency measures with values in the range
[0, 1]:

𝛾𝑐 =
|I𝑐 ∩ I𝑐↓ |
|I𝑐 ∪ I𝑐↓ |

, 𝛾
↓
𝑐 =

|I𝑐 ∩ I𝑐↓ |
|I𝑐 |

, 𝛾
↑
𝑐 =

|I𝑐 ∩ I𝑐↓ |
|I𝑐↓ |

. (4.2)

Intuitively, these measures capture the amount of agreement between I𝑐 and I𝑐↓. If all 𝑖 ∈ I𝑐 are also
contained in I𝑐′ for some 𝑐′ ∈ 𝑐↓, then 𝛾↓𝑐 = 1. If for all 𝑖 ∈ I𝑐↓ it holds that 𝑖 ∈ I𝑐, then 𝛾↑𝑐 = 1. Finally,
𝛾𝑐 = 1 if and only if I𝑐 = I𝑐↓. 𝛾𝑐 is also called intersection-over-union or Jaccard index.

4.4 Hierarchical Singing Detection

In this section, we introduce various strategies for hierarchical singing detection. For now, we assume
a given classification model M that can be trained on subsets of items I′ ⊆ I to yield predictions for
subsets of classes C′ ⊆ C. After training, we can use such a model to get probabilities 𝑝𝑐 per class 𝑐 ∈ C′

for unseen inputs 𝑖 ∈ I \ I′. For the classification, we threshold these probabilities at 0.5 to obtain IEst
𝑐 ,

the set of items that have been predicted for a certain class 𝑐 ∈ C. Details on M are given in Section 4.5.
Next, we describe our detection strategies.10

Strategy A: Independent Decisions. In this first strategy, we train one independent model for each
hierarchy level ℎ ∈ [1 : 𝐻]. Thus, predictions are made separately at each hierarchy level and no
consistency between predictions is enforced.

Strategy B: Bottom-Up Aggregation. Here, we train only one model for hierarchy level ℎ = 1. We then
obtain predictions for higher levels by iteratively aggregating results from lower levels, setting IEst

𝑐 = IEst
𝑐↓

first for all 𝑐 ∈ C2 and then for all 𝑐 ∈ C3. By design, this ensures that 𝛾𝑐 = 𝛾
↓
𝑐 = 𝛾

↑
𝑐 = 1 for all 𝑐.

However, classification errors made at lower levels are propagated upwards.

Strategy C: Top-Down Divide-and-Conquer. Here, we begin with a model for hierarchy level ℎ = 𝐻

and divide items into subsets I𝑐 for 𝑐 ∈ Cℎ according to the classification results. We then iterate that
process, proceeding with separate classification models for the subsets I𝑐, where for I𝑐 one considers the
classes in 𝑐↓ ⊆ Cℎ−1. In other words, only one model is trained on the entire dataset and operates at the
highest hierarchy level. Subsequent models differentiate between more specific classes and are trained and
evaluated only on frames for which the parent class is active. By design, this ensures that 𝛾↑𝑐 = 1 for all 𝑐.
However, since each model considers a multi-label classification problem, there may be frames for which

10 In the terminology adopted by [189], Strategy D would be considered a “global” approach, whereas B corresponds to a
“flat” approach. Strategies A and C are both “local”, with A consisting of local classifiers per layer (LCL) and Strategy C
employing local classifiers per parent node (LCPN).
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some class is predicted at a higher hierarchy level, but subsequent models predict none of its child classes
as active, leading to 𝛾↓𝑐 < 1. Furthermore, errors made at higher levels are propagated downwards and
many separate models need to be trained.

Strategy D: Joint Classification. Finally, we consider a strategy with a single model for all classes C. To
this end, we utilize a multi-task model that performs singing activity detection, gender recognition, and
voice type classification at the same time. This model makes predictions jointly at all hierarchy levels (as
opposed to the independent decisions in Strategy A), but may violate consistency properties. To address
this, we introduce two losses that encourage consistent predictions in a soft way. Intuitively, in order to
promote bottom-up consistency and improve 𝛾↑𝑐, a loss should encourage the predictions for a parent class
𝑐 to be at least as high as the prediction for any of its child classes 𝑐′. Writing 𝑝𝑐 for the probability output
by the model for class 𝑐, this is realized by the loss

L↑ =
1

|C \ C𝐻 |

𝐻∑︁
ℎ=2

∑︁
𝑐∈Cℎ

∑︁
𝑐′∈𝑐↓

max{0, 𝑝𝑐′ − 𝑝𝑐}2, (4.3)

which contains penalties for every 𝑝𝑐′ > 𝑝𝑐. This loss formulation has been proposed in [220]. The
normalization factor ensures that the loss is in the range [0, 1].

Similarly, to promote top-down consistency and improve 𝛾↓𝑐, a loss should penalize predictions for a parent
class 𝑐 that are above the highest probability predicted for a child class 𝑐′. Thus, we propose a novel loss
by defining

L↓ =
1

|C \ C1 |

𝐻∑︁
ℎ=2

∑︁
𝑐∈Cℎ

max{0, 𝑝𝑐 − max
𝑐′∈𝑐↓

𝑝𝑐′}2. (4.4)

The final loss for the model is obtained as

L = LBCE + 𝛼L↓ + 𝛽L↑,

where 𝛼, 𝛽 ∈ R are weights associated with each consistency loss and LBCE is the standard binary
cross-entropy loss applied at each output of the network. We will refer to the variants of Strategy D
without or including additional consistency losses as strategies D0,0 and D𝛼,𝛽, respectively.

4.5 Experiments

In this section, we introduce the dataset and evaluation measures used for comparing our hierarchical
detection strategies and describe the specific classification model used. Finally, we discuss results.
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Figure 4.2: Structure of Richard Wag-
ner’s Ring cycle and overview of 16
recorded versions, see Section 3.4 for
details. P-Ka, P-Ba, and P-Ha (red)
are used for testing, while the remain-
ing versions (blue) are used for training.
The solid cells indicate one run of cross-
validation, where a certain act is removed
from training and used for testing.
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4.5.1 Dataset

To compare the effectiveness of the strategies outlined in Section 4.4, we make use of a dataset containing a
multitude of singers with different genders and voice types, as well as complex orchestral accompaniment.
Specifically, we consider 16 recorded versions of Der Ring des Nibelungen by Richard Wagner, previously
used in Chapter 3. In total, our dataset consists of over 200 hours of opera music. An overview of the
dataset as it is used in this chapter is given in Figure 4.2. Reference annotations have been obtained with a
semi-automatic procedure using score-to-audio synchronization, see Section 3.4 for details.

We reserve three versions for testing and take the rest for training, in line with Chapter 3. The reference
annotations for the training and test sets can be represented as families

(
IRef
𝑐

)
𝑐∈C, where IRef

𝑐 ⊆ I contains
items labeled as class 𝑐. These families naturally fulfill all consistency properties, i. e., 𝛾𝑐 = 𝛾↓𝑐 = 𝛾

↑
𝑐 = 1

for all 𝑐.

Writing 𝛿𝑐 = |I𝑐 |/|I| ∈ [0, 1] for the fraction of items where class 𝑐 is active, we make several observations
on the distribution of classes in IRef for our test set: around half of all audio frames in our dataset contain
singing (𝛿V = 0.55) and male voices are more common (𝛿M = 0.36) than female voices (𝛿F = 0.196). Some
voice types occur more often (𝛿M3 = 0.175) than others (𝛿F1 = 0.033). Around 2% of frames contain
activity for more than one voice type.

In addition to splitting our dataset across versions, we perform cross-validation over opera acts in the test
set. Figure 4.2 illustrates one run of cross-validation (solid cells). As a consequence, our approaches need
to generalize both to unseen versions (containing different singers and acoustic conditions) and unseen
acts (i. e., different musical compositions).11

11 In Chapter 3, this is referred to as a “neither split”.
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4.5.2 Evaluation Measures

As described in Section 4.3, we formulate our detection task as frame-wise classification on full recordings.
The detection strategies described in Section 4.4 yield predictions for all classes at all hierarchy levels for
each frame. The performance of the detection strategies can be evaluated using standard measures from
information retrieval such as class-wise12 precision, recall, and F-measure. Formally:

𝑃𝑐 =
|IRef
𝑐 ∩ IEst

𝑐 |
|IEst
𝑐 |

, 𝑅𝑐 =
|IRef
𝑐 ∩ IEst

𝑐 |
|IRef
𝑐 |

, 𝐹𝑐 =
2 · 𝑃𝑐 · 𝑅𝑐
𝑃𝑐 + 𝑅𝑐

. (4.5)

Intuitively, 𝑃𝑐 is the fraction of frames that are correctly predicted as belonging to class 𝑐, 𝑅𝑐 refers to the
fraction of ground truth frames of class 𝑐 that are correctly identified, and 𝐹𝑐 is an average of the two.

4.5.3 Model

The detection strategies described in Section 4.4 depend on a classification model M that can be trained to
classify audio frames. In our experiments, we use a state-of-the-art model for singing activity detection, as
also used in Chapter 3. This system is a VGGNet-inspired CNN applied to log-mel spectrograms patches
(of length 1.64 s) with a single sigmoid output. The network is trained to predict singing activity for the
center frame of the input patch. For details on the architecture and the specific reimplementation used, we
refer to Section 3.3. We only slightly modify this system by increasing the number of sigmoid outputs at
the final layer depending on the number of classes we wish to predict (for example, the network used in
Strategy B has |C1 | = 6 outputs, while the network for Strategy D𝛼,𝛽 has |C| = 9). For Strategy D𝛼,𝛽 , we
use the additional losses described in Section 4.4. In our experiments we set 𝛼 = 𝛽 = 0.1. We determined
these values empirically such that all terms in L have a similar magnitude. As some classes in our dataset
occur less frequently than others, we resample the training set (with replacement) such that each class
occurs the same number of times. For post-processing, we follow Chapter 3 by applying a median filter of
length 1.4 seconds and then downsampling the predictions to a frame rate of 5 Hz.

4.5.4 Results

Figures 4.3 and 4.4 show results for the four detection strategies on our test set. The results for Strategy A
demonstrate that, using models trained independently per hierarchy level, one can achieve high evaluation
scores for the upper two levels (𝐹V = 0.94, 𝐹M = 𝐹F = 0.93) and lower results for the finest level (e. g.,
𝐹M1 = 0.40 or 𝐹M3 = 0.77). Bottom-up consistency is high (𝛾↑𝑐 = 0.99 for all 𝑐), even though the strategy
does not enforce this. Therefore, models at higher levels can identify all frames that are predicted as

12 Many works on hierarchical classification use evaluation measures that aggregate across classes (see [100] for an overview).
In contrast, we use class-wise measures to analyze the behavior of our systems with regard to the specific musical challenges
associated with different genders and voice-types.
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V
𝑃 = 0.93, 𝑅 = 0.96, 𝐹 = 0.94
𝛾 = 0.95, 𝛾↓ = 0.96, 𝛾↑ = 0.99

M
𝑃 = 0.93, 𝑅 = 0.93, 𝐹 = 0.93
𝛾 = 0.80, 𝛾↓ = 0.81, 𝛾↑ = 0.99

M1
𝐹 = 0.40

M2
𝐹 = 0.61

M3
𝐹 = 0.77

F
𝑃 = 0.93, 𝑅 = 0.93, 𝐹 = 0.93
𝛾 = 0.74, 𝛾↓ = 0.74, 𝛾↑ = 0.99

F1
𝐹 = 0.52

F2
𝐹 = 0.46

F3
𝐹 = 0.66

(A: Independent)

V
𝑃 = 0.96, 𝑅 = 0.76, 𝐹 = 0.85
𝛾 = 1.00, 𝛾↓ = 1.00, 𝛾↑ = 1.00

M
𝑃 = 0.95, 𝑅 = 0.77, 𝐹 = 0.85
𝛾 = 1.00, 𝛾↓ = 1.00, 𝛾↑ = 1.00

M1
𝐹 = 0.40

M2
𝐹 = 0.61

M3
𝐹 = 0.77

F
𝑃 = 0.95, 𝑅 = 0.72, 𝐹 = 0.82
𝛾 = 1.00, 𝛾↓ = 1.00, 𝛾↑ = 1.00

F1
𝐹 = 0.52

F2
𝐹 = 0.46

F3
𝐹 = 0.66

(B: Bottom-Up)

Figure 4.3: Results for our detection strategies on the full test set. Subscripts (such as in 𝑃M2) are omitted for readability. See
also Figure 4.4.

active at lower levels. The opposite does not hold, as evident in the low top-down consistency values. For
example, 𝛾↓F = 0.74 implies that some frames for which female singing is being predicted at level ℎ = 2
were misclassified as nonactive or as a male voice type at level ℎ = 1.

Strategy B involves the same model for level ℎ = 1 as Strategy A, but results for higher levels are obtained
through bottom-up aggregation. As such, no inconsistencies arise for Strategy B, but evaluation results are
much worse on higher levels (e. g., 𝐹V = 0.85 as opposed to 𝐹V = 0.94 for Strategy A) owing to frames
incorrectly classified as non-singing (see e. g. 𝑅V = 0.76).

For Strategy C, we observe the same F-measures as for Strategy A at levels ℎ = 3 (by design) and ℎ = 2.
In addition, predictions are mostly top-down consistent, even though the strategy does not enforce this. On
the finest level, there are large improvements for some classes (e. g., 𝐹F3 = 0.74 as opposed to 𝐹F3 = 0.66
for strategies A and B) but also degradations for some results (e. g., 𝐹F1 = 0.47 as opposed to 𝐹F1 = 0.52
for strategies A and B).

Employing the joint classification strategy without additional loss terms D0,0, we obtain less accurate
predictions for most of the classes on the lowest level (e. g., 𝐹F3 = 0.58 as opposed to 𝐹F3 = 0.66 for
strategies A and B) and also a large amount of top-down inconsistencies (e. g., 𝛾↓F = 0.49). We are able to
improve this using the additional loss terms of Strategy D0.1,0.1. In particular, our proposed loss term L↓
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V
𝑃 = 0.93, 𝑅 = 0.96, 𝐹 = 0.94
𝛾 = 1.00, 𝛾↓ = 1.00, 𝛾↑ = 1.00
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(C: Top-Down)
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𝐹 = 0.45
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𝐹 = 0.53
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𝐹 = 0.73

F
𝑃 = 0.94, 𝑅 = 0.92, 𝐹 = 0.93
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M
𝑃 = 0.94, 𝑅 = 0.91, 𝐹 = 0.93
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𝐹 = 0.63

M3
𝐹 = 0.78
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F2
𝐹 = 0.39

F3
𝐹 = 0.75

(D0.1,0.1: Joint)

Figure 4.4: Results for our detection strategies on the full test set. See also Figure 4.3.

leads to high top-down consistency scores (e. g., 𝛾↓F = 0.94 compared to 𝛾↓F = 0.49 for D0,0 and 𝛾↓F = 0.74
for Strategy A). Strategy D0.1,0.1 also improves F-measures for some classes on the finest level (notably
𝐹F3 = 0.75). As another advantage, unlike strategies A and C, this joint strategy requires only a single
model.

From a musical point of view, our results indicate that singing activity and singer gender can be identified
reliably (as evident by the high evaluation results for these classes across all strategies, except Strategy
B). This is particularly important for Strategy C, where mistakes made at higher level are propagated
downwards. Thus, Strategy C may perform worse in settings where classes at higher levels are more
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difficult to separate. Our evaluation results also indicate that, in contrast to higher hierarchy levels,
differentiating between different voice types is much more challenging. In addition, by looking more
closely at the results for Strategy D0.1,0.1, we found that most false negative predictions for a certain voice
type co-occur with a false positive prediction for another voice type from the same gender. Confusions
often occur between baritone and bass as well as between soprano and other female voice types. For
example, around half of all frames annotated as mezzo are incorrectly predicted to contain soprano instead
of mezzo singing.

4.6 Conclusion

In this chapter, we have formalized a hierarchical extension of singing voice detection towards singer
gender and voice type. We evaluated four possible strategies for solving our task in the context of a large
dataset of opera recordings. We compared these strategies with regard to evaluation scores and consistency
of predictions. In particular, we proposed a novel loss term for promoting consistent predictions across
hierarchy levels. We showed that a joint classification strategy with our additional loss achieves high
results and consistency. The singing scenario considered in this chapter indicates the potential of our
hierarchical modeling and loss term. These may also be helpful in other use cases. For example, in the
following Chapter 5, we focus on the more complex class hierarchies encountered in musical instrument
recognition.

46



5 Hierarchical Approaches for Instrument Activity
Detection

This chapter is based on [103]. The first author Michael Krause is the main
contributor to this article. In collaboration with his supervisor Meinard
Müller, he devised the ideas, developed the formalization, and wrote the
paper. Furthermore, Michael Krause collected the dataset, implemented all
approaches and conducted the experiments.

Instrument activity detection is a fundamental task in MIR, serving as a basis for many applications,
such as music recommendation, music tagging, or remixing. Most published works on this task cover
popular music and music for smaller ensembles. In this chapter, we embrace orchestral and opera music
recordings as a rarely considered scenario for automated instrument activity detection. Orchestral music is
particularly challenging since it consists of intricate polyphonic and polytimbral sound mixtures where
multiple instruments are playing simultaneously. Orchestral instruments can naturally be arranged in
hierarchical taxonomies according to instrument families. Here, we extend our investigation from the
previous Chapter 4 towards this much larger hierarchy of musical instruments. As the main contribution of
this chapter, we show that a hierarchical classification approach can be used to detect instrument activity in
our scenario, even if only few fine-grained, instrument-level annotations are available. We further consider
additional loss terms for improving the hierarchical consistency of predictions. For our experiments,
we collect a dataset containing 14 hours of orchestral music recordings with aligned instrument activity
annotations. Finally, we perform an analysis of the behavior of our proposed approach with regard to
potential confounding errors.

5.1 Introduction

Instrument recognition is a long-studied task in the field of MIR, which aims at identifying the musical
instruments that are playing in an audio excerpt. It is a difficult task, since many instruments produce
sounds in overlapping pitch ranges and may exhibit similar timbral characteristics, especially those from
the same instrument family. Furthermore, in real music recordings, multiple instruments may be active
simultaneously (also called polyphonic instrument recognition). The task is closely related to instrument
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Figure 5.1: Class hierarchy as used in this chapter. The number of hierarchy levels is 𝐻 = 3. Level ℎ = 2 corresponds to
instrument families, while level ℎ = 1 corresponds to fine-grained instrument classes.

activity detection (IAD), where the aim is to identify the active instruments in a frame-wise fashion, over
the course of an entire music recording. IAD can be useful to inform music recommendation or auto
tagging systems, as well as aid in music editing and remixing.

In this chapter, we are concerned with IAD in complex orchestral and opera recordings. Orchestral music
in general constitutes a very challenging scenario for instrument detection, as many individual instruments
are playing simultaneously, creating a highly complex sound mixture. In addition to the high degree of
polyphony, orchestral music is also polytimbral, i. e., sounds from various instrument groups merge to
create a single texture of sound. To approach this scenario, we utilize the hierarchical relationships that
exist between orchestral instruments and instrument families, as illustrated in Figure 5.1. In this context,
we show that hierarchical classification improves results of a deep neural network for IAD, especially
when fine-grained, instrument-level annotations are unavailable, but coarse, family-level annotations
exist. Moreover, we investigate the consistency of predictions across hierarchy levels and demonstrate
how additional training losses (as introduced in Chapter 4) can promote consistent predictions, while
preserving detection quality.

In contrast to popular music settings, public datasets with instrument activity annotations for orchestral or
opera music rarely exist. For our experiments, we thus collect a dataset based on a combination of existing
multi-track datasets and semi-automatically annotated commercial recordings. In total, our dataset consists
of 14 hours of real-life orchestral recordings and covers 18 different classes. We make the instruments
annotations for these recordings publicly available.13

A common pitfall of music classification systems is over-reliance on confounding factors in training
and test data, which may lead to poor generalization ability. A system for genre classification may, for
example, make decisions based on inaudible artifacts rather than musical content [196]. Such confounding
effects may also arise for our IAD system by, e. g., affecting predictions for classes that are often active
simultaneously (such as brass and woodwinds). To explore the impact of such effects on our system, we
perform an analysis of model predictions with regard to classes that composers often use in conjunction.

13 https://www.audiolabs-erlangen.de/resources/MIR/2023-TASLP-HierarchicalInstrumentClass
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5.2. Related Work

We now summarize the main contributions of this chapter. First, we introduce a challenging new setting
for IAD, for which no standard datasets exist. Second, we show how one can improve detection results
and reduce the need for instrument-level annotations by exploiting the hierarchical class structure of our
scenario. Third, we show how the consistency of predictions made by our model can be improved through
additional loss terms. Fourth, we perform an analysis of our model’s behavior and uncover confounding
effects for certain instrument classes.

In the previous chapter Chapter 4, we explored hierarchical classification for detecting singing activity,
singer gender and voice type in orchestral recordings. Here, we go beyond Chapter 4 by considering an
instrument detection scenario, involving a different and larger class hierarchy compared to Chapter 4.
Furthermore, we present additional technical details, use different datasets and models, and provide
extensive additional experiments and analyses.

The remainder of the chapter is organized as follows: Section 5.2 discusses related work on instrument
recognition, hierarchical classification, and analysis of orchestra recordings. In Section 5.3, we formalize
our problem statement, outline our main classification approach, and describe evaluation measures used.
Sections 5.4 and 5.5 cover our dataset and model architecture, respectively. Section 5.6 contains the main
experimental results. In Section 5.7, we describe and evaluate losses for improving the consistency of
predictions. In Section 5.8, we analyze our model with regard to confounding effects among instrument
classes. Finally, Section 5.9 concludes the chapter with an outlook on possible future work.

5.2 Related Work

This chapter draws upon related work from several fields, including the vast field of music instrument
classification. In our review of these fields, we focus on key references relevant to the present chapter and
relate our contributions to the state of the art.

5.2.1 Instrument Detection

Early work on automatic musical instrument classification dealt with recordings of isolated note events and
used classical machine learning techniques [49, 63, 206]. Other works considered real music recordings,
but restricted themselves to a single instrument playing [50, 91, 157], a scenario called monophonic
instrument recognition. In contrast, polyphonic instrument recognition attempts to recognize instruments
within mixtures where several instruments are playing simultaneously. This has been approached with
classical machine learning techniques [45, 57, 70, 78, 95, 125, 157] and, more recently, with deep learning
[66, 67, 71, 84, 85, 101].

Works on instrument recognition can also be categorized according to whether only the predominant
instrument in a mixture (e. g., [57, 71]) or all active instruments (e. g., [84]) are to be recognized.
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Furthermore, some works classify activity for an entire audio excerpt lasting several seconds (e. g.,
[57, 66, 67, 71, 78, 82, 101]) whereas more fine-grained approaches yield predictions on a frame-level
(e. g., [84, 85]). Such frame-level outputs can be used to obtain instrument predictions for every time
step in a music recording—also called instrument activity detection (IAD). The scenario considered in
this chapter is polyphonic IAD and considers all instruments playing. In contrast to prior work on this
scenario, which usually examines popular music or works for small ensembles, we consider complex
orchestral and opera music.

5.2.2 Hierarchical Classification for Audio

Some previous works have used hierarchical class structures for classification of audio data. For example,
the authors in [34] propose a specialized network architecture for classifying bird calls, based on bird
taxonomies. They perform classification on an excerpt- and not on a frame-level. In [234], a network
for sound event detection is iteratively pretrained on successive hierarchy levels. Some papers [88, 243]
employ tree hierarchies for audio representation learning (but not for classification). These works also
usually do not take into account audio inputs where several classes may be active at the same time.

Fewer works use hierarchical structures for music audio classification. In [245], hierarchical classification
is used in the context of singing transcription. Essid et al. [50] use hierarchies for instrument classification,
but their scenario involves only synthetic audio data and their system does not yield predictions on a
frame-level (which are necessary for IAD). In a recent contribution, Zhong et al. [244] utilized hierarchical
techniques for polyphonic instrument classification on popular music. They propose two attention-based
approaches for learning bottom-up aggregation rules in a data-driven way and compare them to our
Strategy 𝐷𝛼,𝛽 proposed in Chapter 4. Their approaches and our strategy are shown to perform on par.

Hierarchical structures have also been exploited for other tasks in MIR, including musical instrument
separation [131]. Garcia et al. [58] use instrument hierarchies for few-shot detection, where the model
requires examples of the target class at test time (see also [218]). In contrast, we use a classification
approach with a fixed set of classes, since the instruments in orchestral recordings are known a-priori.
Nolasco and Stowell [149] employ instrument hierarchies for audio representation learning (not for
classification).

As mentioned in Section 4.2, incorporating hierarchical structures in machine classifiers has also been a
topic in the wider machine learning literature, see, e. g., [11, 28, 61, 189, 220]. These works typically
evaluate their proposed methods on small and artificial datasets. In contrast, we perform hierarchical
classification on a dataset of real orchestra and opera recordings.
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5.2.3 Orchestra and Opera in MIR

Only few works in MIR have focused on opera and orchestral music (see also Sections 3.2 and 4.2).
Among these are works on singing detection [39, 139], emotion identification [155], predominant melody
estimation [201], as well as source separation informed by multichannel recordings [140] or by score
information [72]. Taenzer et al. [200] performed instrument family classification on classical music
recordings, but they only considered monotimbral pieces (i. e., works for ensembles consisting of one
family only). To the best of our knowledge, there rarely is work in MIR on IAD in real-world, polyphonic
and polytimbral recordings of orchestra and opera.

5.3 Hierarchical Instrument Detection

In this chapter, we aim to utilize the hierarchical relationships among orchestral instruments. To this
end, we now formalize the hierarchical class model, classification approach, and evaluation measures
used throughout this chapter. In this section, we follow Chapter 4, where we introduced the concepts and
notation.

5.3.1 Hierarchical Class Model

As introduced in Section 4.3, we write C for the set of all classes in our detection problem and partition
these classes into hierarchy levels. In our setting, we consider 18 different classes, corresponding to the
nodes of the tree illustrated in Figure 5.1. We use 𝐻 = 3 hierarchy levels, with the lowest level ℎ = 1
corresponding to fine-grained instrument classes, level ℎ = 2 containing coarse instrument families, and
the highest level ℎ = 3 signifying any kind of instrument activity (as opposed to silence or noise). Thus,
C1 = {Fl, Ob, Cl, . . . },C2 = {WW, BR, . . . }, and C3 = {INST}. It should be noted that the hierarchy could
also be constructed in alternative ways. Our choice here is motivated by practical considerations, i. e.,
simplicity and the availability of sufficient data for each class 𝑐 ∈ C. Generally, constructing appropriate
instrument hierarchies can be a challenging problem, especially for electronic or non-standard instruments
[96, 129].

5.3.2 Classification Approach

To approach IAD using a deep network, we pose the problem as a frame-wise, multi-label classification
task. Thus, several instrument classes may be active simultaneously and we want to produce predictions for
every frame in a music recording. As in Section 4.3, we model both reference annotations and predictions
as families of subsets of frames. As a reminder: We write I for the set of all audio frames in our test
recordings. Now, our instrument annotations are given as families

(
IRef
𝑐

)
𝑐∈C of subsets IRef

𝑐 ⊆ I, with
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Figure 5.2: An illustration of (a) bottom-
up and (b) top-down inconsistencies.
Filled and empty circles correspond to
classes predicted as active or inactive,
respectively. Red circles indicate incon-
sistencies.

a) b)

IRef
𝑐 containing all frames where class 𝑐 ∈ C is active. Note that the sets IRef

𝑐 are generally not disjoint,
e. g., in cases where instruments are playing at the same time. Frames with silence or noise are not
contained in any IRef

𝑐 .

In a similar fashion, we model the estimates made by our IAD system as families of sets
(
IEst
𝑐

)
𝑐∈C. These

outputs are obtained from a deep network that takes an audio excerpt as input and yields predictions
for the center frame of that excerpt. These estimates are values in [0, 1] for every class 𝑐 ∈ C, which
are subsequently thresholded to obtain the sets IEst

𝑐 . Since this approach jointly considers all hierarchy
levels 1 ≤ ℎ ≤ 𝐻, we will refer to it as HC (hierarchical classification).14 More details on the network
architecture used are provided in Section 5.5.

5.3.3 Evaluation Measures

With our formulation above, we can define frame-wise precision, recall, and F-measure for each class
𝑐 ∈ C, see Equation (4.5). Note that the three measures may be overly optimistic if 𝑐 is a very common
class that is active in most frames (as is the case, e. g., for 𝑐 = INST). In this case, it is important to
additionally consider the specificity for class 𝑐, i. e., the recall of non-active frames, defined as

𝑆𝑐 =
| (I \ IRef

𝑐 ) ∩ (I \ IEst
𝑐 ) |

|I \ IRef
𝑐 |

, (5.1)

where \ denotes the set difference operator.

A classification approach that is aware of class hierarchies should not produce predictions that are
hierarchically inconsistent, as explained in Section 4.3. For example, a frame 𝑖 may be classified as
trumpet (Tpt), so 𝑖 ∈ IEst

Tpt, but at the same time may not be classified as brass (BR), so 𝑖 ∉ IEst
BR . We

will refer to this as a bottom-up inconsistency. Such an inconsistency makes the output of a detection
system difficult to interpret, since it is unclear whether the frame was erroneously classified as trumpet
or whether it does indeed contain brass, but the system failed to identify BR. Similarly, we may have a
frame 𝑖 ∈ IEst

BR that is classified as brass but at the same time is neither classified as horn nor trumpet,
thus 𝑖 ∉ IEst

Hn ∪ IEst
Tpt. We call this a top-down inconsistency. Figure 5.2 gives an illustration of these

inconsistencies. Ideally, a detection system produces no inconsistencies, making its output straightforward
to interpret. To capture different kinds of inconsistencies, we use the 𝛾 metrics introduced in Section 4.3.

14 This approach is called Strategy 𝐷0,0 in Chapter 4.
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Note that the consistency measures can trivially be maximized by setting, e. g., IEst
𝑐 = I or IEst

𝑐 = ∅ for
all 𝑐 ∈ C. However, obtaining good detection results (e. g., in terms of F-measure) while simultaneously
preserving consistency is non-trivial.

5.4 Orchestral Datasets

As mentioned in Section 5.2, orchestral and opera music are seldom explored in MIR. In particular, no
standard datasets for IAD on real orchestral recordings exist. The instrument classes commonly considered
in IAD datasets for popular music (e. g., [12], which contains guitar, drums, base etc.) do not usually
appear in orchestral music. We thus assembled our own datasets for training and evaluating our system,
based on existing datasets and our own annotation efforts.

For effectively training our deep learning system, we require a dataset of several hours length. For such a
size, manually annotating instrument activity for all 18 classes in our hierarchy would be prohibitively
expensive. We thus consider two ways of obtaining orchestral recordings with aligned instrument
annotations:

1. Use multi-track recordings of orchestral pieces, where activity annotations can easily be obtained
from the individual tracks.

2. Use music synchronization techniques to align a score representation to an audio recording of a
piece. Instrument activity in the recording can then be transferred from the aligned score.

A third possible option would be to use artificial recordings of pieces based on synthesized score
representations. Recently, Sarkar et al. [179] released a dataset of synthesized, multi-track recordings
of classical pieces. However, their dataset contains, for the most part, chamber music rather than full
orchestra pieces. Their work also demonstrates that synthesizing convincing renditions of classical music
is a challenging task in itself. Here, rather than creating artificial recordings of orchestral scores, we
instead collect multiple real recordings per score for synchronization (option 2).

5.4.1 Multi-Track Datasets

Due to the challenges of recording orchestra pieces in a multi-track fashion15, only a few such datasets have
been released. One of these is Phenicx Anechoic [140], which contains clean multi-track recordings of
four orchestral excerpts by different composers with note on- and offsets manually annotated for each track.
We derive instrument activity from these annotations. Böhm et al. [24] provide multi-track recordings for
three movements of Beethoven’s Symphony No. 8, resulting in the longest multi-track dataset we use. The

15 Orchestra musicians usually perform within the same room and in close proximity, making it very difficult to obtain clean
tracks without cross-talk coming from other instruments playing simultaneously.
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individual tracks are mostly free of cross-talk. We therefore use a simple energy thresholding procedure
on the tracks to obtain instrument activity annotations.

Since both datasets are annotated based on clean multi-track recordings, we expect the derived activity
labels for Phenicx and Beethoven Anechoic to be highly reliable. Nevertheless, there remains some
ambiguity in defining note on- and offsets, especially for strings and woodwind instruments [122].

Prätzlich et al. [166] provide multi-track audio for three numbers from Carl-Maria von Weber’s opera “Der
Freischütz”. However, due to their recording setup, the individual tracks incur a large amount of cross-talk
coming from other sources. We obtained annotations for this dataset using music synchronization, see
below.

5.4.2 Music Synchronization

Audio-to-score alignment techniques are used to temporally align a recorded music performance with the
corresponding musical score. Once an alignment is obtained, information about instruments or pitches
played can be transferred from the aligned score to the recorded performance. Here, we use audio-to-score
alignment to transfer instrument activity from a symbolic score to several recorded performances of a
piece. A popular dataset annotated in this fashion is MusicNet [203], which contains chamber rather than
orchestra pieces. Note that automatic audio-to-score alignments may introduce annotation errors. We thus
expect the resulting activity labels to be less reliable compared to those obtained from multi-track data.

Even though a large amount of MIDI files for classical music pieces can be found online, only few
correspond to full orchestral scores with separate MIDI tracks per instrument. The lack of available score-
data represents a big bottleneck for this approach to obtaining instrument annotations. For this work, we
manually encoded a score representation of the first act of Richard Wagner’s opera “Die Walküre” (requiring
several months of work for musically trained annotators). For some other musical works—namely, several
movements of Beethoven’s Symphony No. 3, Dvorak’s Symphony No. 9, and Tschaikowsky’s Violin
Concerto—we obtained clean orchestral scores from the Mutopia project.16 We choose these works
because they each contain many instruments from the hierarchy we employ. Furthermore, they belong
to the classical and romantic periods and are thus stylistically similar to the remaining pieces we use.
We then obtained six orchestral audio versions (i. e., performances, recordings) of these pieces from
commercial CD releases and created instrument activity annotations using a state-of-the-art score-to-audio
synchronization pipeline [147, 167]. Care had to be taken to verify that there are no structural differences
between score and recorded versions, which would corrupt the alignment results. Thus, the annotation
process can be considered as a semi-automatic approach, where one must expect alignment errors in the
order of 0.2 s [222]. Such errors need to be kept in mind when interpreting evaluation results.

16 https://www.mutopiaproject.org/
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5.4. Orchestral Datasets

Subset/Composer Work # Versions Dur. (min)

Ours
Wagner Die Walküre, Act 1 6 389
Beethoven Symphony No. 3, Mvmt. 1 1 17

Mvmt. 2 5 72
Mvmt. 3 5 29
Mvmt. 4 5 57

Dvorak Symphony No. 9, Mvmt. 1 5 44
Mvmt. 2 5 56
Mvmt. 4 1 11

Tschaikowsky Violin Concerto, Mvmt. 1 5 91
Mvmt. 2 5 32
Mvmt. 3 1 10

Freischütz Digital [166]
Weber Der Freischütz, No. 6 1 5

No. 8 1 9
No. 9 1 7

Phenicx Anechoic [140]
Mozart Aria from Don Giovanni 1 4
Beethoven Symphony No. 7, Mvmt. 1 (Excerpt) 1 3
Bruckner Symphony No. 8, Mvmt. 2 (Excerpt) 1 1
Mahler Symphony No. 1, Mvmt. 4 (Excerpt) 1 2

Beethoven Anechoic [24]
Beethoven Symphony No. 8, Mvmt. 1 1 8

Mvmt. 2 1 4
Mvmt. 4 1 7

858

Table 5.1: Recordings of orchestral and opera works used in this chapter. For some pieces, multiple versions are available. The
last column gives the total duration of all versions for a piece. Freischütz Digital, Phenicx Anechoic, and Beethoven Anechoic
are existing multi-track datasets.

5.4.3 Dataset Overview and Split

An overview of all recordings used in this chapter is given in Table 5.1. The multi-track datasets we use
each contain one recording per piece and contribute a total duration of around 50 minutes of orchestral
music. For the pieces annotated via music synchronization, we have several versions per piece. In total,
our dataset contains roughly 14 hours of orchestral music, making it amenable to deep learning. We make
all instrument activity annotations publicly available on our accompanying website.17

Note that not all instrument classes are present in every recording and that there is a large imbalance
among activity of different classes. We define the fraction 𝛿𝑐 of frames where class 𝑐 ∈ C is active as

𝛿𝑐 =
|IRef
𝑐 |

|IRef |
∈ [0, 1] . (5.2)

17 Link provided in Section 5.1.
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Figure 5.3: Activity (𝛿𝑐 , upper matrix)
and multi-labeledness (𝜆𝑐 , lower matrix)
of instrument classes for subsets of our
dataset, relative to the total length of
recordings in that subset.
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t
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P
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Walküre
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Tschaikowsky

Freischütz
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Beethoven 8

.35 .12 .22 .25 .28 .37 .32 .05 .04 .42 .15 .27 .53 .44 .47 .58 .35

.60 .38 .48 .44 .48 .47 .46 .16 .17 .00 .00 .00 .62 .78 .69 .70 .59

.66 .36 .45 .44 .37 .31 .27 .16 .12 .00 .00 .00 .65 .75 .71 .69 .51

.34 .17 .18 .28 .26 .21 .21 .06 .05 .00 .00 .00 .35 .63 .50 .47 .37

.46 .20 .05 .34 .30 .25 .25 .00 .00 .63 .56 .21 .71 .72 .70 .50 .54
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λc:

Additionally, for any ℎ < 𝐻 and 𝑐 ∈ Cℎ, we denote the fraction of items where both 𝑐 and some other
class 𝑐′ ∈ Cℎ of the same hierarchy level are active by

𝜆𝑐 =
1

|IRef |
��∪𝑐′∈Cℎ\{𝑐}IRef

𝑐 ∩ IRef
𝑐′

�� . (5.3)

Note that 0 ≤ 𝜆𝑐 ≤ 𝛿𝑐. Intuitively, 𝜆𝑐 captures the amount of “multi-labeledness” for class 𝑐. Figure 5.3
shows the values of 𝛿𝑐 and 𝜆𝑐 for each class 𝑐 in the different subsets of our dataset. We can observe that
strings and woodwind instruments are the most common classes. Only Die Walküre and Freischütz Digital
contain singing. For most classes and pieces, there is a large amount of joint activity among classes on the
same hierarchy level, indicated by 𝜆𝑐 being close to 𝛿𝑐. A notable exception is Vn in the Tschaikowsky
recordings (𝛿𝑐 = 0.92, 𝜆𝑐 = 0.35), due to the many solo parts of the violin in this concerto.

To train and evaluate our IAD system, we split our dataset into train and test recordings. We put different
movements into train and test in order to investigate whether our models are capable of generalizing to new
musical content or whether they overfit to specific compositions (see also [224]). We also choose different
versions in train and test to control for varying recording characteristics and aspects of interpretation
(reducing the impact of the so-called album-effect [53]). Among the multi-track datasets, we select
No. 6 of Freischütz Digital, the second movement of Beethoven’s Symphony No. 8, and all recordings
in Phenicx Anechoic for our test set. From the remaining pieces, we choose the first movement of
Beethoven’s Symphony No. 3, the fourth movement of Dvorak’s Symphony No. 9 and the third movement
of Tschaikowsky’s Violin Concerto for testing. Since we do not have multiple opera works that could be
distributed into train and test sets, we choose an excerpt of the Wagner opera act (measures 697 to 955,
corresponding to around twelve minutes of music), omit this excerpt during training, and use it for testing.
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Table 5.2: Network architecture used for
our IAD system.

Layer (Kernel size), (Strides) Output Shape Parameters

Input (201, 252, 5)

Conv2D (15, 15), (1, 1) (201, 252, 64) 72 000
Batch normalization (201, 252, 64) 256
Conv2D (1, 3), (1, 3) (201, 84, 64) 12 288
Batch normalization (201, 84, 64) 256

Conv2D (3, 3), (1, 1) (199, 82, 64) 36 864
Batch normalization (199, 82, 64) 256
Conv2D (3, 3), (1, 1) (197, 80, 64) 36 864
Batch normalization (197, 80, 64) 256
MaxPool2D (3, 3), (3, 3) (65, 26, 64)

Conv2D (3, 3), (1, 1) (63, 24, 128) 73 728
Batch normalization (63, 24, 128) 512
Conv2D (3, 3), (1, 1) (61, 22, 128) 147 456
Batch normalization (61, 22, 128) 512
MaxPool2D (3, 3), (3, 3) (20, 7, 128)

Conv2D (3, 3), (1, 1) (18, 5, 256) 294 912
Batch normalization (18, 5, 256) 1024
Conv2D (3, 3), (1, 1) (16, 3, 256) 589 824
Batch normalization (16, 3, 256) 1024
MaxPool2D (3, 3), (3, 3) (5, 1, 256)

Conv2D (5, 1), (1, 1) (1, 1, 512) 655 360
Batch normalization (1, 1, 512) 2048
Squeeze (512)

Dropout 0.5 (512)
Dense (256) 131 328
Batch normalization (256) 1024
Dropout 0.5 (256)
Dense (128) 32 896
Batch normalization (128) 512
Dropout 0.5 (128)
Dense (18) 2322

Output: Sigmoid (18)

In all cases, we choose one version for testing and use the remaining five versions for training.18 In other
words, we follow the neither split described in Section 3.4.

5.5 Model Architecture

In this section, we give details on the architecture of our model for hierarchical classification. Note that
the main technical focus of our work is on hierarchical structures and consistency losses rather than a
particular architecture and alternative architectures (e. g., based on ResNets [75]) could also be used here.
We employ a CNN inspired by standard VGG-like architectures [190]. The architecture is illustrated in

18 For the act from Die Walküre, we choose P-Ne, P-Le, P-Bö, P-Ke, and P-Bo for training as well as P-Ka for testing, see
also Figure 3.2.
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Table 5.2. The network takes a HCQT of an audio excerpt as input and outputs a vector of 18 values in
[0, 1], corresponding to activity of the 18 classes in C predicted for the center frame of the input excerpt.

The HCQT input consists of 201 frames (roughly 4.7 seconds), computed using a hop-size of 512 on
recordings sampled at 22 050 Hz (i. e., frame rate of 43 Hz). The constant-Q spectrum ranges from
C1 to B7 with three bins per pitch, meaning 252 bins in total. For the harmonic CQT, five harmonic
representations (including one subharmonic) are stacked in channel dimension. The final input tensor has
a size of (201, 252, 5).

The network consists of three stages, separated by doubled lines in the table. Inspired by [164, 226], we
first process each input tensor with a large pre-filtering kernel of size (15, 15) and strides (1, 1), followed
by a kernel of size and stride (1, 3), i. e., the kernel is applied in pitch direction only. The resulting
intermediate feature map has a pitch axis with a single bin per pitch. The second stage of our network
applies three conv-conv-pool processing blocks, as in [182, 190]. In the final stage, we use a convolutional
filter of size (5, 1) and stride (1, 1) to aggregate temporal context (as in [226]) and apply several dense
layers to obtain the final output. We further use batch normalization after each learnable layer and apply
dropout before dense layers. All layers are followed by a leaky ReLU activation, except for the final dense
layer, which is followed by a sigmoid.

We train our network by minimizing a binary cross-entropy loss for a maximum of 1000 epochs (with
320 batches per epoch, each containing 32 input excerpts) using the Adam optimizer with a learning rate
of 0.002. We additionally use early stopping by terminating training after the validation loss (evaluated
on a randomly selected subset of the training set) has not decreased for 15 epochs. We further half the
learning rate after 10 epochs without improvement of the validation loss. We use label smoothing inside
the cross-entropy loss as regularization (thus, 0-labels are replaced with 0.02 and 1-labels are replaced by
0.98).

Each of the 252 bins in the input excerpts is individually normalized to be zero-mean and unit-variance
(for this, mean and standard deviation per bin are estimated on the training set). As is common practice
[2, 156, 181, 200], we augment training excerpts by randomly applying time warping, pitch shifting,
masking of time-frequency bins, adding random noise, or applying random equalization. Training the
model on our dataset takes around 14 hours on an RTX 2080 Ti

At test time, we evaluate our network for every frame in the test recordings, apply a median filter of length
0.5 seconds on the sequence of predictions for each class, and then downsample to a feature rate of 5 Hz.
This is common practice in musical activity detection systems (e. g., [116, 181]) and makes our evaluation
results more robust to annotation errors introduced by music synchronization (see Section 5.4). We finally
binarize these predictions using a threshold of 0.5. Inference requires 3.5 seconds per minute of input
audio (given pre-computed HCQT representations).
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Table 5.3: Results for our HC (hierarchical
classification) approach to IAD on our
orchestral datasets.

P R F S 𝛾↓ 𝛾↑ 𝛿

INST 0.99 1.00 0.99 0.67 0.99 1.00 0.96
WW 0.86 0.87 0.87 0.80 0.92 1.00 0.59
Fl 0.76 0.62 0.69 0.90 0.35
Ob 0.75 0.73 0.74 0.85 0.38
Cl 0.74 0.70 0.72 0.82 0.42
Bn 0.74 0.76 0.75 0.80 0.42
BR 0.79 0.70 0.74 0.85 0.94 0.99 0.45
Hn 0.75 0.68 0.71 0.84 0.41
Tpt 0.76 0.50 0.60 0.97 0.16
TMP 0.79 0.57 0.66 0.98 0.11
VOC 0.93 0.87 0.90 0.99 0.96 0.99 0.12
Fe 0.96 0.81 0.88 1.00 0.06
Ma 0.90 0.87 0.88 0.99 0.06
ST 0.95 0.95 0.95 0.65 0.99 1.00 0.87
Vn 0.90 0.93 0.91 0.66 0.77
Va 0.81 0.88 0.84 0.64 0.64
Vc 0.85 0.88 0.87 0.74 0.64
Db 0.86 0.87 0.87 0.83 0.56

Avg. (C) 0.84 0.79 0.81 0.83 0.96 1.00
Avg. (C2) 0.86 0.79 0.82 0.85
Avg. (C1) 0.82 0.77 0.79 0.84

5.6 Main Results

In this section, we present the main evaluation results for our IAD system and, additionally, demonstrate
that hierarchy information reduces the need for fine-grained labels during training.

We begin with our main experiment. We train the model described in Section 5.5 on the training subset of
our dataset and subsequently evaluate it on the test set (according to the split described in Section 5.4).
Recall that we choose a joint classification approach HC (short for hierarchical classification), i. e., the
network outputs predictions for all 18 classes in C, see also Section 5.3.

Evaluation results on the test set are shown in Table 5.3. Columns contain different metrics, computed
over the entire test set (note that the consistency metrics 𝛾 are only defined for classes in Cℎ for ℎ > 1).
Rows correspond to different classes in C, and the last three rows show averages over classes. In particular,
we report averages for families (C2) and instruments (C1).19

Overall, evaluation results are moderately high with an average F-measure of 0.81 and specificity of
0.83. For comparison, Hung and Yang [84] achieve an average F-measure of 0.89 for IAD on recordings
of small classical ensembles with seven different instrument classes. However, our results vary across
classes. We can observe that classifying instrument families works better on average (𝐹 = 0.82) than
classifying fine-grained classes (𝐹 = 0.79). For example, for woodwinds (WW), the family F-measure of
0.87 is much higher than the detection results obtained for the individual woodwind instruments (e. g., for

19 These are macro averages, i. e., computed as the arithmetic mean of the results for the individual classes. As such, both
common and uncommon classes contribute equally to these averages.
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Figure 5.4: Experiment setup for reduc-
ing the amount of instrument-level labels
available for training. Boxes correspond
to training items and circles indicate class
annotations. Crossed-out circles corre-
spond to missing annotations. For the FC
(flat classification) approach, we can only
use training items for which fine-grained
labels are given. For HC (hierarchical
classification), we can utilize higher-level
information even if instrument labels are
unavailable.

FC

HC

Item 1 Item 2

Item 3 Item 4

Item 1 Item 2

Item 3 Item 4

clarinets: 𝐹CL = 0.72). Some very common classes yield high F-measures, but low specificity (e. g., for
strings: 𝛿ST = 0.87, 𝐹ST = 0.95, and 𝑆ST = 0.65), indicating that our system produces many false positive
predictions for these classes. In Section 5.8, we will conduct some additional analyses to better understand
these detection results with regard to possible confounding effects.

For singing activity (VOC), we obtain a family F-measure of 0.90 and the difference to the results for
individual vocal classes female (Fe) and male (Ma, for both: 𝐹 = 0.88) is small. For reference, one
obtains accuracies of around 0.91 for singing voice detection on popular music [181, 182]. With regards
to consistency, 𝛾↑ is always high. Therefore, predictions on a fine-grained class are almost always
accompanied by a prediction for the parent class. However, 𝛾↓ is lower for some classes such as WW
(𝛾↓WW = 0.92). Thus, for about eight percent of frames where the woodwind family is predicted as active,
neither of the woodwind instruments is identified. In Section 5.7, we will consider loss terms for improving
these consistency issues.

To demonstrate the impact of our hierarchical classification approach HC, we now analyze whether utilizing
the instrument hierarchy during training can reduce the amount of fine-grained labels required. To this
end, we compare HC with a flat classification baseline FC. There, our model is trained to only produce
predictions for classes in C1 (i. e., instrument-level). At test time, we obtain predictions for classes in
C \ C1 by aggregating predictions from lower levels in a bottom-up fashion.20 For example, VOC is
predicted if and only if the model has classified the input as Fe or Ma. By construction, the predictions
obtained in this way are always consistent, so 𝛾𝑐 = 𝛾↑𝑐 = 𝛾

↓
𝑐 = 1 for all classes 𝑐. The FC baseline allows

us to determine the detection quality that can be achieved without informing the model about the class
hierarchy.

20 This baseline is referred to as Strategy 𝐵 in Chapter 4. Note that we cannot obtain predictions for timpani (TMP) using this
baseline and thus omit TMP from consideration in the following discussion.
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Figure 5.5: Results for reducing the
amount of instrument-level (i. e., C1) la-
bels available for training. Average F-
measures are plotted separately for instru-
ment classes (lower plot) and higher-level
classes (C \ C1, upper plot). Lines corre-
spond to hierarchical classification (HC)
and flat classification (FC), respectively.
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We now reduce the amount of fine-grained instrument labels that are available during training. For FC
(flat classification baseline), we do so by reducing the size of the training set, since this approach does
not utilize class labels at higher levels for training. For HC (hierarchical classification), we disable the
cross-entropy loss associated with classes in C1 on a portion of the training items, but we still use the
instrument family and activity labels for these items.21 This experiment setup is illustrated in Figure 5.4.

Figure 5.5 shows the results of this experiment. The upper plot shows results for higher-level classes
(families and instrument activity), whilst the lower plot contains results for fine-grained classes. When
utilizing all fine-grained labels of the training dataset, we observe almost identical average F-measures for
C1 with both FC and HC (lower plot, leftmost point). For C \ C1 (upper plot), HC yields slightly higher
average F-measures at 0.89 (compared to 𝐹 = 0.87 for FC). When reducing the amount of C1 labels used,
HC outperforms FC on both fine-grained and higher-level classes. For example, at 10% of labels used,
we obtain an average F-measure of 0.84 on C \ C1 for FC, which drops to 𝐹 = 0.60 for 0.1% of labels.
Meanwhile, the results for HC on C \ C1 stay roughly constant at around 𝐹 = 0.88. HC also yields higher
F-measures for C1, with 𝐹 = 0.76 at 1% of labels used as opposed to 𝐹 = 0.55 for FC.

We have seen that, by utilizing higher-level structure when fine-grained labels are scarce, our hierarchical
classification approach HC can still yield good results, even for small amounts of instrument-level labels.
This opens up the possibility of incorporating partially labeled data for training, where the instrument

21 Disabling the cross-entropy loss for learning from partial labels was suggested in [44]. Gururani and Lerch [66] used this
technique in the context of polyphonic instrument classification. They did not consider hierarchical information.

61



Chapter 5. Hierarchical Approaches for Instrument Activity Detection

Table 5.4: Results for the HC𝛼,𝛽 strategy
that includes hierarchy information and
consistency losses during training. Here,
we set 𝛼 = 𝛽 = 10.

P R F S 𝛾↓ 𝛾↑ 𝛿

INST 0.99 0.99 0.99 0.73 1.00 1.00 0.96
WW 0.88 0.85 0.87 0.83 0.98 0.99 0.59
Fl 0.76 0.65 0.70 0.89 0.35
Ob 0.76 0.74 0.75 0.86 0.38
Cl 0.73 0.77 0.75 0.79 0.42
Bn 0.73 0.82 0.77 0.78 0.42
BR 0.79 0.70 0.74 0.85 1.00 1.00 0.45
Hn 0.73 0.70 0.71 0.82 0.41
Tpt 0.80 0.54 0.65 0.97 0.16
TMP 0.78 0.59 0.67 0.98 0.11
VOC 0.93 0.87 0.90 0.99 1.00 0.99 0.12
Fe 0.93 0.83 0.88 1.00 0.06
Ma 0.90 0.88 0.89 0.99 0.06
ST 0.94 0.96 0.95 0.60 1.00 1.00 0.87
Vn 0.88 0.95 0.91 0.58 0.77
Va 0.81 0.88 0.84 0.63 0.64
Vc 0.85 0.91 0.88 0.71 0.64
Db 0.86 0.87 0.87 0.82 0.56

Avg. (C) 0.84 0.81 0.82 0.82 0.99 1.00
Avg. (C2) 0.87 0.79 0.83 0.85
Avg. (C1) 0.81 0.80 0.80 0.82

family is known, but fine-grained labels are unavailable (e. g., monotimbral recordings of brass or string
ensembles).

5.7 Consistency Losses

As discussed in Section 5.6, our hierarchical IAD approach HC outperforms the flat classification baseline
FC in terms of F-measures. However, the predictions of FC are always consistent, making the output of
that system easier to understand compared to HC, which may produce inconsistent outputs. In this section,
we will investigate additional loss terms for HC that can address this shortcoming.

In the previous Chapter 4, we describe the L↑ loss term for improving bottom-up consistency and the L↓

loss for addressing top-down consistency of predictions. These losses are combined with the standard
cross entropy loss LBCE using weights 𝛼, 𝛽 ∈ R, yielding the final loss

L = LBCE + 𝛼L↓ + 𝛽L↑ (5.4)

for our model. We will denote the hierarchical classification approach trained with these additional losses
as HC𝛼,𝛽

Results for training with these additional consistency losses are shown in Table 5.4. Here, we set
𝛼 = 𝛽 = 10 (as in Chapter 4). With regard to the detection evaluation measures like F-measure and
specificity, we obtain similar results as in our previous experiments that did not employ consistency losses

62



5.7. Consistency Losses

0.6

0.7

0.8

0.9

1.0

C
la

ss
ifi

ca
ti

o
n

F

S

0 1 10 50 100

α

0.85

0.90

0.95

1.00

C
o

n
si

st
en

cy

0 1 10 50 100

β

0 1 10 50 100

α = β

γ

γ↓

γ↑

Figure 5.6: Results for different choices of 𝛼 (coefficient for the top-down loss L↓) and 𝛽 (coefficient for the bottom-up loss
L↑). The upper row shows classification results in terms of F-measure (F) and specificity (S). The lower row shows measures of
top-down (𝛾↓), bottom-up (𝛾↑) and overall consistency (𝛾). In the first column 𝛽 = 0, and in the second column 𝛼 = 0. Measures
are averaged over all classes.

(see in Table 5.3). For example, we get an average 𝐹 = 0.82 and 𝑆 = 0.82 for HC𝛼,𝛽 compared to 𝐹 = 0.81
and 𝑆 = 0.83 for HC. However, the top-down consistency scores 𝛾↓ have improved (e. g., 𝛾↓BR = 1.00 and
𝛾
↓
WW = 0.98 for HC𝛼,𝛽 compared to 𝛾↓BR = 0.94 and 𝛾↓WW = 0.92 for HC). Thus, the additional loss terms can

improve consistency while retaining the overall quality of results.

A more detailed analysis of the impact of the loss weights 𝛼 and 𝛽 is provided in Figure 5.6. Here, we
either use solely L↓ (by setting 𝛽 = 0 and increasing 𝛼, first column), use solely L↑ (setting 𝛼 = 0 and
increasing 𝛽, second column), or use both losses simultaneously (𝛼 = 𝛽, third column). The upper row
shows classification results in terms of average F-measure (F) and specificity (S), while the lower row
shows average consistency scores. As expected, by using solely L↓, we are able to improve 𝛾↓. However,
𝛾↑ decreases for large values of 𝛼. The opposite behavior can be observed for using only L↑. In both
cases, 𝛾 decreases while F-measure and specificity remain roughly constant. By utilizing both L↓ and L↑,
we are able to improve 𝛾. However, 𝐹 and 𝑆 are reduced for large values of 𝛼 = 𝛽. We conclude that both
L↓ and L↑ are required to increase consistency, while 𝛼 = 𝛽 should be chosen small enough in order not
to deteriorate detection results.

Overall, our results suggest that, while consistency is a necessary condition for interpretable system
outputs, it is not sufficient to achieve good classification results. Our losses can be used to induce more
consistent detection outputs for our model, but high consistency needs to be balanced with preserving
classification results.
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Chapter 5. Hierarchical Approaches for Instrument Activity Detection

Figure 5.7: Average probabilities out-
put by our model for brass depending
on the salience of woodwinds within the
orchestral mixture. Here we only consider
frames where no brass is active at all, i. e.,
the ideal probability output would be 0.
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5.8 Analysis of Confounding Factors

In this section, we aim at a deeper understanding of the behavior of our model. In particular, we analyze how
the detection of an instrument class is affected by the presence of other instruments playing simultaneously.
To this end, we systematically evaluate our model on audio inputs for which we can calculate the relative
salience of different classes within the overall mixture. In this way, we can reach conclusions about
confounding effects exploited by our model.

We begin with a representative example of an analysis result, shown in Figure 5.7. Technical details are
provided below. In this example, we are interested in the interactions between brass (BR) and woodwind (WW)
instruments. In orchestra music, brass and woodwinds are often active simultaneously. For this analysis,
we select frames for which no brass (BR) is active and then observe the predictions for BR depending on
the salience of woodwind (WW) instruments. The vertical axis shows average probabilities predicted by our
model for BR. The probabilities are averaged over all frames where woodwinds have a certain salience
within the orchestral mixture (horizontal axis). Here, salience is measured as a signal-to-noise ratio,
with woodwinds considered as signal and all other instrument sounds considered as noise. We observe
that the model outputs low probabilities of around 0.1 for BR if WW is inactive. However, these outputs
gradually increase as woodwinds become more salient in the input. We conclude that brass detection is
highly sensitive to woodwind instruments, even if no brass instrument is active in the mixture. This is a
confounding effect.

We can reach a number of similar conclusions by performing systematic analyses:

1. The model also exploits the presence of woodwind instruments for detecting brass if brass instruments
are present in the mixture.

2. Our model is biased towards predicting string activity, even when no strings are active in the input.
Thus, the model exploits the fact that strings are active in most frames of the recordings in our
dataset (see also Figure 5.3).
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5.8. Analysis of Confounding Factors

Figure 5.8: Average probabilities output
by our model for different instrument fam-
ilies (colored lines) as functions of the
signal-to-noise ratio for that family within
the orchestral mixture.
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3. Predictions for strings are not affected much by the presence of other instrument families.

4. Looking at the model behavior for woodwind instrument classes, we find that detection of flutes
is improved by the simultaneous activity of other woodwind instruments, similar to the behavior
observed for BR.

In the following, we provide details on how we obtained our conclusions. We utilize multi-track orchestral
datasets (see Section 5.4) that allow us to measure the signal-to-noise ratio (SNR) 22 for different
instruments and instrument families in the recordings. In practice, we only use the Phenicx and Beethoven
Anechoic datasets for this analysis, because the individual tracks in Freischütz Digital contain a lot of
interference from other sources.23 To compute the SNRs, we split both the individual track for class 𝑐 ∈ C
and the corresponding mixture into frames24, compute the signals’ power in each frame and finally obtain
the SNR on a decibel scale as

SNR𝑖𝑐 = 10 log10

(
𝑃𝑖𝑐

𝑃𝑖Mix

)
, (5.5)

where 𝑃𝑖𝑐 and 𝑃𝑖Mix correspond to the power in frame 𝑖 of the track for class 𝑐 and the full mixture,
respectively. We exclude frames without any instrument activity from our analysis, since their SNR values
are meaningless.

We now utilize SNR𝑖𝑐 to partition the frames in our test recordings by SNR and then analyze the outputs
of our model in these frames. We begin by analyzing the probabilities predicted by our model for
different instrument families, depending on the SNR for that family in the mixture. Figure 5.8 shows the
probabilities predicted by our model for an instrument family 𝑥 (vertical axis), averaged over all frames
𝑖 where 𝑥 has a certain SNR𝑖𝑐 (horizontal axis). Colored lines correspond to different families 𝑥. As

22 Here, “signal” refers to the sound produced by the instrument in question and “noise” refers to all other sounds playing
simultaneously, i. e., other instruments as well as non-musical noise.

23 In order to obtain more input mixtures for our analysis, we also expand our test dataset by creating additional mixtures from
the multi-track datasets, where we boost or reduce the contributions of different instruments.

24 We use a window size of 2048 and a hop size of 512 at a sample rate of 22 050 Hz, leading to a frame rate of 43 Hz.
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Chapter 5. Hierarchical Approaches for Instrument Activity Detection

Figure 5.9: Average probabilities for
strings depending on the signal-to-noise
ratio of other instrument families (col-
ored lines). Only frames where strings
are jointly active with another family (i. e.,
SNR𝑖ST ∈ [−5, 5]) are considered.
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one may expect, higher SNRs for an instrument family generally result in higher probabilities for that
family. Thus, our model is more confident about predicting an instrument family when that family is more
salient in the mixture. However, for BR, frames with SNR𝑖BR ∈ [15,∞] yield lower predictions, i. e., our
model is less confident about detecting brass when brass is the only family being active. Furthermore,
the average probability for ST never falls below 0.5, even if strings are not present in the mixture (i. e.,
SNR𝑖ST ∈ [−∞,−15]). In other words, our model is biased towards predicting string activity, exploiting
the fact that strings are very common in our dataset (see also Figure 5.3). Because of this, we obtain low
specificity for string classes in Table 5.3.

We now look at the interactions between different instrument families and investigate how the presence of
one family may influence predictions for other families. Figure 5.9 shows how probabilities predicted for
strings change based on the SNR of other instrument families in the mixture. Note that we only consider
frames here where strings are playing jointly with other instrument families (i. e., SNR𝑖ST ∈ [−5, 5]). We
observe that predicted probabilities change only little depending on the presence of BR. There is a slight
trend towards lower predictions when woodwinds are active, with the average probability dropping to 0.8
for SNR𝑖WW ∈ [5, 10]. Overall, Figure 5.9 demonstrates that predictions for strings are not affected much
by the presence of other families.

We repeat this analysis for brass probabilities in the upper row of Figure 5.10. In contrast to strings,
there is a large impact of other instrument families on predictions for BR. We observe that probabilities
for BR are higher when SNR𝑖WW increases. Probabilities are much lower at around 0.3 for frames 𝑖 with
SNR𝑖ST ∈ [5, 10]. Both observations suggest that our model exploits the presence of woodwind instruments
for brass detection. This is an undesirable confounding effect.

Analogously, we consider frames where no brass is active in the lower row of Figure 5.10. We observe
that predicted probabilities for BR are high if no strings are active and then gradually drop to around 0.1 if
only strings are active. Conversely, we get low probabilities for BR if WW is inactive but high predictions
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5.8. Analysis of Confounding Factors

Figure 5.10: Average probabilities for
brass depending on the signal-to-noise
ratio of other instrument families (colored
lines). In the upper row, we consider
frames where brass is jointly active with
other instruments. In the lower row, we
consider frames where no brass is active
at all.
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for high SNR𝑖WW. We conclude that our brass detection is highly sensitive to woodwind instruments, even if
no brass instrument is active in the mixture.

We can use similar techniques to understand the model behavior for woodwind instrument classes.
Figure 5.11 shows predicted probabilities for flutes, depending on SNRs of other woodwind instruments.
Here, we again only consider frames where flutes are playing jointly with other instruments (SNR𝑖Fl ∈
[−5, 5]). Predictions for Fl increase if other woodwind instruments have SNR𝑖c ∈ [−15, 5], compared to
these instruments being inactive. In other words, detection of flutes depends on the simultaneous activity
of other woodwind instruments, similar to the behavior observed for brass and other instrument families.

Our analysis reveals confounding factors exploited by our model, arising from the large amount of joint
instrument activity (see also Figure 5.3). It is important to note that it may indeed be desirable for
our model to use these confounding factors for detection, since these are strong cues for IAD on many
orchestral works from the classical and romantic periods (as present in our dataset). Yet, use of these
confounding factors may also limit the generalization ability of our model to music with other instrument
statistics, e. g., works with many brass-only sections. To reduce the impact of these effects, one may
collect additional training data (which is cumbersome, see Section 5.4). Entirely removing confounding
effects from our system may be impossible, however, as we also discuss in the next section.
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Chapter 5. Hierarchical Approaches for Instrument Activity Detection

Figure 5.11: Average probabilities for
flutes depending on the signal-to-noise
ratio of other woodwind instruments (col-
ored lines). Only frames where flutes are
jointly active with other instruments (i. e.,
SNR𝑖Fl ∈ [−5, 5]) are considered.
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5.9 Conclusion

In this chapter, we investigated instrument activity detection in the context of complex orchestral music
recordings. We showed that utilizing information about hierarchical relationships between instruments is
helpful, especially when only few fine-grained instrument-level labels are available. Furthermore, we
demonstrated how one can increase the consistency of predictions across hierarchy levels using additional
consistency losses, while preserving detection quality. To perform these experiments, we collected a large
dataset of real-world opera and orchestra recordings with aligned instrument activity annotations. Finally,
we analyzed the behavior of our detection system and identified confounding effects exploited by our
model.

Future work may make use of more complex instrument hierarchies (e. g., hierarchies that incorporate
knowledge about different sound production techniques), train more complex detection models, collect
additional data for training and testing (e. g., using music synchronization or synthesizers), or extend the
scenario considered here towards orchestral music from other epochs (e. g., Baroque).

However, even when collecting additional data, it is likely that our model will continue to exploit
confounding effects arising from the training data, as shown in our analysis in Section 5.8. This may be
desirable (in case that training and test conditions are very similar) or undesirable (when generalizing
to music from different styles). Our analysis results mirror those obtained for other systems for music
classification. For example, Kelz and Widmer [92] found that a neural network for piano transcription
trained on combinations of notes struggles with correctly classifying unknown note combinations. The
system performs transcription for certain notes by considering other, unrelated notes as well. The
confounding effects exploited in MIR systems can often be even less intuitive. In [198], for example, a
system for recognizing Latin music styles (which are usually characterized by their rhythms) was shown to
exploit tempo information. Similarly, the authors in [172] found that a system for genre recognition is
sensitive to sounds outside the human hearing range. In Chapter 9, a deep learning system for leitmotif

68



5.9. Conclusion

detection in opera recordings is introduced. It is shown to rely heavily on spectral statistics as opposed to
melody or rhythm. Such problems are amplified when evaluating a system on music styles not seen during
training. For example, the authors in [123] showed that off-the-shelf music classifiers perform poorly on a
large and diverse music database and are highly sensitive to encoding artifacts.

In order to tackle this challenge for IAD, one may consider using source separation as pre-processing,
thereby reducing the impact of unrelated instruments on detection outputs. However, due to the small
amount of multi-track orchestral data available, no off-the-shelf systems for source separation in orchestra
recordings are currently available, leaving this as an avenue for future work.
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6 A Cross-Version Approach to Representation
Learning for Instrumentation

This chapter is based on [108]. The first author Michael Krause is the main
contributor to this article. In collaboration with his supervisor Meinard Müller
and Christof Weiß, he devised the ideas, developed the formalization,
designed the experiments, and wrote the paper. Furthermore, Michael
Krause collected the dataset, implemented all approaches, and conducted
the experiments.

Deep learning systems often require large amounts of labeled data for supervised training, which can
be very costly to obtain (see, e. g., the effort required for obtaining instrument activity annotations as
described in Section 5.4). To alleviate this problem, recent papers on learning music audio representations
employ alternative training strategies that utilize unannotated data. In this chapter, we introduce a novel
cross-version approach to audio representation learning that can be used with music datasets containing
several versions of a musical work. Our method exploits the correspondences that exist between two
versions of the same musical section. We evaluate our proposed cross-version approach qualitatively
and quantitatively on complex orchestral music recordings and show that it can better capture aspects of
instrumentation compared to techniques that do not use cross-version information.

6.1 Introduction

Deep learning has become a common tool for approaching diverse tasks in MIR. These approaches
usually follow a supervised learning scheme, where a neural network is trained on the annotations of some
dataset. For many MIR tasks, however, such annotations are costly to obtain. Recent work has investigated
alternatives that require little or no annotations and enable training on large, unannotated datasets.

For certain music genres, there are datasets that contain several versions of a musical work, see also
Section 3.4. For example, the same classical symphony or concerto can be performed by different
orchestras, and several commercial recordings are often available. On such datasets, automatic music
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Figure 6.1: Visualization of our cross-
version approach to representation learn-
ing for orchestral music. An anchor (blue)
excerpt is selected from a music record-
ing. The positive (green) and negative
(red) excerpts are chosen from a different
version of the same musical piece. For
this, an alignment between versions is
needed (gray arrows).

synchronization techniques can be used to find alignments between different versions of a work, requiring
minimal annotation effort [145, 147].

In this chapter, we introduce a conceptually novel approach to audio representation learning that exploits
cross-version datasets, thus requiring only alignments between versions and no further human annotations.
Our approach aims at learning embeddings of audio excerpts such that musically corresponding excerpts
in different versions are mapped to close points in the embedding space (Figure 6.1).

There are several musical aspects that stay roughly constant across most versions, e. g., pitches, harmonies
or rhythm. For orchestral music, aspects of instrumentation (i. e., active instruments or instrument families)
are another such property. Instrumentation represents a challenging MIR scenario given the complexity
of instrument taxonomies and the difficulty of annotating instrument activity in orchestral music. In our
experiments on a dataset of complex orchestral music, we show qualitatively and quantitatively that—by
utilizing the correspondences between different versions of a musical section—our proposed representation
learning technique is better at capturing aspects of instrumentation and instrument texture compared to
approaches that do not exploit cross-version information.

The remainder of the chapter is structured as follows: Section 6.2 covers related work on music audio
representation learning, cross-version analysis, and instrumentation in orchestral music. In Section 6.3,
we introduce our proposed approach. In Section 6.4, we describe our experimental setup, including
datasets, our model architecture, and baselines. Section 6.5 contains qualitative and quantitative results
and Section 6.6 concludes the chapter with a discussion of possible future work.
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6.2 Related Work

Several recent contributions have explored so-called self-supervised strategies for learning representations
from unannotated music recordings. Often, in these studies, excerpts from a music recording that are
in close proximity are considered as positive pairs (i. e., should be mapped to similar representations)
whereas excerpts that are further apart (or from other recordings) are negative pairs (i. e., should be mapped
to dissimilar representations). This idea is also illustrated in Figure 6.2. McCallum [133] originally
considered this with the aim of learning features for music structure analysis. Wang et al. [216] had a
similar use case but used a supervised learning approach. Several authors employed such a strategy for
learning more general purpose representations [23, 134, 175, 191, 205, 211], often applying additional
augmentations. Apart from using temporal proximity, other papers on music representation learning
exploit audio-visual or audio-text correspondences [120, 130], use classical features as training targets
[231], exploit metadata [6], or investigate music generation models [27].

The approach proposed in this paper is conceptually different since we utilize cross-version datasets, rather
than relying on temporal proximity alone. Such datasets contain several recorded versions of a musical
work, which may vary in aspects related to musical interpretation, recording conditions, and timbral
characteristics of the instruments used. These datasets have been exploited for expressive performance
rendering [241] or improved harmonic analysis [52]. Cross-version datasets also allow for investigating
model biases and overfitting effects in MIR models through different dataset splits [185]. To our knowledge,
the only other work utilizing cross-version information for embedding learning is by Zalkow et al. [236],
whose aim was to compress chromagram excerpts for efficient music retrieval. In contrast, we propose
to learn representations based on spectrogram-like input features and investigate them for capturing
instrument texture.

In the wider machine learning literature, representations are often learned by masking a part of an input
and predicting the masked content [76, 81]. Other strategies utilize multi-modal datasets, e. g., containing
text–image [169] or audio–text pairs [68].

As previously summarized in Section 5.2, orchestral music has been explored in the context of source
separation [140] or melody extraction [201]. The authors in [200] considered instrument family recognition
for classical, monotimbral recordings using a supervised learning approach. Other recent papers on
instrument activity detection in music recordings [67, 71, 84] have also considered DL-based, supervised
learning approaches, but not within orchestral scenarios.

6.3 Cross-Version Approach to Audio Representation Learning

In this section, we formalize our proposed cross-version approach to representation learning. The key idea
is to utilize correspondences between different versions (i. e., recorded performances played by different
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Figure 6.2: When forming triplets of
audio excerpts, the anchor and posi-
tive/negative excerpts are chosen accord-
ing to a maximum/minimum distance
𝜏p/𝜏n.

orchestras) of the same musical work. We aim to learn embeddings of audio excerpts such that the same
musical section in different versions is represented by neighboring points in the embedding space and
audio excerpts for unrelated musical sections are mapped to distant points in the embedding space. To this
end, inspired by [236], we sample triplets of audio excerpts as in Figure 6.1, and apply a triplet loss for
learning. Musical characteristics that stay roughly constant across different versions of an orchestral work
include pitches and harmonies, as well as instrumentation. In later sections, we will analyze to what extent
our approach captures pitches or aspects of instrumentation.

Single-Version Approach (SV). We begin by formalizing a common approach to music representation
learning that only utilizes temporal proximity inside a single version, see also Section 6.2 and Figure 6.2.
Let W be a set of musical works and let 𝑉𝑤 be the set of available versions for a work 𝑤 ∈ W. We first
randomly select a work 𝑤 ∈ W and some version of this work 𝑣 ∈ 𝑉𝑤 . Let 𝑇 denote the length of 𝑣 in
seconds. We choose an anchor excerpt by uniformly sampling an anchor position 𝑎 ∈ [0, 𝑇] and extracting
the excerpt xa of 𝑣 that is centered around 𝑎. To obtain the positive and negative excerpts, we choose a
position 𝑝 ∈ [0, 𝑇] for the positive excerpt xp of 𝑣 such that |𝑎 − 𝑝 | ≤ 𝜏p. Thus, the positive excerpt is in
temporal proximity of the anchor excerpt—up to a threshold of 𝜏p seconds—and is likely to correspond to
a musically similar section. In the same way, we choose a position 𝑛 ∈ [0, 𝑇] for the negative excerpt xn

of 𝑣 such that |𝑎 − 𝑛| ≥ 𝜏n. The negative excerpt is therefore a certain minimum distance of 𝜏n seconds
away from the anchor position, likely corresponding to a musically dissimilar section.25

Embedding Learning. We obtain embeddings by passing these excerpts through a neural network
(described in Section 6.4.2), i. e.:

Y = (ya, yp, yn) = ( 𝑓 (xa), 𝑓 (xp), 𝑓 (xn)) , (6.1)

where 𝑓 is a neural network that embeds an audio excerpt x into an embedding vector y. Using this triplet,
we can apply a standard triplet loss [186] such as:

L(Y) = max
(
0, ∥ya − yp∥2

2 − ∥ya − yn∥2
2 + 𝛼

)
, (6.2)

25 Due to repetitions and other structural similarities, there may in fact be some musically related sections that are far apart
temporally. In the majority of cases, however, the assumption underlying positive and negative sampling will hold [133].
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Composer Work Versions
Num. Avg. Duration

Wagner Die Walküre, Act 1 8 1 h
Beethoven Symph. 3, Mvmts. 1–4 6 45 min
Dvorak Symph. 9, Mvmts. 1, 2, 4 6 40 min
Tschaikowsky Violin Concerto, Mvmts. 1–3 6 35 min

Total duration 20 h

Table 6.1: Our cross-version dataset containing several commercial recordings of different orchestral and opera compositions.

where 𝛼 ∈ R≥0 describes the desired minimum margin between the distance of embeddings for anchor
and positive versus the distance of embeddings for anchor and negative.

Cross-Version Approach (CV). For our proposed cross-version approach, we sample triplets in a different
fashion. Since we utilize multiple versions per work, we now require |𝑉𝑤 | ≥ 2. To form a triplet of
excerpts, we randomly select some version 𝑣1 ∈ 𝑉𝑤 of a work 𝑤 ∈ W. We then sample an anchor position
𝑎1 ∈ [0, 𝑇1], where 𝑇1 is the length of 𝑣1 in seconds, and extract the corresponding excerpt xa of 𝑣1. To
obtain the positive and negative excerpts, we randomly select another version 𝑣2 ∈ 𝑉𝑤 \ {𝑣1} of 𝑤. As
before, let 𝑇2 denote the length of 𝑣2 in seconds. We can find the position 𝑎2 ∈ [0, 𝑇2] in 𝑣2 corresponding
to the same musical position as the anchor 𝑎1 in 𝑣1 using music alignment techniques. With this, we
choose a position 𝑝 ∈ [0, 𝑇2] for the positive excerpt xp of 𝑣2 such that |𝑎2 − 𝑝 | ≤ 𝜏p. Thus, the positive
excerpt corresponds to the same musical section as the anchor, up to some tolerance of 𝜏p seconds (in
addition to alignment inaccuracies). Similarly, we sample 𝑛 ∈ [0, 𝑇2] (with |𝑎2 − 𝑛| ≥ 𝜏n) and extract xn.
Note that only xa is an excerpt of the first version 𝑣1, whereas both xp and xn are excerpts of the second
version 𝑣2. As before, we construct a triplet Y using these excerpts and apply a standard triplet loss.

6.4 Experimental Setup

6.4.1 Dataset and Splits

To show the potential of our representation learning technique, we construct a cross-version dataset of
commercial symphonic and opera music recordings, illustrated in Table 6.1. This dataset is closely related
with the one described in Section 5.4. Here, we used two additional versions of the first act of Die
Walküre.26 In line with Section 5.4, we choose the first movement of the Beethoven Symphony, the fourth
movement of the Dvorak Symphony and the third movement of the Tschaikowsky Concerto for testing.
We further choose an excerpt of the act from Die Walküre, omit this excerpt during training, and use it for
testing. We further ensure that the train and test set contain different versions. By splitting our dataset in

26 Overall, we use P-Ne, P-Le, P-Bö, P-Ke, and P-Bo for training as well as P-Ka, P-Ba, and P-Ha for testing. See also
Figure 3.2.
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Chapter 6. A Cross-Version Approach to Representation Learning for Instrumentation

this fashion, we aim to avoid overfitting to specific musical compositions or recording conditions (the
latter is also referred to as “album effect” [53]).

For the cross-version approach CV, we obtain an alignment between versions of the same work using state-
of-the-art music synchronization techniques involving chroma onset features and multi-scale alignment
[147]. For some experiments, we also require pitch-class and instrument activity annotations for our
dataset. Again, we use music synchronization techniques to align score to audio and create the annotations.
We refer to Section 5.4 for details.

6.4.2 Model

We implement all representation learning approaches using a CNN that takes a HCQT [13] of an audio
excerpt as input and outputs a corresponding embedding vector. The model is identical to the one described
in Section 5.5 (except for the final sigmoid activation, which we omit here, and the size of the final output
layer, which is increased). For convenience, we shortly summarize the model in the following: The HCQT
input consists of 201 frames (at a frame rate of 43 Hz, i. e., roughly 4.7 seconds), three bins per semitone
from C1 to B7 (leading to 252 bins), and five harmonics (with frequency multiples of [0.5, 1, 2, 3, 4]).
The model architecture is adapted from [226] and receives an HCQT input patch, processes it through
several convolution and max-pooling layers, and outputs a single ℓ2-normalized vector (length 128) per
input. We take this output as the embedding vector for the center frame of the input patch. In total, the
architecture has roughly 1.5 million learnable parameters. We train our network for 200 epochs (with
16 000 triples randomly sampled per epoch) using the Adam optimizer with a learning rate of 0.002. In
the interest of reproducibility, we release code and trained models for our approach.27

In line with previous studies on audio representation learning [175, 191, 205], we apply a number of
augmentations to excerpts during training, including time scaling, pitch shifting, random masking, adding
noise and applying random equalization. For all experiments, we set 𝜏p = 0.2 s. With this, the maximal
distance between anchor and positive excerpt is in the same order of magnitude as the typical alignment
inaccuracy between versions. We further set 𝜏n = 10.0 s and 𝛼 = 1.0. We found that results are stable for
a broad range of settings of these parameters.

6.4.3 Baselines

To investigate the musical properties captured by the representation learning approaches CV and SV, we
compare them to several optimistic baselines: First, we extract traditional music audio features. We
use mel-frequency cepstral coefficients (MFCC), which are known to capture aspects of instrumentation
[202], and Chroma features, which contain the dominant pitch-classes in the recording. Here, our goal is
not to outperform MFCC or Chroma, but to compare them to our learned representations. If our learning

27 https://www.audiolabs-erlangen.de/resources/MIR/2023-ISMIR-CrossVersionLearning
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approaches capture instrumentation, we expect them to behave similar to MFCCs. Likewise, in case they
contain pitch-class information, we expect them to perform like Chroma features.

Second, we consider a supervised learning approach Sup where we train a model on instrument activity
annotations and use its hidden representations as features. For this, we utilize the same model architecture
as for CV and SV and only add a final dense layer with a number of outputs equal to the number of
instruments to detect. Rather than using the triplet loss from Section 6.3, we train this approach by
applying a sigmoid activation and binary cross-entropy loss. Note that in contrast to CV and SV, the Sup
approach requires instrument activity annotations for the recordings in the training set.

6.5 Results

6.5.1 Feature Analysis using Self-Similarity

In order to visualize and compare the representations learned by different techniques, we employ self-
similarity matrices. Such matrices are commonly used for music structure analysis and allow for visualizing
structures based on repetition and homogeneity in feature sequences [145]. Here, we use them to analyze
our learned representations without the need for additional fine-tuning. This also allows us to directly
compare approaches trained with a fixed instrument vocabulary (Sup) to others that are not informed about
instruments. We provide an alternative evaluation in Section 6.5.4.

Given a sequence 𝑋 = (𝑥1, . . . , 𝑥𝑁 ) of (learned) representations of 𝑁 audio frames, we construct the
corresponding self-similarity matrix 𝑆 ∈ R𝑁×𝑁 as follows. We first normalize all representations
with respect to the ℓ2-norm, yielding �̃� = (𝑥1, . . . , 𝑥𝑁 ). We then compute 𝑆(𝑛, 𝑚) := ⟨𝑥𝑛, 𝑥𝑚⟩ for
𝑛, 𝑚 ∈ [1 : 𝑁]. Thus, 𝑆 contains the cosine similarities between elements of 𝑋 , and all its entries lie in
the interval [−1, 1]. By definition, all entries on the diagonal of 𝑆 are equal to 1. In addition, repeated
subsequences appear as path-like structures and homogeneous segments appear as block-like structures,
see also [145].

We compare the self-similarity matrices obtained from learned representations to matrices created using
reference annotations. First, we represent an instrument activity annotation as a sequence of multi-hot
binary vectors (indicating the presence of instruments in different frames). By normalizing and computing
the dot product as before, we obtain a matrix corresponding to instrument texture, where blocks indicate
segments with similar instrumentation. We will refer to this matrix using the shorthand RefI. For example,
the start of the middle measure in Figure ?? would be encoded as a vector (1, 1, 1)⊤, i. e., all instruments
are active, and the end of that measure would be encoded as (1, 1, 0)⊤, i. e., only horn and soprano are
active. After normalization, the dot product of these vectors is 0.82, indicating similar instrumentation.
Analogously, we construct another matrix RefH from a sequence of pitch-class annotations. This matrix
captures regions with similar harmonies and pitches.
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Figure 6.3: Self-similarity matrices constructed from instrument annotations (RefI), pitch-class annotations (RefH), or computed
using MFCCs. The right column shows the sections highlighted in red on the left.

6.5.2 Qualitative Results

Figures 6.3 and 6.4 show several self-similarity matrices obtained through reference annotations or by
different representation learning approaches. The excerpt shown in the left column is the test excerpt
from “Die Walküre” (similar results are obtained on other inputs). The right column shows magnified
sections from above. Darker color indicates higher similarity. In the RefI matrix, arising from instrument
annotations as explained in Section 6.5.1, one can observe many block and checkerboard-like structures.
For example, from seconds 460 to 560, different combinations of woodwind instruments are playing
together, creating block and checkerboard-like patterns (highlighted in blue). White areas indicate
𝑆(𝑛, 𝑚) = 0, i. e., no common instruments are playing. The matrix RefH, on the other hand, indicates
harmonic similarities which are mostly distinct from the instrument similarities in RefI.

For the Sup system, many of the patterns in RefI are replicated, albeit with less detail. This is expected,
since this system has been trained on the same kind of annotations that have been used to create RefI.
Interestingly, many of the patterns present in the RefI and Sup matrices also appear for the proposed
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Figure 6.4: Self-similarity matrices obtained with a supervised learning system (Sup), the proposed cross-version approach (CV),
and a baseline that does not incorporate cross-version information (SV).

approach CV, which has not been trained using instrument annotations. In particular, the checkerboard
pattern starting at second 460 is captured by CV, as well as many block structures.

There are fewer similarities between CV and RefH, indicating that the CV representations are more likely to
capture instrumentation rather than pitch-class content. This behavior is encouraged by our augmentation
strategy, where we randomly pitch-shift the anchor, positive and negative excerpts.

The matrix obtained through the SV approach is blurry and, unlike the results for CV, fails to capture many
of the checkerboard-like patterns present in RefI. The example suggests that exploiting cross-version
information during training is important for capturing aspects of instrumentation in learned representations.

6.5.3 Quantitative Results

In order to quantify the correlation between our learned representations and instrument texture, we now
apply a procedure for detecting the boundaries of block-like structures in self-similarity matrices. We then
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Figure 6.5: Results for different repre-
sentation learning approaches when com-
paring estimated structure boundaries to
boundaries from RefI.
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compare block boundaries estimated on RefI with boundaries from all other matrices. Such procedures
are often used in the context of music structure analysis [54, 145].

To detect block boundaries, we first correlate a self-similarity matrix with a checkerboard kernel along the
main diagonal, as proposed in [54]. From this, we obtain a novelty curve. We then apply a peak picking
procedure using local thresholding on this novelty curve, yielding sparse positions of detected block
structures. We do this for all approaches and reference matrices. We finally compare—with a tolerance of
up to three seconds—the detected boundaries for all approaches to those of RefI, yielding a boundary
F-measure. By adjusting the size of the checkerboard kernel in this procedure, we can identify changes
of instrument texture on short or larger time scales. For more details on the boundary detection, peak
picking, and evaluation procedure, we refer to [145].

Figure 6.5 shows the results of our quantitative evaluation for different sizes of the checkerboard kernel.
The F-measures given are averaged over all recordings in the test dataset. We observe that the supervised
approach is best at capturing instrument texture (as encoded by RefI) compared to all others, with the
highest F-measure of 0.77 for a kernel of eight seconds. CV and MFCC perform roughly on par. This
is surprising, since CV is trained without any instrument annotations, while MFCC is known to capture
instrumentation. Results for SV deteriorate with larger kernel sizes, dropping to as low as 0.28 F-measure
for a kernel of 48 seconds. The proposed approach CV is better at capturing instrument texture than the
alternative SV that does not utilize cross-version information.

To examine whether our representations capture information related with harmonies and pitches played,
we perform the same evaluation procedure with boundaries from RefH (see Figure 6.6). We obtain low
F-measures for both CV and SV (dropping below 0.4 for kernel sizes above 20 seconds for both approaches).
In particular, while we observe an advantage of CV over SV for capturing instrumentation, there is no such
advantage with regard to pitch-classes. Additionally, standard Chroma features are clearly superior at
capturing the structures in RefH. We conclude that the representations learned by our proposed approach
CV indeed contain information about instrument texture rather than pitch-classes and harmonies.

80



6.5. Results

Figure 6.6: Results for comparing with
RefH.
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Scenario Micro Avg. Macro Avg.
AP AUC F1 S F1 S

MFCC 0.777 0.780 0.600 0.890 0.450 0.847
SV 0.708 0.735 0.590 0.871 0.407 0.820
CV 0.753 0.795 0.657 0.872 0.514 0.835
Sup 0.838 0.881 0.772 0.894 0.714 0.874

Table 6.2: Results for different representation learning approaches when performing instrument classification.

6.5.4 Feature Analysis Using Classification

To gain further insights into the information captured by our learned representations, we also perform an
indirect evaluation as typically done in representation learning. Previous studies often rely on training small
classifiers on top of learned representations to investigate their usefulness for different downstream tasks
[27, 191]. In this section, we complement our self-similarity-based analysis with such a classification-based
evaluation strategy.

To this end, we pass individual representation vectors through a small network of dense layers with 128,
64, and 32 hidden units followed by leaky ReLU activations, respectively. The final layer produces outputs
for every instrument annotated in our dataset, followed by a sigmoid activation. For each representation
learning technique, we train and evaluate such a network using the dataset split as described in Section 6.4.1.
Concretely, we minimize the mean binary cross-entropy loss over all instrument classes on the training
set, using stochastic gradient descent with a learning rate of 10−4 for 10 epochs. We finally evaluate the
classification results on the test set using standard metrics, including ranking-based average precision
(AP), mean area under the ROC curves (AUC), F-measure (F1), and specificity (S). For F1 and S, we
threshold the predicted probabilities at 0.5 and compute both micro and macro averages of the evaluation
scores, where the macro average is not affected by imbalance among instrument classes.

The results of this experiment are shown in Table 6.2. We observe similar trends as in our self-similarity-
based evaluation. As expected, the supervised baseline again yields best results. Our proposed cross-version
approach CV clearly outperforms the traditional SV across all metrics (e. g., AP=0.753 as opposed to 0.708
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Scenario Micro Avg. Macro Avg.
AP AUC F1 S F1 S

Chroma 0.802 0.854 0.591 0.964 0.586 0.963
SV 0.427 0.568 0.001 1.000 0.001 1.000
CV 0.430 0.584 0.021 0.994 0.018 0.994
Sup 0.457 0.612 0.137 0.959 0.122 0.958

Table 6.3: Results for pitch-class classification using the learned representations.

for SV). Furthermore, CV even improves upon the optimistic MFCC baseline in terms of AUC and F-measure
(e. g., micro F1=0.657 instead of 0.600 for MFCC). Finally, SV performs worse than MFCC. Overall, the
representations learned by our proposed approach CV are more effective for instrument classification
compared to the standard SV approach that does not utilize cross-version information.

We repeat this experiment using pitch-classes as the classification targets instead of instruments. Table 6.3
shows the results of the modified experiment, which are inline with our conclusions from previous sections.
Standard Chroma features strongly outperform all learned representations on this task. We conclude that
our proposed approach captures instrumentation rather than pitches.

6.6 Conclusion

In this chapter, we described a novel audio representation learning approach for cross-version music
data and investigated its application to orchestral music. Our approach utilizes the correspondences
between different versions of the same musical work. We showed qualitatively and quantitatively that the
representations learned by our approach capture aspects of instrumentation. We outperform a standard
training strategy that relies on temporal proximity alone.

In contrast to the models presented in previous chapters, the approach proposed here does not require
aligned activity annotations for training and relies solely on correspondences between versions.

Our approach can be applied to any kind of cross-version music dataset where alignments between versions
can be obtained using standard music synchronization techniques. Future work may apply our approach to
other musical scenarios and larger datasets, explore more complex feature extraction networks, investigate
alternatives to our triplet loss formulation, or apply the learned representations in the context of different
downstream tasks (such as structure analysis). One may also study the impact of design choices such as 𝜏p

and 𝜏n, the pitch shifting augmentation, or the number of versions used for training.
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7 Soft Dynamic Time Warping for Pitch Activity
Detection

This chapter is based on [109]. The first author Michael Krause is the main
contributor to this article. In collaboration with his supervisor Meinard Müller
and Christof Weiß, he devised the ideas, developed the formalization,
designed the experiments, and wrote the paper. Furthermore, Michael
Krause implemented all approaches, using a code base by Christof Weiß,
and conducted the experiments.

Many tasks in MIR involve weakly aligned data, where exact temporal correspondences are unknown. The
connectionist temporal classification (CTC) loss is a standard technique to learn feature representations
based on weakly aligned training data. However, CTC is limited to discrete-valued target sequences and
can be difficult to extend to multi-label problems. In this chapter, we show how SoftDTW, a differentiable
variant of classical dynamic time warping (DTW), can be used as an alternative to CTC. Using multi-pitch
activity detection—commonly known as multi-pitch estimation (MPE)—as an example scenario, we show
that SoftDTW yields results on par with a state-of-the-art multi-label extension of CTC. In addition to
being more elegant in terms of its algorithmic formulation, SoftDTW naturally extends to real-valued
target sequences.

7.1 Introduction

Many applications in MIR require alignments between sequences of music data. Often, the sequences
given are only weakly aligned. For example, in audio-to-score transcription, pairs of audio and score
excerpts are easy to find but exact temporal correspondences between these pairs are hard to establish
[221]. Furthermore, music data sequences may involve different levels of complexity. For instance, given
a single-instrument monophonic music recording, monophonic pitch estimation [16] aims at detecting a
single pitch value per time step (thus, the task may also be described as “pitch activity detection”, see
also Figure 7.1a). Other scenarios with discrete, single-label targets include lyrics transcription or lyrics
alignment for songs with a single singer [187, 217]. More complex sequences appear in MPE, where
multiple pitches may be active simultaneously (Figure 7.1b). Finally, some scenarios involve alignment
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Figure 7.1: Illustration of SoftDTW for
aligning a learned feature sequence 𝑓 (𝑋)
and a target sequence Y, where one may
consider (a) single-label, (b) multi-label,
or (c) real-valued targets.
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between real-valued sequences (Figure 7.1c), e. g., audio–audio synchronization [40, 51] or multi-modal
alignment problems such as synchronizing dance videos with music [207].

The CTC [64] loss, a fully differentiable loss function initially developed for speech recognition, is
commonly used for learning features from weakly aligned data when the targets are sequences over a finite
alphabet of labels. Recently, CTC was extended to handle multi-label learning problems [229], where the
main idea was to locally transform the multi-label into the single-label case. However, in addition to its
complicated algorithmic formulation, this approach is unsuitable for target sequences that do not originate
from a discrete vocabulary.

A common technique used in MIR for finding an optimal alignment between weakly aligned sequences
is DTW in combination with hand-crafted features [145]. Such a pipeline can provide good alignment
results for tasks like audio–audio synchronization [51], but the standard DTW-based cost function is not
fully differentiable, which prevents its use in an end-to-end deep learning context. To resolve this issue,
Cuturi and Blondel [35] proposed a differentiable variant of DTW, called SoftDTW, that approximates
the original DTW cost. In recent work, SoftDTW and related techniques have been successfully used in
computer vision applications such as action alignment [29, 69]. To our knowledge, the only prior work
applying SoftDTW in an MIR context is by Agrawal et al. [4].

Our contributions are as follows: We demonstrate the use of SoftDTW for MPE. In particular, we show
that SoftDTW performs on par with a multi-label extension of CTC, while being conceptually simpler.
Furthermore, we show that the SoftDTW approach naturally generalizes to real-valued target sequences,
as illustrated in Figure 7.1, making it applicable for a wide range of alignment tasks.

The remainder of the chapter is structured as follows: In Section 7.2, we review the current state of the art
for multi-pitch estimation from weakly aligned data with CTC. In Section 7.3, we formalize SoftDTW
for general sequences and, in Section 7.4, apply it for MPE. Section 7.5 demonstrates the potential of
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SoftDTW for learning with real-valued targets. Finally, Section 7.6 concludes the chapter with an outlook
towards future applications.

7.2 Weakly Aligned Training for MPE

In recent years, automated music transcription has become a central topic in MIR research, with deep
learning techniques achieving state-of-the-art results [30, 73, 93]. We here focus on MPE as a sub-problem
of automated music transcription, where the goal is to transform an input music recording 𝑋 into a
piano-roll representation 𝑌 of pitches played. In particular, multiple pitches may be active at the same
time. Most learning-based approaches for MPE require strongly aligned data for training, i. e., pitches
are annotated for each audio frame of the input recording. Since annotating data in such a frame-wise
fashion is very time consuming, most MPE datasets have been generated (semi-)automatically, e. g., by
using MIDI pianos or by applying score–audio synchronization techniques (which may introduce labeling
errors). Techniques that allow learning from pairs of 𝑋 and 𝑌 that are not temporally aligned are therefore
highly desirable.

As discussed in the introduction, a common technique for dealing with weakly aligned learning problems
is CTC [64]. Here, the target sequences 𝑌 consist of symbols from a discrete alphabet 𝐿, including a
special blank symbol necessary for distinguishing repetitions of symbols. For each frame in the input
sequence 𝑋 , a neural network outputs a probability distribution over 𝐿. The CTC loss then corresponds to
the likelihood of 𝑌 given these network outputs, taking into account all possible alignments between 𝑋 and
𝑌 . Note that CTC is agnostic about the durations of symbols in 𝑌 , i. e., even if information about symbol
durations is available, CTC is unable to exploit this for alignment. An efficient dynamic programming (DP)
algorithm for computing the CTC loss exists (with time complexity O(|𝐿 |2 · 𝑁), where 𝑁 is the length
of 𝑋), but it requires special care in handling the blank symbol [64].

A naive extension of CTC towards multi-label target sequences would introduce unique network outputs
for all possible symbol combinations, which leads to a combinatorial explosion. Instead, the authors in
[229] propose to locally reduce the multi-label to the single-label case by only considering those symbol
combinations that occur within a single training batch (called multi-label CTC, i. e., MCTC). This defines
a “batch-dependent alphabet,” avoiding the combinatorial explosion. The technical details of this process
are tricky and special care needs to be taken for handling the blank symbol. In [221], this idea is adapted
for MPE by considering pitches as symbols and multi-pitch annotations as combinations of symbols. This
formulation allows them to train networks for MPE on pairs of 𝑋 and 𝑌 that are only weakly aligned, e. g.,
where 𝑋 is a music recording and 𝑌 is a MIDI representation derived from the corresponding score. In
this chapter, using MPE from [221] as an example application, we show how the technically intricate
MCTC can be replaced by a conceptually more elegant SoftDTW approach. SoftDTW does not involve
the need for a blank symbol, which may be well-motivated in text applications but can be unnatural in
MIR problems such as MPE.
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7.3 Soft Dynamic Time Warping

The objective of DTW is to find an optimal temporal alignment between two sequences. SoftDTW [35]
is a differentiable approximation of DTW that allows for propagating gradients through the alignment
procedure, making SoftDTW applicable for deep learning. Like classical DTW, SoftDTW admits
an efficient DP recursion for computing the optimal alignment cost. Furthermore, there also exists a
DP-algorithm for efficiently computing the gradient of that cost. In this section, we briefly summarize the
problem statement and DP recursion of SoftDTW for general sequences. We then apply this to our music
scenarios in later sections.

Consider two sequences 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) and𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑀 ) of lengths𝑁, 𝑀 ∈ Nwith elements
coming from some feature spaces F1, F2 (i. e., 𝑥𝑛 ∈ F1, 𝑦𝑚 ∈ F2 for all 𝑛 ∈ [1 : 𝑁] , 𝑚 ∈ [1 : 𝑀]). Given
some differentiable cost function 𝑐 : F1 × F2 → R defined on these feature spaces, we can construct a
matrix 𝐶 ∈ R𝑁×𝑀 of local costs where each entry

𝐶 (𝑛, 𝑚) = 𝑐(𝑥𝑛, 𝑦𝑚)

contains the cost of locally aligning 𝑥𝑛 with 𝑦𝑚. To determine an optimal global alignment28 between the
sequences 𝑋 and 𝑌 one computes an accumulated cost matrix 𝐷𝛾 ∈ R𝑁×𝑀 using the recursion

𝐷𝛾 (1, 1) = 𝐶 (1, 1),

𝐷𝛾 (1, 𝑚) =
𝑚∑︁
𝑘=1

𝐶 (1, 𝑘), for 𝑚 ∈ [1 : 𝑀] ,

𝐷𝛾 (𝑛, 1) =
𝑛∑︁
𝑘=1

𝐶 (𝑘, 1), for 𝑛 ∈ [1 : 𝑁] ,

𝐷𝛾 (𝑛, 𝑚) = 𝐶 (𝑛, 𝑚) + 𝜇𝛾 ({𝐷𝛾 (𝑛 − 1, 𝑚 − 1),

𝐷𝛾 (𝑛 − 1, 𝑚), 𝐷𝛾 (𝑛, 𝑚 − 1)}),

for 𝑛 ∈ [2 : 𝑁] , 𝑚 ∈ [2 : 𝑀]. Here, 𝜇𝛾 refers to a differentiable approximation of the minimum function
given by

𝜇𝛾 (𝑆) = −𝛾 log
∑︁
𝑠∈𝑆

exp
(
− 𝑠
𝛾

)
,

where 𝑆 is some finite set of real numbers and 𝛾 ∈ R>0 is a temperature parameter that determines the
“softness” of the approximation. One can show that 𝜇𝛾 is a lower bound of the minimum function [69] and
converges towards the true minimum for 𝛾 → 0. As a consequence, 𝐷𝛾 becomes the accumulated cost
matrix from classical DTW for 𝛾 → 0. Thus, SoftDTW becomes DTW in the limit case.

28 Subject to some constraints, namely, the first and last elements of both sequences are aligned to each other (boundary
constraint), no element is skipped (step-size constraint), and the alignment is monotonous (monotonicity constraint).
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After evaluating the SoftDTW recursion, the entry DTW𝛾 (𝐶) = 𝐷𝛾 (𝑁, 𝑀) contains the approximate
minimal cost of aligning the sequences 𝑋 and 𝑌 , given the local costs 𝐶. A similar recursion exists for
computing the gradient of DTW𝛾 (𝐶) with regard to any matrix coefficient 𝐶 (𝑛, 𝑚) for 𝑛 ∈ [1 : 𝑁] and
𝑚 ∈ [1 : 𝑀] [35, Algorithm 2]. The time and space complexity of the SoftDTW recursion as well as the
gradient computation is both O(𝑁 · 𝑀), which is sufficiently fast for use in deep learning.

Note that SoftDTW requires no prior knowledge of the alignment between 𝑋 and 𝑌 , which enables the use
of DTW𝛾 (𝐶) as a loss function for learning problems with weakly aligned data. Furthermore, 𝑋 and 𝑌
can come from arbitrary feature spaces, as long as an appropriate cost function 𝑐 can be defined.

7.4 Application to Multi-Pitch Estimation

We now apply SoftDTW to multi-pitch estimation. For a given piece of music, the sequence 𝑋 corresponds
to some representation of an input recording, while 𝑌 corresponds to a multi-hot encoding of pitches
played. Note that 𝑌 does not need to be temporally aligned with 𝑋 and could arise, e. g., from a score
representation of the musical piece. An element 𝑦𝑚 of the sequence 𝑌 is encoded as a vector 𝑦𝑚 ∈ {0, 1}72

and the entries of 𝑦𝑚 correspond to the 72 pitches from C1 to B6. In our experiments, rather than directly
aligning 𝑌 with some fixed representation 𝑋 , we use a neural network 𝑓 that takes 𝑋 as input and outputs
a feature vector per frame in 𝑋 . Thus, we obtain a sequence 𝑓 (𝑋) = (𝑧1, . . . , 𝑧𝑁 ) with the same length
𝑁 as 𝑋 . We construct 𝑓 such that 𝑧𝑛 ∈ R72 for the elements 𝑧𝑛 of 𝑓 (𝑋). Thus, both sequences 𝑌 and
𝑓 (𝑋) contain elements from the features space F1 = F2 = R72. We then align 𝑓 (𝑋) and 𝑌 , as illustrated
in Figure 7.1.

To our knowledge, SoftDTW has not previously been used for MPE and is seldom explored in MIR. The
authors in [187] used the classical, non-differentiable DTW recursion inside an attention mechanism for
lyrics alignment, which led to training instabilities. The work by Agrawal et al. [4] constitutes the first use
of SoftDTW for an MIR application. They successfully employ a variant of SoftDTW to train a system for
score-audio synchronization. In their scenario, SoftDTW is applied to discrete-valued, one-dimensional,
and strongly aligned sequences. In contrast, we employ SoftDTW for multi-dimensional sequences in
weakly aligned settings.

7.4.1 Implementation Details and Evaluation Metrics

Since the focus of our work is on evaluating the efficacy of SoftDTW for MIR tasks and in order to
maintain comparability with the results presented in [221], we adopt the same training setup and network
architecture. Thus, we use HCQT [13] excerpts of roughly ten second lengths as input and pass them
through a five-layer CNN to obtain a sequence of per-frame representations 𝑓 (𝑋) (see [221] for details on
the network architecture and HCQT representation).

87



Chapter 7. Soft Dynamic Time Warping for Pitch Activity Detection

a)

P
it

ch
es

b) c) d) e)

Figure 7.2: (a) Strongly aligned pitch annotations for an audio excerpt, (b) Annotations without note durations (as used by
MCTC), (c) Annotations without note durations, stretched to excerpt length, (d) Score representation, not aligned to the audio
excerpt, (e) Score representation, stretched to excerpt length

Scenario F-measure CS AP Acc.

CE [221] 0.70 0.759 0.764 0.546
MCTC [221] 0.69 0.744 0.734 0.532

SoftDTWW1 0.00 0.465 0.297 0.002
SoftDTWW2 0.69 0.736 0.737 0.529

Table 7.1: Results for multi-pitch estimation on the Schubert Winterreise Dataset for SoftDTW compared with MCTC.

We train our networks by minimizing the soft alignment cost DTW𝛾 (𝐶).29 In all experiments, we use the
squared Euclidean distance for 𝑐 and set 𝛾 = 10.0. We did not see improvements for alternative choices of
𝑐 and obtained similar results for a wide range of values for 𝛾 ∈ [0.5, 20.0]. Furthermore, we use a fast
GPU implementation of the SoftDTW recursion and gradient computation which was implemented in
[128].

To compare network predictions with the strongly aligned pitch annotations of the test sets, we use
common evaluation measures for MPE, including cosine similarity between predictions and annotations
(CS), area under the precision-recall curve (also called average precision, AP), as well as F-measure and
accuracy (Acc., introduced in [160]) at a threshold of 0.4 (which is a common choice in MPE systems, see
also [203]).

7.4.2 Comparison with MCTC

We begin by comparing our results with the main results reported in [221], which are obtained on the
Schubert Winterreise Dataset (SWD) [225]. SWD provides strongly aligned annotations for all recordings.
Due to this, one can consider a baseline trained on the aligned annotations with a per-frame cross-entropy
loss (CE). The first line of Table 7.1 shows results for such an optimistic baseline (reprinted from [221]),
which yields an F-measure of 0.70 and AP = 0.764. To train a network using MCTC instead, one must
remove all information about note durations from the label sequence 𝑌 (see Figure 7.2b). The results
obtained this way are just slightly lower at AP = 0.734, even though only weakly aligned labels are
29 Note that we normalize DTW𝛾 (𝐶) by its value for the first training batch. Thus, the loss is exactly 1 for the first batch and

its value range remains similar across training configurations, regardless of the sequence lengths 𝑁 and 𝑀 or other factors.

88



7.4. Application to Multi-Pitch Estimation

Scenario F-measure CS AP Acc.

SoftDTWW3 0.71 0.756 0.755 0.552
SoftDTWW4 0.71 0.757 0.750 0.555
SoftDTWS 0.72 0.761 0.769 0.563

Table 7.2: Results on the Schubert Winterreise Dataset for incorporating note durations with SoftDTW.

used. When performing the same experiment using SoftDTW (denoted by SoftDTWW1), we obtain much
weaker results with an F-measure of 0.00 and AP = 0.297.30 In this experiment, the label sequence 𝑌
may be significantly shorter than the learned sequence 𝑓 (𝑋).31 We repeat the experiment by temporally
stretching the sequence 𝑌 to match the number of frames in 𝑓 (𝑋) (illustrated in Figure 7.2c). When
applying SoftDTW together with this trick (denoted by SoftDTWW2), results are again very similar to
MCTC (AP = 0.737). Thus, SoftDTW may be used to replace MCTC in this scenario.

7.4.3 Incorporating Note Durations

In contrast to MCTC, SoftDTW is able to incorporate (approximate) note durations during training. SWD,
for example, contains non-aligned score representations of the pieces performed. We now use these
score representations as target sequences 𝑌 (denoted by SoftDTWW3, see Figure 7.2d for an illustration).
Table 7.2 shows evaluation results, which are slightly improved compared to training without note durations
(F-measure of 0.71 compared to 0.69 and CS = 0.756 compared to 0.736 for SoftDTWW2). Here, there is
only a moderate difference between the lengths of excerpt and label sequence and stretching the label
sequence to the length of the input yields nearly identical results (denoted by SoftDTWW4, see Figure 7.2e).
Finally, we may also use SoftDTW using strongly aligned label sequences (denoted by SoftDTWS). In
this very optimistic scenario, no alignment is necessary, but SoftDTW may compensate for inaccuracies
introduced by the dataset annotation procedures. Indeed, this scenario yields best results (F-measure of
0.72 and AP = 0.769), even slightly improving upon the cross-entropy baseline in Table 7.1.

7.4.4 Cross-Dataset Experiment

We also perform a cross-dataset experiment (again following the setup in [221]), where we train on the
popular MAESTRO [74] and MusicNet [203] datasets. Both contain strongly aligned pitch annotations
for the training recordings, but they do not provide non-aligned score representations of the pieces, so
SoftDTWW3 and SoftDTWW4 are not applicable here. We then evaluate on the four smaller datasets SWD,
Bach10 [42], TRIOS [56] and Phenicx Anechoic [140]. Note that the latter three datasets each contain
less than ten minutes of audio. This is a difficult scenario since some styles and instruments in the test

30 Note that the F-measure and Accuracy scores can be improved to 0.32 and 0.20, respectively, by choosing a more suitable
detection threshold. Still, these scores are notably worse compared to the results for MCTC.

31 A large discrepancy in sequence lengths is well known to cause problems for classical DTW. Further investigation is needed
to understand how this affects the training process with SoftDTW.
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Scenario AP
SWD Bach10 TRIOS Phenicx

Default network architecture
CE [221] 0.684 0.864 0.825 0.829
MCTC [221] 0.666 0.861 0.824 0.833
SoftDTWW2 0.665 0.835 0.812 0.788

Larger network architecture
CE [221] 0.701 0.886 0.863 0.846
MCTC [221] 0.677 0.871 0.849 0.850
SoftDTWW2 0.682 0.896 0.864 0.838

Table 7.3: Results for multi-pitch estimation in a cross-dataset experiment. Here, MAESTRO and MusicNet have been used for
training while four different smaller datasets are used for testing.

datasets are not present during training. For example, Phenicx Anechoic contains orchestral instruments,
while MAESTRO and MusicNet contain piano and chamber music.

The results of this experiment are given in Table 7.3. Here, MCTC and a cross-entropy baseline perform
roughly on par. SoftDTW yields slightly lower results, especially on Phenicx (AP = 0.788 compared
to 0.833 for MCTC). Given that this evaluation scenario is harder and the training datasets are larger,
we also repeat this experiment with a larger network architecture (increasing the number of channels
for all convolutional layers in the network). The resulting architecture has roughly 600 000 parameters,
compared to 50 000 parameters in the default architecture. Results are shown in the lower half of Table 7.3.
Average precision scores improve consistently across all methods and datasets, e. g., AP = 0.896 for
SoftDTW on Bach10 compared to 0.835 using the smaller architecture. In particular, SoftDTW now
outperforms MCTC on all test datasets except for Phenicx, where the performance gap is now much
smaller (AP = 0.838 compared to 0.850 for MCTC).

All in all, we conclude that the results for MCTC and SoftDTW are roughly comparable, even in a
challenging cross-dataset evaluation. Thus, MCTC may be replaced with SoftDTW without sacrificing
alignment quality. In addition, SoftDTW can generalize to other kinds of target sequences, as discussed in
the next section.

7.5 Extension to Real-Valued Targets

As explained in Section 7.3, the two sequences 𝑋 and 𝑌 that are used as input to SoftDTW may come from
arbitrary feature spaces. In order to illustrate the potential of using SoftDTW for learning from arbitrary
sequences, we now perform two experiments with real-valued targets, i. e., 𝑦𝑛 ∈ R72 for the elements 𝑦𝑛
of 𝑌 . Note that MCTC is unable to handle such a setting.
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7.5.1 Pitch Estimation with Overtone Model

First, we consider a straightforward extension of MPE, where we transform the binary, multi-hot target
vectors of MPE to real-valued vectors by adding energy according to a simple overtone model, see
Figure 7.1c. Here, we consider 10 overtones for each active pitch, with amplitude (1/3)𝑛 for the 𝑛-th
overtone. As a baseline utilizing strongly aligned labels, we compare with a model trained using an ℓ2
regression loss at each frame (similar to the cross-entropy baseline in Section 7.4). To evaluate, we use the
cosine similarity CS between network outputs and annotations. Note that other MPE evaluation metrics
are not applicable for real-valued vectors.

When performing this experiment on the SWD dataset, we obtain CS = 0.794 for per-frame training with
strongly aligned labels, which is higher than for MPE on SWD (cf. Table 7.1). Training without strongly
aligned labels using SoftDTWW2 yields only slightly lower cosine similarities at 0.770. This illustrates
that SoftDTW also works for settings with real-valued target sequences.

7.5.2 Cross-Version Training

Second, as a scenario with more realistic target sequences, we choose 𝑌 to be the CQT representation of
another version of the piece played in 𝑋 . In this case, the two sequences 𝑓 (𝑋) and 𝑌 will not correspond
temporally, but SoftDTW can be used to find an appropriate alignment during training. We perform this
experiment using SWD, which provides multiple versions of the same musical pieces. In particular, we
choose one version (OL06) as the target version and train our network using SoftDTW to align input
excerpts from other versions to excerpts from OL06. Finally, we pass versions unseen during training
through the trained network and evaluate against excerpts from OL06 using cosine similarity. As a
learning-free baseline, we also compute CS between the original CQT representations of the test recordings
and the OL06 representations. To compute the cosine similarities during testing, we use the ground truth
alignments between OL06 and all other versions provided by the dataset, but we do not need ground truth
alignments during training.

Directly comparing the CQT representations of input version and target yields an average cosine similarity
of 0.576. Training (using SoftDTWW3) yields much higher results at CS = 0.720. Thus, the network
trained using SoftDTW is able to produce real-valued outputs that are similar to the target version.

7.6 Conclusion

In this chapter, we have considered SoftDTW as a tool for dealing with weakly aligned learning problems in
MIR, in particular, multi-pitch estimation. We showed that a network trained with SoftDTW performs on
par with the same network trained using a state-of-the-art multi-label CTC loss. We further demonstrated

91



Chapter 7. Soft Dynamic Time Warping for Pitch Activity Detection

that SoftDTW can be used to learn features when the target sequences have real-valued entries—something
not possible with CTC.

In future work, SoftDTW may be applied to more diverse MIR tasks, such as lyrics alignment, audio–audio
synchronization, or cross-modal learning from unaligned video–audio pairs. Furthermore, one may
explore the possibility of combining both strongly aligned and non-aligned data within the same training.
All these options are supported by the same algorithmic framework.
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8 Leitmotif Classification in Operas by Richard
Wagner

This chapter is based on [104]. The first author Michael Krause is the main
contributor to this article. In collaboration with his supervisor Meinard
Müller and Frank Zalkow, he devised the ideas, designed the experiments,
and wrote the paper. Furthermore, Michael Krause implemented all
approaches and conducted the experiments. Julia Zalkow annotated the
leitmotif occurrences. Frank Zalkow and Christof Weiß contributed to the
dataset preparation.

From the 19th century on, several composers of Western opera made use of leitmotifs. As explained
in Chapter 1, leitmotifs are short musical patterns used for guiding the audience through the plot and
illustrating the events on stage. As such, they refer to semantic entities like characters, places, items, or
feelings. A prime example of this compositional technique is Richard Wagner’s four-opera cycle Der Ring
des Nibelungen. Across its different occurrences in the score, a leitmotif may undergo considerable musical
variations. Additionally, the concrete leitmotif instances in an audio recording are subject to acoustic
variability. This chapter approaches the task of classifying such leitmotif instances in isolated excerpts of
audio recordings (the task of leitmotif activity detection throughout full recordings will be dealt with in the
next Chapter 9). As our main contribution, we conduct a case study on our Ring dataset with annotations of
ten central leitmotifs, leading to 2403 occurrences and 38448 instances in total. We build a neural network
classification model and evaluate its ability to generalize across different performances and leitmotif
occurrences. Our findings demonstrate the possibilities and limitations of leitmotif classification in audio
recordings and pave the way towards the fully automated detection of leitmotifs in music recordings.

8.1 Introduction

Music has long been used to accompany storytelling, from Renaissance madrigals to contemporary movie
soundtracks. A central compositional method is the association of a certain character, place, item, or
feeling with its own musical idea. This technique culminated in 19th century opera where these ideas are
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Figure 8.1: Illustration of example leit-
motifs (red for the Horn motif, blue for
the Ring motif) occurring several times
in the Ring cycle and across different
performances.
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denoted as leitmotifs [18, 19]. A major example for the use of leitmotifs is Richard Wagner’s tetralogy
Der Ring des Nibelungen, a cycle of four operas32 with exceptional duration (a performance lasts up to 15
hours) and a continuous plot spanning all four operas. As many characters or concepts recur throughout
the cycle, so do their corresponding leitmotifs. This allows the audience to identify these concepts not
only through text or visuals, but also in a musical way. While all these different occurrences of a leitmotif
in the score share a characteristic musical idea, they can appear in different musical contexts and may vary
substantially in compositional aspects such as melody, harmony, key, tempo, rhythm, or instrumentation.
When considering recorded performances33 of the Ring, another level of variability is introduced due to
acoustic conditions and aspects of interpretation such as tempo, timbre, or intonation. In the following,
we denote the concrete realization of a leitmotif in an audio recording as an instance of the motif. This
chapter approaches the problem of classifying such leitmotif instances in audio recordings, as illustrated
in Figure 8.1. In particular, we study generalization across occurrences and performances.

Cross-version studies on multiple performances have been conducted regarding the harmonic analysis
of Beethoven sonatas [97] or Schubert songs [185], but also for the Ring [223, 237]. Beyond harmonic
aspects, the Ring scenario was considered for capturing audience experience using body sensors and a live
annotation procedure [153] or for studying the reliability of measure annotations [222, 238]. Regarding
leitmotifs, several works have focused on the human ability to identify motifs [5, 7, 142]. In particular,
[143] found that distance of chroma features correlates with difficulty for listeners in identifying leitmotifs.
In [237], Zalkow et al. presented a framework for exploring relationships between leitmotif usage and
tonal characteristics of the Ring.

From a technical perspective, our scenario entails the task of automatically detecting leitmotifs within
an audio recording. This chapter represents a first step towards this goal by considering a simplified

32 While Wagner referred to his works as music dramas instead of operas, we choose the more commonly used latter term.
33 In the current and the following Chapter 9, we use the term “performance” to refer to different recorded versions of the

piece. We do not use the term “version” from the previous chapters, because it may lead to confusion when also considering
occurrences and instances of motifs.
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classification scenario with pre-segmented instances (see Figure 8.1). In the next Chapter 9, we cover
leitmotif activity detection over the course of full recordings.

Due to the multiple sources of variability described above, we opt for a data-driven approach. Neural
networks have emerged as the dominant classification models. In particular, RNNs are able to handle
input sequences of varying length. Our study shows that despite the difficulties of the scenario, an RNN
classifier is surprisingly effective in dealing with the variability across occurrences and performances.

The main contributions of our work are as follows: We conduct a case study on classifying leitmotif
instances in audio recordings of the Ring. To this end, we describe the task of leitmotif classification and
provide a dataset of more than 38000 annotated instances within 16 performances of the Ring (Section 8.2).
We further build an RNN model for classifying leitmotifs in audio recordings (Section 8.3). We carefully
evaluate our model with respect to variabilities across performances and leitmotif occurrences over the
course of the Ring. Moreover, we investigate the effect of adding temporal context and critically discuss
the potential limitations and generalization capabilities of our classifier (Section 8.4). Finally, we suggest
new research directions that may continue our work (Section 8.5).

8.2 Scenario

We now discuss the dataset and leitmotif classification scenario underlying our experiments.

8.2.1 Leitmotifs in Wagner’s Ring

While Wagner mentioned the importance of motifs for his compositional process [213], he did not
explicitly specify the concrete leitmotifs appearing in the Ring. Whether a recurring musical idea
constitutes a leitmotif—and how to name it—is a topic of debate even among musicologists, see, e. g., [41]
where differences in leitmotif reception are discussed. In line with [237], we follow Julius Burghold’s
specification of more than 130 leitmotifs in the Ring [214].

For our experiments, we selected ten central motifs frequently occurring throughout the Ring (see Table 8.1
for an overview including the number of occurrences per motif). These motifs constitute the classes of
our classification task. The selection comprises motifs associated with an item such as the sword (L-Sc),
with characters such as the dwarf Mime (L-Mi), or with emotions such as love (L-Ge). All occurrences of
these motifs were annotated by a musicologist using a vocal score of the Ring as a reference, resulting in
2403 occurrences.

As discussed in Section 8.1, a leitmotif may occur in different shapes over the course of a drama. These
musical variations may be necessary to fit the musical context in which the occurrences appear and, thus,
be adjusted to the current key, meter, or tempo. Moreover, occurrences of leitmotifs may appear in different
registers, musical voices, or instruments. In addition to this, motifs can also occur in abridged or extended
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Name ID Score # Occ. Length
(English) Measures Seconds

Nibelungen
(Nibelungs)
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™
™&

b
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0.87 ±
0.24
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œ
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œ
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(Ride)
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œ
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228 0.66 ±
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0.37
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#

#
# œ
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œ
œ
œ
œ
œ œ œ œ œ œ
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2.70 ±
0.76

Waberlohe
(Swirling blaze)

L-WL  &

#
# œ

œ œ
œ ™
œ œ 190 1.21 ±

0.39
4.39 ±
1.60

Horn
(Horn)

L-Ho &

#
#

œ

œ ™
œ
œ œ

œ œ œ œ
œ ™ ˙ ™ 172 1.38 ±

1.05
2.44 ±
1.57

Geschwisterliebe
(Siblings’ love)

L-Ge &
b ˙ œ œ ™

œb

j
˙ ™ œ œ 155 1.31 ±

0.83
3.03 ±
2.55

Schwert
(Sword)

L-Sc  & œ

j
˙

œ ™™ œ

r
œ ™

œ

J

˙

134 1.89 ±
0.55

3.68 ±
1.88

Table 8.1: Overview of the leitmotifs used in this study. Lengths are given as mean and standard deviations over all annotated
occurrences (in measures) or instances (in seconds) from all performances given in Figure 8.2.

shape, with parts of the motif being repeated, altered, or left out. Despite these diverse musical variations
across occurrences, listeners can often identify motifs easily when listening to a performance. This is in
line with Wagner’s intention of using the motifs as a guideline, thus forming the musical surface of the
Ring [212].

8.2.2 Recorded Performances

As mentioned in the introduction, we do not attempt to classify leitmotifs within a score representation but
on the basis of a performance given as an audio recording. To be more concrete, our work relies on 16
recorded performances of the Ring that have been used throughout earlier chapters of this thesis, see also
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Figure 8.2: Structure of Richard Wag-
ner’s Ring cycle and overview of 16
recorded performances, see also Sec-
tion 3.4. Measure positions have been
annotated manually for the topmost three
performances (P-Ka, P-Ba, and P-Ha),
which also constitute the test set in our
performance split. The three middle per-
formances (P-Sa, P-So, and P-We) con-
stitute the validation set. All other perfor-
mances are used for training.

P-Ka Karajan 1967–70

P-Ba Barenboim 1991–92

P-Ha Haitink 1988–91

P-Sa Sawallisch 1989

P-So Solti 1958–65

P-We Weigle 2010–12

P-Bo Boulez 1980–81

P-Bö Böhm 1967–71

P-Fu Furtwängler 1953

P-Ja Janowski 1980–83
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Section 3.4. For three of these performances, the positions of measures from the score were manually
annotated in the audio [222]. For the remaining 13 performances, the measure positions were transferred
from the manually annotated performances using automatic audio-to-audio synchronization [238]. For
convenience, we specify the performances again in Figure 8.2. We automatically located the 2403 leitmotif
occurrence regions from the score in each of the 16 recorded performances using linear interpolation
between measure positions. This way, we obtained the 38448 instances used for our experiments. The
occurrence and instance positions are made publicly available as a dataset for further research. 34

8.2.3 Leitmotif Classification Task

In this chapter, we consider the task of leitmotif classification. We define this as the problem of assigning
a given audio excerpt to a class according to the occurring leitmotif. Here, we consider ten classes
corresponding to the motifs in Table 8.1. We further make the simplifying assumption that only a single
leitmotif is played at a time. Thus, we omit excerpts where multiple motifs occur simultaneously (this
constraint will be relaxed in the next Chapter 9). Our classification task therefore becomes a multi-class,
single-label problem.

Our dataset allows us to approach the leitmotif classification task from two perspectives, each of which
incorporates its own types of variabilities. First, the performance perspective concerns variabilities across
different performances, resulting from different instrumental timbres, tempi, or other decisions made by
the artists. Furthermore, this perspective encompasses technical properties such as acoustic, recording,
and mastering conditions, which can lead to the so-called album-effect [154]. Second, the compositional
or occurrence perspective concerns diverse musical variabilities of leitmotif occurrences in the score

34 https://www.audiolabs-erlangen.de/resources/MIR/2020-ISMIR-LeitmotifClassification
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Figure 8.3: Variability of L-Ho across
occurrences and performances. Six in-
stances (two occurrences for three perfor-
mances) are shown in a CQT representa-
tion, which is also used as input to our
classification model.
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(as discussed in Section 8.2.1). Figure 8.3 shows the Horn motif L-Ho for different performances and
occurrences. The variability is evident in different durations of the instances as well as different energy
distributions due to other musical sound events being active simultaneously. These variabilties make our
classification task a challenging problem. In our experiments, we investigate the generalization across
these two perspectives, similar to the study in [185].

8.3 Recurrent Neural Network for Leitmotif Classification

Neural networks have previously proven to be useful for classification tasks in the music domain, see, e. g.,
[90, 99, 165]. As we are dealing with variable length inputs (leitmotif instances may last from less than
one to over ten seconds in a performance), RNNs are a natural choice for our scenario.

As input to our system, we take audio excerpts containing leitmotif instances from our 16 performances of
the Ring, sampled at 22 050 Hz. These excerpts are processed by a CQT [20, 184] with semitone resolution
over six octaves and a hop length of 512 samples, where we adjust for tuning deviations (estimated
automatically per performance and opera act). These steps are implemented using librosa. Finally, all
CQT frames are normalized using the max-norm and the resulting representations serve as inputs to our
network.

Table 8.2 gives an overview of the network structure. We use an RNN-variant, the long short-term
memory (LSTM) proposed in [80]. We stack multiple LSTM layers and, after the final LSTM output,
append batch normalization [87] as well as a single fully connected classification layer to obtain leitmotif
predictions. We set the number of LSTM layers and the size of their internal representation to 3 and 128,
respectively. We train this network for 50 epochs by minimizing the cross-entropy loss between predictions
and correct classes using the Adam optimizer [94] with a learning rate of 0.001 on mini-batches of 32
excerpts. Since the excerpts in a batch may have different lengths, we need to zero-pad them to the
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Layer Output Shape Parameters

Input (V, 84)

LSTM (V, 84) 109056
LSTM (V, 128) 131584
LSTM (V, 128) 131584
Take last (128)
Batch normalization (128) 512
Dense (10) 1290

Output: Softmax (10)

Table 8.2: Architecture of our RNN for leitmotif classification. V indicates variable length.

maximum number of frames among excerpts in that batch. During computation, we then use masking to
ignore zeros added to shorter inputs. We further avoid overfitting by selecting the weights of the epoch
that yields the highest mean F-measure on the validation set (as described in Section 8.4.2). The network
is implemented in Python using Tensorflow.

8.4 Experiments

8.4.1 Setup and Splits

We follow the common machine learning approach of partitioning our dataset into training, validation,
and test subsets to train, tune hyperparameters, and estimate the results on unseen samples, respectively.
In contrast to standard procedures, we partition the data according to musical aspects as motivated in
Section 8.2.3. We will consider two splits: the performance and occurrence splits.

For the performance split35, we select the three recordings with manually annotated measure positions
(P-Ba, P-Ha and P-Ka, see Figure 8.2) for the test set and three performances with automatically transferred
measure positions for the validation set (P-Sa, P-So and P-We). The remaining ten performances are used
for training. In this split, all subsets comprise all occurrences of all motifs. Results on the performance
split are given in Section 8.4.3.

In contrast, for the occurrence split, we randomly choose 80% of the occurrences for training and 10%
each for the validation and test set.36 We further ensure that the proportions of occurrences for each motif
is the same in all subsets. In this split, each subset contains all instances of the occurrences in that subset.
Results on the occurrence split are given in Section 8.4.4.

35 Such a split is referred to as version split in Section 3.4.
36 The same occurrences are chosen in all experiments for comparability.
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Context Strict Variable Fixed (10 sec.)
P R F P R F P R F

L-Ni 0.94 0.95 0.94 0.90 0.95 0.92 0.93 0.93 0.93
L-Ri 0.93 0.92 0.93 0.84 0.93 0.88 0.86 0.89 0.87
L-Mi 0.96 0.95 0.96 0.95 0.93 0.94 0.92 0.98 0.95
L-NH 0.94 0.92 0.93 0.96 0.88 0.92 0.97 0.87 0.92
L-RT 0.95 0.94 0.95 0.94 0.90 0.92 0.96 0.95 0.96
L-Wa 0.94 0.98 0.96 0.98 0.96 0.97 0.96 0.99 0.98
L-WL 0.98 0.93 0.96 0.93 0.93 0.93 0.95 0.94 0.94
L-Ho 0.90 0.89 0.89 0.93 0.85 0.89 0.92 0.91 0.91
L-Ge 0.94 0.94 0.94 0.93 0.91 0.92 0.97 0.94 0.96
L-Sc 0.91 0.96 0.93 0.94 0.89 0.92 0.84 0.86 0.85

Mean 0.94 0.94 0.94 0.93 0.91 0.92 0.93 0.92 0.93

Table 8.3: Main results of our method on the test set of the performance split for different strategies of using temporal context.

8.4.2 Evaluation Measures

We adopt standard measures from information retrieval for evaluating our models. For a given class (i. e.,
motif), we treat the classification problem as a retrieval problem, yielding class-dependent precision (P),
recall (R), and F-measure (F) as usual, see, e. g., [145].

We also report the mean precision, recall, and F-measure over all classes. This gives a general impression
of the classification quality. Note that these averages are not affected by class imbalance. Therefore, low
results on an infrequent class will influence the mean results as much as low results on a frequent class.

8.4.3 Results on the Performance Split

Basic Experiment. The left block in Table 8.3 (Strict) summarizes results for our model on the test subset
of the performance split. We obtain high classification results with a mean F-measure of 0.94. Results are
similar across motifs. Highest precision (P = 0.98) is obtained for L-WL, while highest recall (R = 0.98) is
reached for L-Wa. Recall and precision per motif are often similar. We conclude that it is indeed possible
to classify leitmotif instances in previously unseen performances, provided that all occurrences were seen
before in other performances. In the following, we expand on this result by considering other classification
and split scenarios.

Temporal Context. In our basic experiment, we considered isolated leitmotif instances as input to our
classification model, i. e., the audio excerpts to be classified start and end strictly at instance boundaries.
We therefore call this the Strict scenario. Identifying leitmotifs when instance boundaries are not known in
advance could pose an additional challenge. However, the temporal context before and after the instance
boundaries might also be helpful in identifying the class of an excerpt. Next, we analyze the effect of
temporal context on the leitmotif classification results.
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Figure 8.4: Mean F-measures for our
model when using different input lengths
in the Fixed scenario.
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To this end, we compare the Strict scenario with an alternative, called Variable, where we add a randomly
chosen amount of temporal context to the input excerpts. Context may be added before and after the
motif instance. More specifically, the excerpt length is at most doubled and the instance in question is not
constrained to be in the excerpt center. Such use of context also prevents our model from relying on length
and boundary properties of the leitmotif instances. The center block in Table 8.3 gives the results for this
scenario. Compared to the Strict case, the mean F-measure decreases slightly to 0.92.

We also perform experiments on fixed input lengths, which we call the Fixed scenario. Here, we randomly
take subsections of an instance if it is longer than the fixed input length or add context before and after in
case it is shorter. Mean F-measure values for different fixed input lengths are shown in Figure 8.4 (solid
red line). The plot indicates that results decrease for lengths that are shorter than most instances,37 e. g.,
one second. When a fixed length of ten seconds is chosen, which encompasses almost all instances in the
dataset, results are comparable to the Strict case (see also the right block in Table 8.3). Longer inputs
again yield lower results, which may be attributed to the difficulty posed by additional context. However,
one should note that for such large durations, input excerpts are no longer guaranteed to contain instances
of a single motif only and thus, our initial assumption on a single label per input may be violated.

In Section 8.5, we discuss how the results for different amounts of temporal context may be interpreted in
the context of a leitmotif detection scenario.

Potential for Overfitting. Deep learning models often rely on features of the input that would be deemed
task-irrelevant by human experts, see, e. g., [86, 197]. In our case, the correct class for each input may
be inferred not only from musically relevant aspects of leitmotifs such as melody or rhythm (as given
in Table 8.1), but also from confounding features of the excerpts such as instrument activity or volume.
This is especially true for the performance split, where a classification model may predict correct outputs
on the test set by merely memorizing all occurrences during training instead of distinguishing musically
relevant features of the leitmotifs (we will revisit this possibility in Section 8.4.6). In contrast, for the

37 Statistics on instance lengths are given in Table 8.1 (rightmost column).
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Context Strict Variable Fixed (10 sec.)
P R F P R F P R F

L-Ni 0.67 0.80 0.73 0.67 0.86 0.75 0.80 0.91 0.85
L-Ri 0.36 0.41 0.38 0.44 0.43 0.43 0.49 0.67 0.56
L-Mi 0.79 0.87 0.83 0.82 0.80 0.81 0.97 0.96 0.97
L-NH 0.72 0.20 0.31 0.62 0.25 0.36 0.92 0.32 0.47
L-RT 0.57 0.65 0.61 0.60 0.77 0.68 0.71 0.91 0.80
L-Wa 0.87 0.80 0.84 0.81 0.88 0.84 0.95 0.95 0.95
L-WL 0.25 0.21 0.23 0.23 0.17 0.20 0.52 0.20 0.28
L-Ho 0.46 0.57 0.51 0.52 0.57 0.54 0.61 0.91 0.73
L-Ge 0.28 0.30 0.29 0.38 0.43 0.40 0.58 0.68 0.63
L-Sc 0.52 0.50 0.51 0.64 0.53 0.58 0.76 0.58 0.66

Mean 0.55 0.53 0.52 0.57 0.57 0.56 0.73 0.71 0.69

Table 8.4: Main results of our method on the test set of the occurrence split for different strategies of using temporal context.

occurrence split, the model needs to generalize to previously unseen realizations of the leitmotif classes
and therefore needs to rely on their common musical characteristics.

8.4.4 Results on the Occurrence Split

Table 8.4 presents results for the occurrence split with different strategies for adding temporal context.
Overall results are lower than for the performance split. In the Strict scenario, the obtained mean F-measure
of 0.52 is substantially lower than for the performance split, but still well above chance (which corresponds
to 0.1 mean F-measure). Results vary considerably among motifs, with F-measures ranging from 0.23 for
L-WL to 0.84 for L-Wa. In addition, the differences between precision and recall per motif can be large
as in the case of L-NH (P = 0.72 and R = 0.20). We conclude that classifying leitmotif instances for
unknown occurrences is challenging but possible.

We further observe that—in contrast to the performance split—context is beneficial in the occurrence
split. Mean F-measures of the Variable and Fixed scenarios increase to 0.56 and 0.69, respectively.
Figure 8.4 shows F-measures for different amounts of context in the occurrence split (dotted blue line).
Results increase for excerpt lengths up to ten seconds and then stabilize. We see two potential reasons for
this. Firstly, by training with temporal context, the classifier may learn to identify features that indicate
instance starts and ends, which could be helpful for identifying instances in the test set. Secondly, however,
longer temporal context also means that instances from the training set may occur in the context added to
validation and test instances. Indeed, we observed that for a context length of 10 seconds, 67% of test
excerpts overlap with a training instance of the same class, while 8% overlap with a training instance of
another class. Predicting the class of known training occurrences would therefore yield good results on
the test set. The results for adding temporal context may thus partly be explained by overfitting to the
training set.
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Split Performance Occurrence
P R F P R F

Noise 0.90 0.87 0.89 0.32 0.36 0.34

L-Ni 0.90 0.95 0.93 0.63 0.74 0.68
L-Ri 0.89 0.89 0.89 0.28 0.32 0.30
L-Mi 0.94 0.93 0.94 0.78 0.75 0.76
L-NH 0.95 0.88 0.91 0.52 0.28 0.37
L-RT 0.93 0.93 0.93 0.54 0.73 0.63
L-Wa 0.93 0.96 0.94 0.79 0.79 0.79
L-WL 0.94 0.93 0.94 0.17 0.12 0.14
L-Ho 0.89 0.87 0.88 0.40 0.45 0.42
L-Ge 0.91 0.91 0.91 0.20 0.18 0.19
L-Sc 0.90 0.95 0.93 0.68 0.38 0.49

Mean 0.92 0.92 0.92 0.48 0.46 0.46

Table 8.5: Results of our method when incorporating a noise class in the performance and the occurrence split. No temporal
context is added (Strict scenario).

8.4.5 Noise Class

So far, we only considered excerpts that contain one of ten leitmotifs. However, the Ring also contains
regions with other or with no leitmotifs at all. Because of this, we also perform experiments with an
additional Noise class, denoting excerpts where none of the leitmotifs in our selection are being played.
We evaluate whether our model is able to correctly classify our selection of leitmotifs in the presence of
this noise class, both for the performance and the occurrence split. To do so, we randomly select 400
Noise occurrences from the Ring, leading to 6400 Noise instances. The model described in Section 8.3
remains unchanged except for the final classification layer, which now has eleven outputs.

Results are given in Table 8.5. For the performance split, the additional noise class does not change results
by much. Leitmotif classes obtain somewhat lower results (e. g., P = 0.90 for L-Ni compared to P = 0.94
in Table 8.3) while the noise class yields an F-measure lower than most leitmotif classes (F = 0.89).
For the occurrence split, results for the leitmotif classes again decrease slightly (e. g. P = 0.63 for L-Ni
compared to P = 0.67 in Table 8.4), while the noise class itself is especially hard to distinguish (F = 0.34).
In both splits, the noise class does not lead to a complete deterioration of results. Section 8.5 discusses the
implications of this for the task of leitmotif detection.

8.4.6 Random Labels

In all experiments, our model has consistently obtained higher results on the performance than on the
occurrence split. As discussed at the end of Section 8.4.3, the latter split requires generalizing to new
musical realizations of a motif. In contrast, the performance split could be tackled by memorizing all
leitmotif occurrences, which is not possible on the occurrence split.
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To further investigate the gap in results between performance and occurrence split, we now evaluate our
model’s capability to memorize input features on the performance split. To do so, we create a variant of the
performance split where we assign a random class label from one to ten to each occurrence. Thus, while
occurrences are labeled consistently across performances, their classes no longer correspond to leitmotifs.
In this variant of the performance split, the class of a test excerpt can only be obtained by memorizing
classes for occurrences during training and not by learning common properties of all occurrences for a
motif. This random-labeling experiment is inspired by [239].

When training our model on this variant, we obtain a mean F-measure of 0.54 on the test set after 50
epochs, which is much lower than the 0.94 obtained for the original labels (see Table 8.3). We observed
that training for this experiment had not converged after 50 epochs and trained for an additional 75 epochs,
leading to an F-measure of 0.57. The faster convergence and higher results on the original labels suggest
that our model does learn some relevant characteristics of leitmotifs. Our experiment shows, however, that
memorizing excerpts may also contribute to the results.

8.5 Summary and Future Work

In this chapter, we evaluated the capability of a neural network classification model for identifying leitmotifs
in audio excerpts. Despite the complex musical variabilities in this scenario, our RNN-based classification
model is able to differentiate between a fixed set of motifs and to distinguish them from non-motif excerpts.
Generalization is strong across performances and—to a lesser extent—across occurrences. Using temporal
context is helpful in the latter case, although the improvement may partly be the result of overfitting.

Our results encourage the development of a system for automated detection of motif instances in full
performances, which we approach in the next Chapter 9. Unlike the classification task, no pre-segmented
instance boundaries are available for detection. We therefore expect this to be a more challenging scenario.
Additionally, a model used for automated leitmotif detection from audio will also need to handle input
excerpts that do not contain any leitmotifs at all. Our experiments with a noise class suggest that this may
lead to slightly deteriorated but still useful predictions.

As an even more advanced scenario, one may consider an informed detection setting in which instances of
a previously unseen motif must be identified given only a few exemplary instances of that motif.
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9 Leitmotif Activity Detection in Opera
Recordings

This chapter is based on [105]. The first author Michael Krause is the main
contributor to this article. In collaboration with his supervisor Meinard Müller
and Christof Weiß, he devised the ideas, developed the formalization, and
wrote the paper. Furthermore, Michael Krause implemented all approaches
and conducted the experiments.

Building upon the results presented for leitmotif classification in the previous Chapter 8, this chapter
approaches the automatic detection of musical patterns in audio recordings with a focus on leitmotifs.
The detection of such leitmotifs is a particularly challenging example of a musical sound event detection
task, since their appearance can change substantially over the course of a musical work. In our case
study, we continue to investigate the Ring scenario from previous chapters. Within this scenario, we
introduce and formalize the novel task of leitmotif activity detection. Based on our dataset of 200 hours
of audio with over 50 000 annotated leitmotif instances, we explore the benefits and limitations of deep
learning techniques for detecting leitmotifs. To this end, we adapt two common deep learning strategies
based on recurrent and convolutional neural networks, respectively. To investigate the robustness of the
trained systems, we test their sensitivity to different modifications of the input. We find that our deep
learning systems work well in general but capture confounding factors, such as pitch distributions in
leitmotif regions, instead of characteristic musical properties, such as rhythm and melody. Thus, our
in-depth analysis demonstrates some challenges that may arise from applying deep learning approaches
for detecting complex musical patterns in audio recordings.

9.1 Introduction

Within MIR, detecting musical patterns in audio recordings is a fundamental task. These patterns can
be characterized by any musical property, including rhythmic phrases, melodic shapes, or harmonic
progressions. Across different occurrences, a pattern may vary considerably both in musical aspects and
acoustic realization and may appear within different accompanying parts and other musical voices, thus
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Figure 9.1: Illustration of a leitmotif (here
the Ring motif L-Ri) and its manifesta-
tions as (a) leitmotif occurrences in the
score, (b) leitmotif instances in several
recorded performances (audio), (c) con-
tinuous leitmotif activity output by a de-
tection system. Barenboim
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being embedded in varying sound mixtures. In Western music tradition, such patterns play a crucial role
for the narration, interpretation, and enrichment of dramatic plots in many genres—from Renaissance
madrigals to movie soundtracks. In this context, composers have found creative ways of associating certain
characters, places, items, or feelings with specific musical ideas, thus guiding their audience through the
story. The use of such compositional techniques culminated in 19th century opera where these ideas
became known as leitmotifs [18], later adopted by movie soundtracks. A central role is attributed to
Richard Wagner’s operas with their extensive usage of leitmotifs. In his theoretical writings, Wagner
intended these motifs to be particularly memorable and to guide the listeners through the work [213].
Knowing, rediscovering, and understanding the usage of leitmotifs may therefore enrich the experience
of an audience [7] and help musicologists analyze the compositional structure of the works [237]. In
this context, automated methods for detecting leitmotifs over the course of an opera (as illustrated by
Figure 9.1) are of high interest for various applications such as the augmentation of recorded, virtual, and
live performances and may serve commercial, didactic, and musicological research purposes. For instance,
an automated leitmotif detection procedure may be used to display leitmotif names alongside a recorded
performance of the work, thus enhancing the audience’s experience of the composition.

In this chapter, we study leitmotif detection in the context of Richard Wagner’s four-opera cycle Der Ring
des Nibelungen, for which a typical performance lasts about 15 hours. To the best of our knowledge, this is
the first work dealing with automated leitmotif detection. We explore this task using our novel dataset of
the Ring involving over 50 000 annotated leitmotif instances. We design two typical deep learning systems
for detecting the activity of several leitmotifs in recordings of the Ring and investigate their robustness
under different modifications of the input, thus simulating different types of musical variability. We
find evidence that despite achieving good numerical results on a held-out test set, our models capture
confounding factors rather than relying on characteristic musical properties. By analyzing our systems in
this complex leitmotif scenario, we aim for a deeper understanding of their properties and explore some of
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the challenges that may arise from applying standard deep learning systems for detecting musical patterns
in audio recordings.

As discussed in Chapter 8, a leitmotif may be subject to several musical variations across its different
occurrences in the musical score (see Figure 9.1a), such as transposition, tempo changes, abridgment,
prolongation, as well as melodic, harmonic, or rhythmic changes. Due to this variety, systems generally
need to be informed about the specific leitmotifs to detect. Possible application scenarios may have
different degrees of such side information. In the main scenario considered in this chapter, we have
annotations of all instances of the relevant leitmotifs (see Figure 9.1b) for a specific recording. Based on
this input, a system needs to detect the leitmotifs in other performances.

The remainder of the chapter is organized as follows: In Section 9.2, we introduce the musical scenario of
the Ring, outline our cross-performance dataset, and formalize the leitmotif activity detection task. In
Section 9.3, we summarize related work, outline our deep learning approaches and evaluation procedure,
and present first results. In Section 9.4, we analyze our models with regard to different input modifications.
Section 9.5 presents an outlook to less-informed scenarios. Section 9.6 summarizes our findings.

9.2 Musical Scenario and Task Specification

This section outlines our musical scenario consisting of Wagner’s Ring cycle and its specific use of
leitmotifs. We present an overview of our cross-performance dataset and provide a formalization of the
leitmotif activity detection task.

9.2.1 Leitmotifs in Wagner’s Ring

The scenario of our case study is centered around Richard Wagner’s tetralogy Der Ring des Nibelungen, a
musical work of extraordinary dimensions. As indicated by Figure 8.2, the Ring consists of the four operas
Das Rheingold, Die Walküre, Siegfried, and Götterdämmerung, spanning a continuous plot. Comprising
21 941 measures, this large work has been considered for several tasks within MIR such as audio-based
harmony analysis [237], symbolic pattern search [98], or meta-analyses of audience experience [153]. For
organizing this comprehensive material, we consider eleven parts of the Ring (first row in Figure 8.2),
which usually correspond to acts of individual operas (thus hereafter denoted as acts) with continuous
measure count in the score.

The Ring cycle is well-known for its frequent use of leitmotifs, as we previously discussed in Chapter 8.
Most motifs are characterized by their melodic and rhythmic shape but are interwoven into the compositional
structure. Therefore, a leitmotif may appear in different musical contexts, thereby varying in compositional
aspects (such as melody, harmony, or rhythm) in order to fit the current key, meter, or tempo. [237]
explored relationships between leitmotif usage and tonal characteristics of the Ring. Beyond that, leitmotifs
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œ œ œ œ œ œ
œ
œ
œ
œ
œ
œ

œ œ œ œ œ œ
œ
œ
œ
œ
œ
œ 228 1.10 ± 0.30 2.65 ± 0.73

Waberlohe
(Swirling blaze)

L-WL 194 1.21 ± 0.39 4.59 ± 1.70

Horn
(Horn)

L-Ho &

#
#

œ

œ ™
œ
œ œ

œ œ œ œ
œ ™ ˙ ™ 195 1.30 ± 1.02 2.34 ± 1.51

Geschwisterliebe
(Siblings’ love)

L-Ge &
b ˙ œ œ ™

œb

j
˙ ™ œ œ 158 1.32 ± 0.84 3.13 ± 2.65

Schwert
(Sword)

L-Sc  & œ

j
˙

œ ™™ œ

r
œ ™

œ

J

˙

148 1.88 ± 0.63 3.73 ± 1.99

Jugendkraft
(Youthful vigor)

L-Ju &
b
b
œ
œn
œ
œ
œ œb

œ œ
œ œ

œ 146 1.23 ± 0.57 0.96 ± 0.38

Walhall-b
(Valhalla-b)

L-WH  

?

b
b

b
b

b

œ
œ
œ ™
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™

œ
œ
œ
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œ
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œ
œ
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J
136 0.95 ± 0.39 2.83 ± 1.96

Feuerzauber
(Magic fire)

L-Fe &

#
#

5 5

œ
œ
œ
#

™™
™™
™™

œ
œ#
œ
œ

œ
œ

œ#

R

œ
œ
œ ™™

™™
™™

œ
œ
œ
œ

œ œ
œ
œ
œ

œ
œ

œ

#

#

R

w
w
w
#

œ
œ
œ
œ

œ# œ

r

112 1.18 ± 0.40 3.57 ± 1.09

Schicksal
(Fate)

L-SK
?#

#

#
# #

U
˙ ™
w

w

w
œ

w

w

w

94 2.02 ± 0.47 8.11 ± 2.64

Unmuth
(Upset)

L-Un
?

œ
œ
œ˙ œ ™ œ

J

œ ™
œœ ˙ œ 92 1.87 ± 0.70 5.85 ± 3.21

Liebe
(Love)

L-Li &
b

œb ™ œn œ ™
œ

œb œ 89 1.78 ± 0.51 5.54 ± 2.47

Siegfried
(Siegfried)

L-Si &
b
b

b

œ

j

œ ™ œ œ

j
œ ™

œ œ

j ˙ ™

œ ™
œ œ

j
œ ™ œ œ

j

œ ™ œ
œ œ

˙ ™ 86 2.88 ± 1.60 8.03 ± 5.46

Mannen
(Men)

L-Ma &
b
b

b

. . . . .

.

.
.

.

3

œ
œ
œ

n œn œ œ œ
œ

œ

œn
œ#

œ

83 1.15 ± 0.50 1.37 ± 0.70

Vertrag
(Contract)

L-Ve
?

Œ

œb œ œ œ ™
œ œ œ œb œ œ œ ˙

83 2.29 ± 0.65 5.72 ± 2.12

Table 9.1: Overview of the 20 leitmotifs used in this study (the first ten of these motifs were used in Chapter 8). Score examples
shown are adapted from Wagner [214]. Lengths are given as means and standard deviations over all annotated occurrences (in
measures) or instances (in seconds) from all performances given in Figure 8.2. Counts and lengths differ from Chapter 8, because
we allow for concurrent motif activity in this study.
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may occur in different registers, voices, or instruments, and in abridged or extended versions with parts of
the motif being repeated, altered, or left out. Despite these musical variations, listeners can often identify
motifs when listening to a performance. This is in line with Wagner’s intention of using the motifs as a
guideline and, thus, employing them in a clearly perceivable way [213]. This human ability to identify
motifs has been analyzed from a psychological perspective [5, 7, 142].

While Wagner mentioned the importance of such motifs for his compositional process [213], there is no
explicit specification of concrete leitmotifs by the composer. Whether a recurring musical idea constitutes
a leitmotif or not is topic of debate among musicologists [41]. In line with Chapter 8, we follow the
specification of 130 leitmotifs in the Ring by Julius Burghold [214]. A musicologist annotated the
score-based segments (in measures/beats) for all occurrences of these motifs in the Ring. Contiguous
repetitions of motifs are considered as individual segments, and abridged, extended, or varied occurrences
are also included (with our annotator deciding on the amount of variation that can be considered as the
same motif). Since many leitmotifs occur rarely or are musically ambiguous, we pursue a pragmatic
approach, restricting ourselves to 20 characteristic and frequent motifs, which are specified in Table 9.1.
The motif L-Ho, for example, is associated with the hero Siegfried and is often used as a narrative device.
It appears in its full heroic form when Siegfried is first introduced, changes to a diminished chord as the
hero is fighting a great beast and is played again as other characters remember him following his demise.
In total, our annotations comprise 3569 occurrences of these 20 motifs.

9.2.2 Cross-Performance Dataset

In this chapter, we make use of the cross-performance dataset of the Ring introduced in Section 3.4.
As a reminder, this dataset comprises 16 audio recordings (both live and studio) listed in Figure 8.2.
Their duration varies between 13.5 and 15.5 hours. As explained previously, the measure positions were
manually annotated in the audio recordings for the performances P-Ka, P-Ba, and P-Ha [222]. For the
remaining 13 performances, we made use of an automated transfer of measure positions from the manually
annotated performances relying on highly accurate audio–audio synchronization methods [238]. As an
indicator for this high accuracy, we analyzed measure positions obtained for one performance (P-Ba)
using this transfer procedure and found that they deviate only marginally from the manually annotated
measure positions (by 0.137 seconds on average).

Relying on these measure positions, we transferred the 3569 leitmotif occurrence regions from the score
to the 16 recorded performances. For leitmotif boundaries not lying on measure boundaries, we used
linear interpolation between measure positions. The resulting 57 104 leitmotif instance regions in the
different recordings (see Figure 9.1) represent the reference annotations for our detection task. We provide
our annotations of occurrence and instance positions as a publicly available dataset.38

38 https://www.audiolabs-erlangen.de/resources/MIR/2021-TISMIR-TowardsLeitmotifDetection
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In the previous Chapter 8, we used these instances (for ten selected motifs) for evaluating a leitmotif
classification task, where presegmentation of relevant audio excerpts (containing a leitmotif) is assumed
to be given. In this chapter, we aim for detecting the activity of the leitmotifs in a continuous fashion
(Figure 9.1c) without assuming any presegmentation. In consequence, our detection problem is substantially
harder than the classification problem studied in Chapter 8. Moreover, we extend the task to 20 leitmotifs
in total.

As explained in Chapter 3, musical datasets can be split across different dimensions to systematically test
the generalization capabilities of MIR systems. For example, [185] observed differences between systems
for detecting local key when generalizing to unknown performances versus unknown songs. For most
experiments in this chapter, we make use of a performance split (see Figure 8.2 and Section 8.4), using
the three recordings with manually annotated measure positions (P-Ka, P-Ba, P-Ha) for testing. The
synchronization-based measure transfer may introduce small deviations for the other performances, which
may be unproblematic for training but quite relevant for testing purposes. As in the previous chapter, the
validation set comprises the performances P-Sa, P-So, and P-We. The remaining ten performances are
used for training. In Section 9.5, we report preliminary results for detecting leitmotifs in unknown musical
material using an opera split.

9.2.3 Leitmotif Activity Detection

We now want to formalize the leitmotif activity detection task motivated in the introduction. To this end,
we consider a set of leitmotifs L that is indexed by ℓ ∈ [1: 𝐿] := {1, 2, . . . , 𝐿} with 𝐿 = |L|. In our
dataset described in Section 9.2.2, we have L = {L-Ni, L-Ho, . . . } with 𝐿 = 20, see Table 9.1. We further
consider an audio recording with a discretized time axis given by the index set [1 : 𝑁]. Due to variations
in tempo, the time axis [1 : 𝑁] is performance-specific and the value of 𝑁 varies between performances
of the same act. Then, a leitmotif activity function 𝜑ℓ outputs probabilities for motif ℓ being active at each
frame 𝑛 ∈ [1 : 𝑁] of a specific performance, thus 𝜑ℓ : [1 : 𝑁] → [0, 1].

In our dataset, we consider audio recordings from 16 performances of the eleven acts in the Ring (see
Figure 8.2). As described in Section 9.2.2, the reference leitmotif annotations are given on a musical time
axis specified in measures. For an act with 𝑆 measures, we represent our reference annotations as a binary
matrix ARef ∈ B𝐿×𝑀 , for B = {0, 1} and 𝑀 = 𝑆 · 𝐵 (see Figure 9.2 for an illustration of an excerpt of such
a matrix). Here, 𝐵 is a discretization factor. Setting 𝐵 = 1, we evaluate on the level of whole measures.
Setting 𝐵 = 16, we subdivide each measure into 16 equidistant sub-segments and evaluate on sixteenth of
a measure (e. g., in a 4/4 time signature, each sub-segment would correspond to a 16th note). 𝑀 is then
the total number of such measure sub-segments in the act and 𝑚 ∈ [1 : 𝑀] are indices on our musical
time axis. We set 𝐵 = 16 for all our experiments. ARef can now be constructed from the annotations by
assigning ARef

ℓ𝑚
= 1 if and only if an occurrence of motif ℓ covers measure sub-segment 𝑚.
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Figure 9.2: Illustration of our ground
truth occurrence annotations. Measures
112 to 390 from the first act of Siegfried
are shown. For instance, L-Ni is active
around measure 150, whereas L-SK is
never active throughout this excerpt.
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In contrast to our reference annotations ARef , which are defined on the musical time axis [1 : 𝑀] of an
act, we define our leitmotif activity functions 𝜑ℓ on the physical time axis [1 : 𝑁] of an audio recording.
Therefore, to evaluate a leitmotif activity function, we first transfer its outputs onto a musical time axis
by taking the maximum over all outputs for a measure sub-segment. Here, the correspondence between
physical and musical time axes is given by our measure annotations refined with linear interpolation. Since
𝜑ℓ has a continuous output, we then use a thresholding procedure (described in Section 9.3.1) to also
obtain a binary matrix AEst ∈ B𝐿×𝑀 . This matrix can be evaluated against ARef using standard measures
such as precision, recall, and F-measure (see Section 9.3.2).

Evaluating detection results on a musical time axis has two advantages: first, it allows us to quantitatively
compare results obtained on different performances (for which the physical time axes might differ, but the
musical time axis does not). Second, by defining our evaluation metrics in terms of measure sub-segments,
we are able to relate evaluation scores to musical material rather than physical duration (thus, e. g., equally
considering faster and slower sections) and to introduce a musically informed tolerance parameter in our
evaluation (see Section 9.3.3).

Conceptually, our leitmotif activity detection task can be considered as a special case of sound event
detection (SED) as illustrated by Virtanen et al. [210, Fig 8.1d] (see also Section 2.2 for an introduction
into SED). For example, the task of environmental sound detection consists of detecting the activity
of multiple parallel sound sources within an environmental sound scene. Similarly, multiple different
leitmotifs may be active at the same time. However, the activity functions of different environmental
sounds are typically independent from each other, i. e., uncorrelated, and from any other sound in the
mixture. As opposed to this, we can expect correlations between motif activities.39 Furthermore, our
leitmotifs are not independent of other musical parts (such as accompaniment or other motifs), since all
musical parts have to fit into the larger harmonic context. These characteristics distinguish our task from
other, more general SED scenarios.

39 An example of motifs whose occurrences are possibly correlated are the motif for the horn of the hero Siegfried (L-Ho) and
the motif for the character himself (L-Si).
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Concerning a coarsely related problem, the Music Information Retrieval Evaluation eXchange (MIREX)40

has run a task on Discovery of Repeated Themes and Sections, but this was limited to synthesized audio
and prominent themes with little variation. In contrast, we are concerned with real-world orchestral
recordings and our leitmotifs may vary considerably or appear within the background accompaniment.

9.3 Deep Learning-Based Leitmotif Activity Detection

In this section, we present two approaches to leitmotif activity detection based on neural networks,
introduce the evaluation measures used and report first results using our models. For a discussion of
existing approaches to sound event detection, we refer to Chapter 2. There, for most of the mentioned
tasks, sound events are usually short and only depend on very local context. In contrast, the leitmotif
instances considered in this chapter can last several seconds and a detection system must be able to process
the appropriate amount of temporal context to identify them. Therefore, to implement a leitmotif activity
detection function, an RNN-based approach can be considered appropriate. Such an architecture can,
at least in theory, detect entities of arbitrary lengths (such as our leitmotif instances). As described in
Section 2.2, convolutional architectures are commonly used for sound event detection, too. As a second
approach, we therefore consider a CNN-based system, paying special attention to the appropriate receptive
field in time.

9.3.1 Methods

We begin by extracting audio excerpts of ten seconds’ length (containing leitmotif instances, but also
excerpts where none of our motifs occur) from the ten training performances of the Ring described in
Section 9.2.2. Here, ten second excerpts are long enough to completely cover the full leitmotif instance for
nearly all instances in our dataset. For the 3569 leitmotif occurrence regions, we randomly add context
before and after the instance in case the motif is shorter than ten seconds or randomly remove parts of the
beginning and end of the instance in case it is longer. We further include 4000 examples where no motif
occurs.

The audio excerpts are sampled at 22 050 Hz and converted to mono. Subsequently, we process the
excerpts by a CQT with twelve semitones per octave from C1 to B7 and a hop length of 512 samples,
adjusted for tuning deviations (estimated automatically per performance and opera act). These steps are
implemented using librosa.41 We only take the magnitude of the CQT. The resulting CQT frames with
a frame rate of 43.1 Hz are then max-normalized individually (in order to obtain normalized network
input and achieve some degree of loudness invariance) and used as input to our networks. Both networks
process CQT frames and output frame-wise predictions per leitmotif.

40 https://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_Themes_%26_Sections
41 https://librosa.org/
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Layer Output Shape Parameters

Input (431, 84)

LSTM (431, 128) 109 056
LSTM (431, 128) 131 584
LSTM (431, 128) 131 584
Batch normalization (431, 128) 512
Dense (per frame) (431, 21) 2 709

Output: Sigmoid (431, 21)

Table 9.2: Network architecture used for our RNN-based leitmotif activity detection system (adapted from Chapter 8).

9.3.1.1 RNN-Based Approach

For our experiments, adapting the approach from Chapter 8, we use the network architecture as specified
in Table 9.2. The input consists of 431 CQT frames (obtained from a ten-second audio excerpt), every
frame being a vector of 84 CQT bins (one for each semitone in seven octaves), resulting in the input
shape (431, 84). The input is processed by three stacked LSTM layers, which are variants of RNN layers
designed to be easily trainable [62]. Each LSTM uses 128 units for its internal operations. The third
LSTM layer is followed by batch normalization and a dense layer (applied at each frame individually),
which outputs one prediction per motif as well as an additional output indicating no motif activity (leading
to 21 outputs in total). These predictions (logits) are converted to probabilities through a standard sigmoid
activation. Based on these frame-wise outputs, our network models leitmotif activity functions 𝜑ℓ for
each motif ℓ ∈ L. Since this corresponds to a frame-wise multi-label classification problem, multiple
outputs may be activated for the same frame (corresponding to simultaneous motif activity). Moreover,
the procedure is causal, meaning that the output at any frame depends only on this frame and the preceding
frames. We did not observe improvements for increasing the number of stacked LSTM layers, increasing
their number of units, replacing them with gated recurrent unit (GRU) layers, or applying regularization
such as weight decay or dropout.

9.3.1.2 CNN-Based Approach

As our second network, we consider a convolutional architecture as illustrated in Table 9.3. The input
of shape (431, 84) is identical to the RNN input. The subsequent architecture follows the paradigm of
stacking convolution and max-pooling operations [62] and is inspired by the network used by [182] for
SVD (see Chapter 3). In order to obtain a frame-wise output and a receptive field of appropriate size, we
made two adjustments: first, all max-pooling operations have a stride of one in time such that the final
output consists of 431 frames (same as the input). Consequently, all layers following the max pooling
operations have appropriate dilation factors in time. Second, after the pitch axis has been pooled out, we
add one-dimensional convolutions to increase the receptive field in time. Ultimately, the network has a
receptive field covering the full pitch axis (all 84 CQT bins) and around 5.5 seconds on the time axis
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Layer (Kernel size), (Strides), (Dilations) Output Shape Parameters

Input (431, 84)

Expand (431, 84, 1)
Conv2D (3, 3), (1, 1), (1, 1) (431, 84, 128) 1 152
Batch normalization (431, 84, 128) 512
Conv2D (3, 3), (1, 1), (1, 1) (431, 84, 64) 73 728
Batch normalization (431, 84, 64) 256
MaxPool2D (3, 3), (1, 3), (1, 1) (431, 29, 64)

Conv2D (3, 3), (1, 1), (3, 1) (431, 29, 128) 73 728
Batch normalization (431, 29, 128) 512
Conv2D (3, 3), (1, 1), (3, 1) (431, 29, 64) 73 728
Batch normalization (431, 29, 64) 256
MaxPool2D (3, 3), (1, 3), (3, 1) (431, 10, 64)

Conv2D (3, 3), (1, 1), (9, 1) (431, 10, 128) 73 728
Batch normalization (431, 10, 128) 512
Conv2D (3, 3), (1, 1), (9, 1) (431, 10, 64) 73 728
Batch normalization (431, 10, 64) 256
MaxPool2D (3, 3), (1, 3), (9, 1) (431, 4, 64)

Conv2D (1, 4), (1, 1), (1, 1) (431, 1, 64) 16 384
Batch normalization (431, 1, 64) 256
Squeeze (431, 64)

Conv1D (3), (1), (27) (431, 128) 24 576
Batch normalization (431, 128) 512
Conv1D (3), (1), (27) (431, 64) 24 576
Batch normalization (431, 64) 256
MaxPool1D (3), (1), (27) (431, 64)
Dense (per frame) (431, 21) 1 365

Output: Sigmoid (431, 21)

Table 9.3: Network architecture used for our CNN-based leitmotif activity detection system (inspired by [182]). Note that all
operations have stride one in time and pitch, except for MaxPool2D, which has stride three in the pitch direction. Dilation rates in
time increase after each max-pooling operation.

(encompassing most motif instances in our dataset, see Table 9.1). All convolutional layers use a leaky
rectified linear unit (ReLU) activation function with 𝛼 = 0.2. After the final convolution and max-pooling
stage, we apply a dense layer at each frame and obtain leitmotif activity functions 𝜑ℓ in the same fashion
as the RNN system. Unlike the RNN, however, this system is not causal but operates in a centric fashion,
so the output at any frame depends on the frame itself and an equal number of preceding and subsequent
frames.

9.3.1.3 Training and Post-Processing

We consider both networks as representatives for their respective architectural paradigms (recurrent vs.
convolutional). Thus, we abstain from proposing complicated improvement strategies to either model. For
the same reason, we take care to keep the number of parameters in the same order of magnitude (375 445
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for the RNN and 440 021 for the CNN). This allows us to attribute any differences in network behavior to
the architectural paradigms rather than the network size.

We train the networks by minimizing the average binary cross-entropy loss between predicted probabilities
and correct labels at all frames using the Adam optimizer with a learning rate of 0.002 on mini-batches
of 32 excerpts. We use the validation loss as a monitor for early stopping. After 30 epochs without
decreasing loss, we reset the weights to the optimal epoch. These operations are implemented in Python
using Tensorflow 2.42

After training, we obtain leitmotif activity predictions by pre-processing the test recordings and passing
the resulting CQT frames through the model (from start to finish, i. e., including parts not containing
leitmotifs). Essentially, the network layers are operating on entire test recordings, without restrictions
due to their input shape (431, 84). For the RNN-based model, this is achieved by passing on the internal
LSTM states from frame to frame. Regarding the CNN-based model, we apply it on overlapping chunks of
the test recordings with the overlap equal to its receptive field in time. This way, we can obtain predictions
that are not affected by zero padding at the input edges. This yields the frame-wise activity functions
𝜑ℓ for each ℓ. Then, we post-process 𝜑ℓ using a median filter of length 0.5 seconds (applied in a centric
fashion). Median filtering removes outliers (such as gaps and spikes) from 𝜑ℓ that are much shorter than
the typical length of a leitmotif instance (see Table 9.1). Such a post-processing step is common for
other detection procedures, e. g., for detecting singing voice [182]. Finally, we apply binarization with
an individual binarization threshold per motif (tuned to maximize motif F-measure on the validation set
using grid search). We proceed with the post-processed network outputs as described in Section 9.2.3
(transferring predictions from a physical to a musical time axis) to obtain ARNN and ACNN.

9.3.2 Evaluation Measures

After this conversion to a musical time axis, it is straightforward to use the resulting matrix AEst (i. e.,
ARNN,ACNN, or any other model output) and the reference ARef for computing the number of true
positive, false positive, and false negative predictions for a motif ℓ ∈ [1: 𝐿]:

TPℓ =
𝑀∑︁
𝑚=1

ARef
ℓ𝑚AEst

ℓ𝑚 (9.1)

FPℓ =
𝑀∑︁
𝑚=1

(1 − ARef
ℓ𝑚 )A

Est
ℓ𝑚 (9.2)

FNℓ =
𝑀∑︁
𝑚=1

ARef
ℓ𝑚 (1 − AEst

ℓ𝑚) (9.3)

42 https://www.tensorflow.org/
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Based on these numbers, we derive standard metrics such as precision (P), recall (R), and F-measure (F)
for motif ℓ. Finally, we take the mean over these values for all motifs in order to obtain what we call the
class mean evaluation measures. Thus, for these mean values, all classes (i. e., motifs) are counted equally,
regardless of the amount of leitmotif activity per class.

Furthermore, we also compute
TP =

∑︁
ℓ∈[1: 𝐿 ]

TPℓ (9.4)

(likewise for FP, FN) and then obtain precision, recall, and F-measure based on TP, FP, and FN, instead.
Since we aggregate values from the whole matrices here (regardless of class), we call these the matrix mean
evaluation measures. These values are subject to class imbalance on the level of measure sub-segments:
motifs with more (and longer) activity regions affect the result more than rare (and short) motifs. For
these values, all leitmotif activity is counted equally, regardless of class.

The metrics described here correspond to segment-based precision, recall, and F-measure in their
class-based (macro-averaged) and instance-based (micro-averaged) variant [136], respectively.

9.3.3 Evaluation with Tolerance

Many applications of leitmotif activity detection may not require a very fine temporal granularity. For
example, indicating a leitmotif one measure in advance may be sufficient for an application that draws a
listener’s attention to a forthcoming leitmotif. Furthermore, our automated annotation transfer with linear
interpolation described in Section 9.2.2 may have introduced small errors, which should be accounted for
in the evaluation. Motivated by such requirements, we introduce an additional tolerance parameter 𝐾 in
our evaluation. When comparing ARef and AEst, we filter both matrices prior to thresholding using a
moving maximum filter of length 𝐾 for each motif. In the subsequent experiments, we set 𝐾 =𝐵 so that
the filter length corresponds to one measure. Thus, short interruption of a motif’s activity (less than a
measure long) are considered as the motif still being active. As another consequence, each false positive
sub-segment leads to a minimal penalty in the evaluation, since the maximum filter enlarges false positive
predictions to a duration of at least one measure (even if they are shorter). The same applies to false
negative sub-segments, since any leitmotif activity in ARef is also enlarged to a duration of at least one
measure. In a similar fashion, each true positive prediction is enlarged to a duration of at least one measure,
which can be thought of as a minimal reward for true positives. In this context, it is important to note that
the median filter applied to the model outputs already eliminates very short positive predictions (of less
than roughly 0.25 seconds).
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RNN CNN
P R F P R F

L-Ni 0.87 0.76 0.81 0.85 0.79 0.82
L-Ri 0.80 0.73 0.76 0.82 0.76 0.79
L-NH 0.89 0.78 0.83 0.91 0.82 0.86
L-Mi 0.86 0.86 0.86 0.87 0.79 0.83
L-RT 0.85 0.86 0.85 0.80 0.83 0.82
L-Wa 0.94 0.90 0.92 0.93 0.95 0.94
L-WL 0.86 0.85 0.85 0.83 0.85 0.84
L-Ho 0.80 0.76 0.78 0.82 0.80 0.81
L-Ge 0.89 0.81 0.85 0.85 0.81 0.83
L-Sc 0.74 0.72 0.73 0.83 0.72 0.77
L-Ju 0.82 0.68 0.74 0.87 0.78 0.82
L-WH 0.79 0.77 0.78 0.78 0.76 0.77
L-RS 0.87 0.84 0.86 0.86 0.81 0.84
L-Fe 0.87 0.88 0.88 0.93 0.86 0.89
L-SK 0.75 0.72 0.74 0.81 0.75 0.78
L-Un 0.79 0.75 0.77 0.84 0.81 0.83
L-Li 0.89 0.81 0.85 0.82 0.84 0.83
L-Si 0.78 0.75 0.76 0.83 0.80 0.81
L-Ma 0.79 0.81 0.80 0.87 0.79 0.83
L-Ve 0.84 0.73 0.78 0.83 0.83 0.83

Class mean 0.83 0.79 0.81 0.85 0.81 0.83
Matrix mean 0.83 0.78 0.80 0.85 0.80 0.82

Table 9.4: Results for our DL-based leitmotif activity detection systems on the test set.

9.3.4 Experimental Results

We evaluate the trained models on the three test performances (see Figure 8.2), post-process the output,
and apply the evaluation procedure and metrics as described above. For the RNN-based system, we obtain
the results given in the left block of Table 9.4. Precision, recall, and F-measure are given for each motif,
e. g., for L-RT, P=0.85, R=0.86, and F=0.85. In this experiment based on the RNN model, precision
values are usually higher than recall values, especially for L-Ju, where P=0.82 and R=0.68. The effect is
also evident in the class mean, where P=0.83 and R=0.79, implying that our model has more difficulties
with false negatives than false positives.

We obtain the highest F-measure for L-Wa with F=0.92, while the lowest is F=0.73 for L-Sc. The class
mean F-measure (F = 0.81) and the matrix mean F-measure (F = 0.80) are close to each other, which
indicates that results for frequent and infrequent motifs (in terms of active measure sub-segments per
motif) are similar. Overall, evaluation metrics for our RNN-based system for all motifs are above 0.7, with
the mean results at around 0.8 for all evaluation metrics.

In Figure 9.3, we visualize results for our RNN-based model on an excerpt of the first act of Siegfried.
Here, black regions correspond to true positive predictions of our model (after thresholding), while light
and dark red regions indicate false negative and false positives, respectively. White color indicates true
negative predictions. In the excerpt in Figure 9.3, most regions of leitmotif activity (and inactivity) are
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Figure 9.3: Illustration of results for our
RNN-based leitmotif activity detection
system (shown for measures 112 to 390
from the first act of Siegfried in P-Ba).

150 200 250 300 350

Time (measures)

L-Ni
L-Ri
L-NH
L-Mi
L-RT
L-Wa
L-WL
L-Ho
L-Ge
L-Sc
L-Ju
L-WH
L-RS
L-Fe
L-SK
L-Un
L-Li
L-Si
L-Ma
L-Ve

L
ei

tm
o

ti
fs

TP

FP

FN

predicted correctly (black and white regions). Sometimes, only parts of a leitmotif instance are predicted
as active (see, e. g., for L-Ri around measure 220). There are also some clear outliers such as the false
positive predictions for L-Ni at measure 300 and L-Ju around measure 310. Overall, the correctly
predicted regions dominate the visualization.

The right block of Table 9.4 shows our results obtained with the CNN-based system. Overall, results are
slightly better than for the RNN (see, e. g., the class mean F-measure F=0.83 compared to F=0.81 for the
RNN). Aside from this, we observe similar behavior as for the RNN. For example, L-Wa again yields the
highest F-measure among motifs with F=0.94. We conclude that it is unlikely that either architecture is
strongly superior to the other in terms of evaluation scores on the test set.

9.4 Robustness to Input Modifications

We now want to gain a deeper understanding of the properties learned by our neural network-based models.
To do so, we systematically modify the input to our models in different ways and investigate the impact
this has on the model outputs.

Figure 9.4, upper row, gives a qualitative overview of the modifications we consider in this section. Besides
the unmodified model input (a), these modifications encompass (b) tempo changes, (c) pitch shifts, (d)
replacement of leitmotif frames by noise, and (e) shuffling of leitmotif frames. The lower row of Figure 9.4
illustrates the activity functions resulting from the RNN for an example (solid red line), together with
the reference annotation (dashed blue line). From a musical point of view, we would expect our activity
detection approach to be robust against tempo changes and pitch shifts, while it should be sensitive to
shuffling and noise replacement of frames. Strikingly, however, we see that tempo change and shuffling do
not seem to change the results much, while pitch shifting and noise affect them strongly. We can also
observe that our model anticipates the motif instance before it actually begins (Figure 9.4a). Very similar
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Figure 9.4: Results for our RNN-based leitmotif activity detection system on measures 117 to 123.5 of the first act of Siegfried
in P-Ba (see also Figure 9.2 and Figure 9.3; outputs of the CNN-based model are similar). A prominent instance of L-Sc is
being played in the higher registers, accompanied by low-frequency tremolo. The model input is shown in the upper row. The
respective output activations for the L-Sc class are plotted underneath in red (solid line). The dashed blue line corresponds to the
ground truth annotations for L-Sc. The input is given to the network (a) unchanged, (b) slowed down to 175% of the original
length, (c) with a pitch shift of eleven semitones, (d) with motif frames replaced by noise, and (e) with motif frames shuffled
along the time axis.

behavior can be observed for the CNN (not shown here in the interest of space), although the CNN does
not anticipate the motif instance in this example.

In the following we examine these qualitative findings in a quantitative fashion. To do so, we apply the
modifications to all acts of all performances in the test set, detect leitmotif activity in these modified inputs
using our networks, and then evaluate with our usual procedure.

9.4.1 Tempo Changes

First, we simulate global tempo changes in our test recordings by stretching or compressing our CQT
representation along the time axis using bilinear filtering (see also Figure 9.4b).43 Figure 9.5a shows the
matrix mean F-measure obtained by the RNN on the test set for different tempo changes. For example, at
50% tempo, the input is stretched to twice its original length (i. e., slower), whereas for 200% tempo, the
input is compressed to half its original length (i. e., faster). The solid red curve in Figure 9.5 demonstrates
the effect of this transformation on our model. The resulting F-measure steadily decreases for slower inputs
(from F=0.80 at 100% to F=0.69 at 50%). For faster inputs, the F-measure remains higher compared to
slower inputs (e. g., F=0.76 at 200%). Nevertheless, most results are above F=0.70, meaning that our
model can deal even with considerable tempo changes. It should be noted that all test performances are
longer (i. e., slower) than an average performance in the training set. This may be the reason why our
activity detection procedure is more robust to speeding up test performances while being more sensitive
towards slowing them down.

43 The experiments in this and the following section yield similar trends and conclusions when performed using a phase
vocoding technique for time-scale modification.
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Figure 9.5: Results for our (a) RNN-
based and (b) CNN-based leitmotif ac-
tivity detection systems on the test set
under tempo changes. The CQT input is
stretched in time (using bilinear resam-
pling) by the given percentage.
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A similar trend can be observed for the CNN-based model in Figure 9.5b. Here, we observe a stronger
drop in results for slower inputs (from F= 0.82 at 100% to F= 0.48 at 50%). We hypothesize that this
is due to the fixed size of the CNN’s receptive field, which means that its predictions are based on less
musical content for inputs at slower tempos and on more musical content for inputs at faster tempos.

We now conduct the same experiment with an additional data augmentation strategy, as is common
practice in deep learning [62], by also simulating global tempo changes during training. The dashed
blue curve in Figure 9.5a shows the RNN’s results in this experiment. This way, training examples are
randomly stretched or compressed to be at most 10% slower or faster. The solid red and dashed blue
curves are almost identical, meaning that this augmentation does not affect results much. We repeat this
experiment with training augmentations of up to 20% change in tempo, indicated by the dotted orange
curve. Here, test F-measure increases for all amounts of tempo changes (including F= 0.83 at 100%).
For the CNN, we observe a similar behavior in Figure 9.5b. Here, both augmentation experiments yield
improved results, although there is still a drop for very slow inputs (F=0.62 at 50% for augmentations up
to 20%). From these experiments, we conclude that training on ten different performances of the Ring
already introduces some robustness to minor tempo changes in our model, which may further be enhanced
through augmentations.
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9.4. Robustness to Input Modifications

Figure 9.6: Results for our (a) RNN-
based and (b) CNN-based leitmotif activ-
ity detection systems on the test set under
pitch shifts. The CQT input has been
shifted (using nearest-neighbor padding)
on the pitch axis by the given number of
semitones (corresponding to CQT bins).
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9.4.2 Pitch Shifts

Second, we simulate transpositions in our test recordings by shifting our CQT representations along the
pitch axis (using nearest-neighbor padding at the boundaries, i. e., the value for the lowest/highest CQT
bin is replicated), see also Figure 9.4c. Figure 9.6a (solid red curve) shows matrix mean F-measures
obtained with the RNN after modifying the test recordings in this way. This curve demonstrates that pitch
shifts have a dramatic effect. For example, the test results drop to F= 0.11 for a shift of one semitone
upwards. Shifting by more semitones, the F-measure drops further. We conclude that our model crucially
relies on absolute pitch information. Even though leitmotif instances of the same motif appear in different
registers and keys, the model has not learned their properties in a transposition-invariant way. As such, the
model can only detect transposed motifs seen during training and would fail to generalize to new, unseen
transpositions.

Convolutional architectures such as our CNN-based model are usually ascribed a certain degree of
translation-invariance due to the weight-sharing and pooling operations [62]. Performing the pitch shift
experiment for our CNN (Figure 9.6b), we can indeed observe better results than for the RNN when
applying pitch shifting to the model input. For example, a shift of one semitone upwards now yields
F=0.26 and F-measures never drop below 0.1 for any considered shift. However, all shifts yield F-measures
below 0.3, meaning that absolute pitch information is still highly important for our CNN-based model.
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We repeat this experiment with an augmentation strategy, using pitch shifting also for the training set.
Here, training examples are randomly shifted at most two semitones in either direction along the pitch
axis. The dashed blue curve in Figure 9.6a shows the corresponding results for the RNN. We observe that
applying this augmentation decreases results for the unmodified test inputs (i. e., F=0.69 for a shift of 0),
but increases results for transformations considered during training (shifts of −2 to +2 semitones). Larger
shifts still cause the model to fail. The same effect is seen in the dotted orange curve, where shifts of up
to ±6 semitones were applied as augmentation during training. Here, the result for unmodified model
input drops to F=0.46, but the model can now cope with pitch shifts within the same range as used for
augmentation (e. g., F=0.42 for a shift of +6 semitones). In addition, the slopes of the F-measure curve
are less steep, implying better generalization (e. g., F= 0.26 for a shift of minus eight semitones, even
though only shifts up to ±6 semitones were included during training).

Figure 9.6b shows the corresponding curves for the CNN. Here, results for unmodified model input (shift
of 0 semitones) drop only slightly when adding augmentations (e. g., F=0.79 for up to ±6 semitones pitch
shift augmentation compared to F=0.82 without augmentation). Additionally, the slopes of the F-measure
curves are even less steep (e. g., F=0.74 for a shift of minus eight semitones and up to ±6 semitones as
augmentation).

9.4.3 Noise

Third, we study the effect of completely removing all information in leitmotif regions from our test set. To
do so, we replace all frames within a leitmotif instance by uniform noise (see Figure 9.4d). The impact of
this modification on the RNN’s results is shown in Figure 9.7a (1). When replacing all leitmotif frames
(denoted as “All”), we obtain a much lower F-measure (F=0.13) compared to the original model input
(“Unchanged,” F=0.80). In order to see whether our model responds to certain parts of leitmotif instances,
we further modify only the first (“Start”), the middle (“Middle”), or the last third of frames (“End”) for
each leitmotif instance. The drop in F-measure is most pronounced for the beginning of motif instances
(leading to F=0.42 when replacing the first third but preserving the rest, compared to F=0.63 for the last
third). Yet, the overall F-measure does not drop entirely even when replacing all frames by noise. This
implies that context around the leitmotif instances can help in identifying motifs even when the actual
motif frames are absent. Again, we observe similar results for the CNN in Figure 9.7b (1). Here, frames in
the middle of each leitmotif affect results more strongly and results drop even further when replacing all
leitmotif frames (F=0.07). Overall, we can conclude that our CNN-based model exploits context around
leitmotif regions in a similar fashion as the RNN does.

9.4.4 Shuffling

Fourth, we study the effect of removing the temporal order from the leitmotif activity regions. To do so,
we shuffle the frames within a leitmotif instance along the time axis, see also Figure 9.4e. The impact
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Figure 9.7: Results for our (a) RNN-
based and (b) CNN-based leitmotif activ-
ity detection systems on the test set when
(1) replacing leitmotif frames by noise
or (2) shuffling them along the time axis.
The modifications have been applied to ei-
ther the first, middle, or last third of each
leitmotif instance (Start, Middle, End),
for none (Unchanged), or for all leitmotif
frames (All).
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of this modification on the RNN is shown in Figure 9.7a (2), again for different parts of a leitmotif
instance. We can observe that shuffling has only a minor impact on results (giving F=0.79 when shuffling
only the first third or F=0.67 for all frames). Since shuffling along the time axis destroys any rhythmic
information as well as the temporal aspects of melody (the order of notes), we conclude that such rhythmic
or melodic cues are largely ignored by our model. We hypothesize that our model instead captures the
pitch distributions in leitmotif instances, which are related to harmony. These distributions are mostly
preserved when shuffling leitmotif frames, explaining the high results even for shuffling all frames of a
leitmotif instance. Our experiments on pitch shifting (see Section 9.4.2) further suggest that the model
depends on absolute pitch distributions rather than relative harmonic relationships (since pitch shifting
preserves relative pitch relationships but changes absolute pitch distributions, leading to worse results).

The CNN reacts more strongly to this input modification, see Figure 9.7b (2). When shuffling all frames,
for example, the F-measure drops to 0.42. F-measures remain high when only individual parts of the
instances are shuffled (e. g., F=0.77 when shuffling only the end). Therefore, we hypothesize that our
CNN only weakly reacts to temporal relationships.

Summarizing the insights obtained from the input modifications, we find that our models are to some
degree robust to global tempo changes, which is a desirable property. However, we also found that they
rely on pitch distributions within leitmotif instances (which is undesirable since these distributions can
be affected by other musical parts) instead of capturing many musical cues that human listeners would
associate with specific leitmotifs (such as temporal aspects of melody and rhythm). We further found that
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our recurrent and convolutional architectures behave similarly under input modifications, with some slight
differences. While the CNN is affected more strongly by slowed down input, it is more robust to pitch
shifts, especially when using additional augmentation. In addition, the CNN is affected slightly more
strongly by shuffling of leitmotif frames than the RNN.

9.5 Towards Less Informed Scenarios

This chapter approached the task of detecting leitmotif activity in a continuous (frame-wise) fashion over
the course of entire opera recordings. As a more informed scenario, Chapter 8 considered classification
of pre-segmented audio excerpts according to the leitmotif played. Additionally, we ruled out excerpts
where multiple leitmotifs were played simultaneously. Compared to this constrained scenario, the leitmotif
activity detection task is more challenging since no pre-segmented instances are given and inputs may
contain no motif or simultaneously active motifs. In Chapter 8, we report F-measures of about 0.9 for a
leitmotif classification setting with the first ten motifs of Table 9.1. While our results cannot be compared
directly (especially since we evaluate on a frame level instead of an excerpt level as in Krause et al. [104]),
we can see that the detection F-measures obtained with our deep learning systems (Table 9.4) are lower, at
roughly 0.8 on average.

To approach scenarios with an even lower degree of side information, our systems must be able to
handle previously unseen leitmotif occurrences. The classification experiments reported in Chapter 8
demonstrate that generalizing to unseen leitmotif occurrences is more challenging than generalizing to
unseen performances of known occurrences. To this end, different splits of the dataset were considered in
Chapter 8. In a similar way, we performed a preliminary experiment where we split the dataset across
operas instead of performances. Here, we trained on all operas except for Das Rheingold in all 16
performances (Figure 8.2). We then evaluated on a test set containing only Das Rheingold, again in all
16 performances. From this experiment, we obtained low evaluation measures with P= 0.17, R= 0.07
and F=0.10 (matrix mean) for the RNN-based system, as well as P=0.18, R=0.13 and F=0.15 for the
CNN-based system.

The discrepancy between the performance and the opera split’s results may be explained with the models
relying on confounding factors such as pitch distributions in leitmotif instances, while ignoring musically
relevant aspects of leitmotifs such as rhythmic or melodic progressions. In other words, our models can
be said to be overfitted towards the specific motif instances in the training set. In order to approach
less informed scenarios such as the opera split (i. e., generalizing to unseen pattern occurrences) or the
discovery of unknown leitmotifs (i. e., discovering unknown patterns in an unsupervised fashion), it
becomes important to limit the impact of confounding factors. For this purpose, using more diverse data
is recommended in the machine learning literature [62]. This could be realized, e. g., by adding more
performances, considering data augmentation strategies, or utilizing artificial training data to expose the
models to a larger variety of tempo, key, or timbre. As a different approach, one might annotate additional
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musical works and utilize transfer-learning techniques [32]. Another improvement strategy could be the
use of more elaborate neural network architectures by increasing the number of network parameters or by
using convolutional-recurrent architectures [25] and other recent models proposed for SED tasks [121].
Additionally, dedicated architectures introducing invariance to tempo [60], key [46] or other properties
[112] may be useful.

9.6 Conclusion

In this chapter, we approached the task of detecting leitmotif activity in opera recordings as a case study
for the detection of complex musical patterns in audio. For our experiments, we considered a scenario
comprising 3569 annotated occurrences of 20 characteristic leitmotifs in Wagner’s Ring cycle, realized in
16 different performances and, thus, summing up to 57 104 activity regions within more than 200 hours of
audio. As our main contributions, we tested two deep learning models for leitmotif activity detection and
analyzed their behavior under different input modifications. Our models provided good numerical results
on a held-out test set but captured confounding factors such as absolute pitch distributions, rather than
relying on characteristic musical properties of leitmotifs such as rhythmic or melodic patterns.

Thus, our study demonstrates the challenges faced by neural networks for detecting musical patterns.
Future work may employ more elaborate model architectures and dedicated training strategies in order to
handle this task in a more robust way and to proceed towards approaching other, less-informed scenarios.
In the final Chapter 10 of this thesis, we further discuss these challenges and possible solutions.
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10 Summary and Future Work

This thesis studied activity detection for musical sound events in audio recordings. We focused on
orchestral and opera music as a complex and often neglected application scenario. In this context, we
covered the detection of four different kinds of musical sound events using deep learning (DL), exploring
different techniques in the process. We began by looking at singing voice as the event class to be detected.
In Chapter 3, we compared a classical and a DNN-based approach for singing voice detection and showed
that both perform roughly on par. Our study yielded insights on the advantages and drawbacks of DNNs
for activity detection, which are more computationally expensive but also able to better utilize large
training datasets than classical methods. Afterwards, in Chapter 4, we extended this scenario towards
simultaneously classifying singer gender and voice type. In this novel setting, we compared different
approaches for utilizing the hierarchical relationships between the event classes. As a main contribution,
we proposed new consistency loss terms and found that a joint classification approach incorporating our
losses is particularly effective. Thus, our work demonstrates the benefits of adding musically motivated
constraints (such as hierarchies) to DL systems in a soft way. In Chapter 5, we explored these hierarchical
techniques in more depth, using instrument sounds as our target events. As one contribution, we showed
that utilizing hierarchy information reduces the amount of instrument annotations required, which has
so far hindered research progress on this task. Additionally, we analyzed our models with regard to
confounding effects and contributed to a better understanding of DL models for instrument activity
detection. Afterwards, in Chapter 6, we presented an approach for representation learning that requires
no instrument labels, relying instead on correspondences between different recorded versions of a piece.
Our approach therefore constitutes another example of exploiting musical structure in DL systems. As
the third kind of events in this thesis we considered pitches. In Chapter 7, we presented an approach
for learning multi-pitch estimation from weakly-aligned training examples using soft dynamic time
warping (SoftDTW) and showed its effectiveness compared to the state of the art for this task. Moreover,
our work demonstrates how differentiable alignments may be used for arbitrary alignment problems in
MIR. Fourth, in Chapters 8 and 9, we discussed leitmotifs as musical sound events that are especially
challenging to detect. To the best of our knowledge, leitmotif classification and detection has not previously
been studied within MIR research. In Chapter 8, we considered a scenario with pre-segmented motif
excerpts and showed that an RNN can effectively classify these excerpts. In Chapter 9, we extended
this towards a continuous detection scenario while covering additional motifs and classifier types. We
also discussed the generalization capabilities of our models in-depth, yielding general insights on the
automated detection of musical patterns in audio recordings.
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We conclude this thesis with a discussion of promising directions for future work, which we organize into
four broad categories.

Applying and Extending our Detection Systems. First, one may apply our detection systems for
downstream applications such as music tagging or audio-based retrieval in large music catalogs. For
example, the user of a digital audio workstation may find it helpful to segment an audio track according to
singing or instrument activity. Our systems could also be used to aid music visualization or to display
helpful additional information alongside live orchestral and opera performances [135]. Some of the
methodologies presented in this thesis could also be applied to other tasks or music from other genres. For
example, it could be insightful to explore the confounding factors affecting instrument activity detection
systems for popular music. SoftDTW, as another example, could be applied to lyrics alignment and
transcription [65, 193]. Furthermore, one may utilize soft alignments in scenarios involving feature
sequences from arbitrary domains, such as multi-modal music synchronization between score, audio, and
video [204]. There are also several natural extensions to our detection systems that could be explored.
For instance, one might attempt to jointly detect multiple event classes simultaneously, e. g., instruments
and pitches [84, 232]). One may also further improve the results of our detection systems by employing
standard DL tricks, including more augmentations, larger model architectures, rigorous hyper-parameter
tuning and increased amount of data [62]. However, as discussed throughout this thesis, the cost of
obtaining annotated orchestral data may be prohibitively high. Future work may consider using music
synchronization to generate even more annotated versions of the same pieces, leveraging alternative
sources of annotations (such as lyric subtitles in video recordings of opera), or exploring synthetically
generated versions.

Utilizing Weakly- and Unsupervised Training Targets. To alleviate the need for large amounts of
annotations, a second promising direction is the use of weakly- and unsupervised learning paradigms. In
this thesis, we made some contributions in this area, including the use of hierarchies to reduce the need for
fine-grained labels, our proposed cross-version approach for annotation-free representation learning, and
the use of SoftDTW for learning from weakly-aligned labels. As discussed in Chapter 6, there exists a
large body of research on audio representation learning using self-supervised training strategies. In recent
years, methods following a mask-and-predict paradigm have shown great promise. There, a portion of an
audio input is masked and a DNN is trained to predict the masked content given some context (where
“masking” may mean removing information directly from the waveform or within some latent space as in,
e. g., the successful HuBERT [81] model). This idea originated from natural language processing [37]
and has also been applied to computer vision [76]. We refer to [126] for a comprehensive survey on
self-supervised learning for audio. Another interesting direction is multi-modal representation learning,
where large databases of text–audio or image–audio pairs are used for learning [68, 169]. This approach
has also recently been applied to the music domain [130]. In future work, the representations learned
by these systems may be utilized for musical sound event detection. Often, however, such models are
quite large and resource hungry. On the opposite end of that spectrum, incorporating domain knowledge
can help to build models that require less data, may be easier to interpret, and have fewer parameters.
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For example, the authors in [10] propose a system for unsupervised piano transcription that incorporates
knowledge about the mechanisms of sound production in pianos. Choi et al. [31] build a differentiable
drum synthesizer that learns—without annotations—to transcribe drum recordings through re-synthesis.
This research direction, also termed analysis-by-synthesis [33, 177], has become more prominent with the
availability of differentiable digital signal processing toolboxes [47], which have been used, e. g., to learn
fundamental frequency estimation in a semi-supervised setting [48].

Understanding and Addressing Confounding Factors. Another prominent topic in this thesis was the
presence of confounding factors and related overfitting effects. We repeatedly found that our models
respond to patterns in the input which do not correspond to the musical attributes we wish to detect (e. g.,
spectral statistics for leitmotif detection in Chapter 9 or simultaneous instrument activity in Chapter 5).
This behavior limits the generalization properties of our systems. As a third future research direction, we
suggest to further investigate such confounding effects. While many MIR systems are known to exhibit
such problems [196], DL systems are particularly prone to a phenomenon called shortcut learning in the
wider machine learning literature. Shortcut learning refers to a DNN choosing simple decision-making
strategies (shortcuts) over complex, more plausible ones. For example, an image classification system
may respond to accidental pixel patterns in the training data [86, 199]. Similar effects have been observed
in the music domain [168]. Likewise, an object detector may identify coffee cups based on patches of
brown liquid rather than geometry [113]. We refer to [59] for a comprehensive survey on this topic. To
address these problems in our setting, one may consider more controlled scenarios than real orchestral
recordings, e. g., performing instrument classification on simple, monophonic sounds as opposed to
polyphonic orchestral mixtures. Alternatively, using larger and more diverse datasets may also reduce the
extent of overfitting, though eliminating all confounders in this way is challenging.

Utilizing Generative Models for Activity Detection. Finally, as the fourth area for future work, one may
review recent advances in generative modeling for various modalities (including music) and investigate
how they might contribute to improving musical sound event detection. Modern generative models in
natural language processing such as BERT [37] or GPT [22] have shown impressive performance, not only
in generating convincing natural language output, but also in representing higher-level semantic concepts
[173]. Similarly, the success of generative vision models like Stable Diffusion [174] or multi-modal
models like CLIP [169] suggests that such semantic understanding can extend to visual concepts. We
hypothesize the following explanation for this: In order to produce convincing and high-resolution outputs,
these generative models need a good understanding of semantics. In contrast, for many classification
problems, shortcut solutions can suffice (see above). The hypothesis is supported by recent works showing
how generative models may be adapted to reduce the impact of shortcuts and improve the robustness
of DL models [180, 235]. An analogy from the MIR domain is the relationship between music source
separation and activity detection. State-of-the-art systems for music source separation achieve good results
when evaluated for activity detection, even when they have not been trained for that task [111]. Again, we
hypothesize that separating a music mixture into individual tracks requires a DNN to learn more complex
and robust features than merely learning activity detection. Another desirable property of generative
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models is that they may be trained on large, unannotated datasets (see also the second research direction
discussed above). In future work, such generative models may be adapted and fine-tuned for analysis tasks,
such as sound event detection. In the context of music processing, some works have attempted to adapt a
large generative model for music (called Jukebox [38]) by finetuning it for music classification tasks [27]
or source separation [132]. Their success has so far been hindered by the limited capability of Jukebox to
model long-range dependencies in music recordings. Recently released generation systems like MusicLM
[3] claim to overcome this. However, like most models in MIR research, none of these models are trained
on large amounts of orchestral or opera data and are thus not directly applicable in our scenario. Finally, it
is important to emphasize that large generative models also suffer from biases and confounding effects
[77]. In other words, building MIR models that are transferable to new music styles and genres remains a
challenge.

To conclude, we believe that music in general and musical sound event detection in particular offer unique
opportunities to advance the state of the art and gain a better understanding of machine learning algorithms.
In contrast to, e. g., object detection in images, the musical scenarios approached in this thesis remain far
from solved. The event types we discussed may appear in a highly correlated fashion (like instruments),
may merge together into a single sound (e. g., in an orchestral tutti), and their definition may be highly
ambiguous (for leitmotifs or note offsets). As we showed in this thesis, by building musical sound event
detection systems and analyzing their behavior, we gain an understanding not just of the neural networks
we use but also of the musical concepts themselves.
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Abbreviations

CPU central processing unit
CTC connectionist temporal classification
CQT constant-Q transform
CNN convolutional neural network
DL deep learning
DNN deep neural network
DCASE Detection and Classification of

Acoustic Scenes and Events
DP dynamic programming
DTW dynamic time warping
GPU graphics processing unit
HCQT harmonic constant-Q transform
IAD instrument activity detection
ISMIR International Society for Music

Information Retrieval
LSTM long short-term memory
MFCC mel-frequency cepstral coefficient

MCTC multi-label connectionist temporal
classification

MPE multi-pitch estimation
MIREX Music Information Retrieval

Evaluation eXchange
MIR music information retrieval
MIDI musical instrument digital interface
RAM random access memory
RFC random forest classifier
ReLU rectified linear unit
RNN recurrent neural network
SWD Schubert Winterreise Dataset
STFT short-time Fourier transform
SVD singing voice detection
SoftDTW soft dynamic time warping
SED sound event detection
TPU tensor processing unit
VRAM video random access memory

131



132



Bibliography

[1] Jakob Abeßer. A review of deep learning based methods for acoustic scene classification. Applied Sciences,
10(6):2020, 2020. doi: 10.3390/app10062020.

[2] Jakob Abeßer and Meinard Müller. Jazz bass transcription using a U-net architecture. Electronics, 10(6):670,
2021. doi: 10.3390/electronics10060670.

[3] Andrea Agostinelli, Timo I. Denk, Zalán Borsos, Jesse H. Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, Matthew Sharifi, Neil Zeghidour,
and Christian Havnø Frank. MusicLM: Generating music from text. arXiv, abs/2301.11325, 2023. doi:
10.48550/arXiv.2301.11325.

[4] Ruchit Agrawal, Daniel Wolff, and Simon Dixon. A convolutional-attentional neural framework for
structure-aware performance-score synchronization. IEEE Signal Processing Letters, 29:344–348, 2021. doi:
10.1109/LSP.2021.3135192.

[5] Henning Albrecht and Klaus Frieler. The perception and recognition of Wagnerian leitmotifs in multimodal
conditions. In Proceedings of the International Conference of Students of Systematic Musicology (SysMus),
London, UK, 2014. URL https://journals.gold.ac.uk/index.php/sysmus14/article/view/
220.

[6] Pablo Alonso-Jiménez, Xavier Serra, and Dmitry Bogdanov. Music representation learning based on
editorial metadata from discogs. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 825–833, Bengaluru, India, 2022. doi: 10.5281/zenodo.7316790.

[7] David J. Baker and Daniel Müllensiefen. Perception of leitmotives in Richard Wagner’s Der Ring des
Nibelungen. Frontiers in Psychology, 8:662, 2017. doi: 10.3389/fpsyg.2017.00662.

[8] Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and Sebastian Ewert. Automatic music transcription: An
overview. IEEE Signal Processing Magazine, 36(1):20–30, 2019. doi: 10.1109/MSP.2018.2869928.

[9] Adam L. Berenzweig and Daniel P. W. Ellis. Locating singing voice segments within music signals. In
Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA),
pages 119–122, New Paltz, New York, USA, 2001. doi: 10.1109/ASPAA.2001.969557.

[10] Taylor Berg-Kirkpatrick, Jacob Andreas, and Dan Klein. Unsupervised transcription of piano mu-
sic. In Proceedings of Advances in Neural Information Processing Systems (NIPS), pages 1538–
1546, Montréal, Canada, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
3b5dca501ee1e6d8cd7b905f4e1bf723-Abstract.html.

133

http://doi.org/10.3390/app10062020
http://doi.org/10.3390/electronics10060670
http://doi.org/10.48550/arXiv.2301.11325
http://doi.org/10.48550/arXiv.2301.11325
http://doi.org/10.1109/LSP.2021.3135192
http://doi.org/10.1109/LSP.2021.3135192
https://journals.gold.ac.uk/index.php/sysmus14/article/view/220
https://journals.gold.ac.uk/index.php/sysmus14/article/view/220
http://doi.org/10.5281/zenodo.7316790
http://doi.org/10.3389/fpsyg.2017.00662
http://doi.org/10.1109/MSP.2018.2869928
http://doi.org/10.1109/ASPAA.2001.969557
https://proceedings.neurips.cc/paper/2014/hash/3b5dca501ee1e6d8cd7b905f4e1bf723-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/3b5dca501ee1e6d8cd7b905f4e1bf723-Abstract.html


Bibliography

[11] Luca Bertinetto, Romain Müller, Konstantinos Tertikas, Sina Samangooei, and Nicholas A. Lord. Making
better mistakes: Leveraging class hierarchies with deep networks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 12503–12512, Seattle, WA, USA, 2020. doi: 10.1109/
CVPR42600.2020.01252.

[12] Rachel M. Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Cannam, and Juan Pablo Bello.
MedleyDB: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pages 155–160, Taipei, Taiwan, 2014. doi:
10.5281/zenodo.1417889.

[13] Rachel M. Bittner, Brian McFee, Justin Salamon, Peter Li, and Juan P. Bello. Deep salience representations
for F0 tracking in polyphonic music. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 63–70, Suzhou, China, 2017. doi: 10.5281/zenodo.1417937.

[14] Sebastian Böck, Florian Krebs, and Gerhard Widmer. Joint beat and downbeat tracking with recurrent neural
networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
pages 255–261, New York City, New York, USA, 2016. doi: 10.5281/zenodo.1415835.

[15] Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra. The MTG-Jamendo
dataset for automatic music tagging. In Proceedings of the Workshop on Machine Learning for Music
Discovery, International Conference on Machine Learning (ICML), Long Beach, CA, USA, 2019. URL
https://drive.google.com/open?id=1tRRLI0Wz8OTrUpcQnWOokeI0XePkbbGy.

[16] Juan J. Bosch, Rachel M. Bittner, Justin Salamon, and Emilia Gómez. A comparison of melody extraction
methods based on source-filter modelling. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 571–577, New York City, New York, USA, 2016. doi: 10.5281/zenodo.
1418166.

[17] Karlheinz Brandenburg, Christian Dittmar, Matthias Gruhne, Jakob Abeßer, Hanna Lukashevich, Peter Dunker,
Daniel Gärtner, Kay Wolter, Stefanie Nowak, and Holger Großmann. Music search and recommendation. In
Borko Furht, editor, Handbook of multimedia for digital entertainment and arts, volume 3, pages 349–383.
Springer, New York, USA, 2009. ISBN 0-387-89023-8. doi: 10.1007/978-0-387-89024-1_16.

[18] Matthew Bribitzer-Stull. Understanding the Leitmotif. Cambridge University Press, 2015. ISBN 978-
1316161678. doi: 10.1017/CBO9781316161678.

[19] Howard Mayer Brown, Ellen Rosand, Reinhard Strohm, Roger Parker, Arnold Whittall, Roger Savage, and
Barry Millington. Opera. In Stanley Sadie, editor, The New Grove Dictionary of Music and Musicians,
pages 416–471. Macmillian Publishers, London, 2 edition, 2001. ISBN 978-0-333-60800-5. URL https:
//www.oxfordmusiconline.com/grovemusic.

[20] Judith C. Brown. Calculation of a constant Q spectral transform. Journal of the Acoustical Society of America,
89(1):425–434, 1991. doi: 10.1121/1.400476.

[21] Judith C. Brown and Miller S. Puckette. An efficient algorithm for the calculation of a constant Q transform.
Journal of the Acoustic Society of America (JASA), 92:2698–2701, 1992. doi: 10.1121/1.404385.

134

http://doi.org/10.1109/CVPR42600.2020.01252
http://doi.org/10.1109/CVPR42600.2020.01252
http://doi.org/10.5281/zenodo.1417889
http://doi.org/10.5281/zenodo.1417889
http://doi.org/10.5281/zenodo.1417937
http://doi.org/10.5281/zenodo.1415835
https://drive.google.com/open?id=1tRRLI0Wz8OTrUpcQnWOokeI0XePkbbGy
http://doi.org/10.5281/zenodo.1418166
http://doi.org/10.5281/zenodo.1418166
http://doi.org/10.1007/978-0-387-89024-1_16
http://doi.org/10.1017/CBO9781316161678
https://www.oxfordmusiconline.com/grovemusic
https://www.oxfordmusiconline.com/grovemusic
http://doi.org/10.1121/1.400476
http://doi.org/10.1121/1.404385


Bibliography

[22] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 1877–1901, Virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[23] Morgan Buisson, Brian McFee, Slim Essid, and Hélène C. Crayencour. Learning multi-level representations
for hierarchical music structure analysis. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 591–597, Bengaluru, India, 2022. doi: 10.5281/zenodo.7343060.

[24] Christoph Böhm, David Ackermann, and Stefan Weinzierl. A multi-channel anechoic orchestra recording of
Beethoven’s Symphony no. 8 op. 93. Journal of the Audio Engineering Society, 68(12):977–984, 2021. doi:
10.17743/jaes.2020.0056.

[25] Emre Çakir, Giambattista Parascandolo, Toni Heittola, Heikki Huttunen, and Tuomas Virtanen. Convolutional
recurrent neural networks for polyphonic sound event detection. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 25(6):1291–1303, 2017. doi: 10.1109/TASLP.2017.2690575.

[26] Estefanía Cano, Derry FitzGerald, Antoine Liutkus, Mark D. Plumbley, and Fabian-Robert Stöter. Musical
source separation: An introduction. IEEE Signal Processing Magazine, 36(1):31–40, 2019. doi: 10.1109/
MSP.2018.2874719.

[27] Rodrigo Castellon, Chris Donahue, and Percy Liang. Codified audio language modeling learns useful
representations for music information retrieval. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pages 88–96, Online, 2021. doi: 10.5281/zenodo.5624604.

[28] Ricardo Cerri, Rodrigo C. Barros, and André Carlos Ponce de Leon Ferreira de Carvalho. Hierarchical
multi-label classification using local neural networks. Journal of Computer and System Sciences, 80(1):
39–56, 2014. doi: 10.1016/j.jcss.2013.03.007.

[29] Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei, and Juan Carlos Niebles. D3TW: Discriminative
differentiable dynamic time warping for weakly supervised action alignment and segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3546–3555, Long
Beach, CA, USA, 2019. doi: 10.1109/CVPR.2019.00366.

[30] Kin Wai Cheuk, Yin-Jyun Luo, Emmanouil Benetos, and Dorien Herremans. Revisiting the onsets and frames
model with additive attention. In Proceedings of the International Joint Conference on Neural Networks
(ĲCNN), Shenzhen, China, 2021. doi: 10.1109/ĲCNN52387.2021.9533407.

[31] Keunwoo Choi and Kyunghyun Cho. Deep unsupervised drum transcription. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), pages 183–191, Delft, The
Netherlands, 2019. doi: 10.5281/zenodo.3527773.

[32] Keunwoo Choi, György Fazekas, Mark B. Sandler, and Kyunghyun Cho. Transfer learning for music
classification and regression tasks. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 141–149, Suzhou, China, 2017. doi: 10.5281/zenodo.1418014.

135

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://doi.org/10.5281/zenodo.7343060
http://doi.org/10.17743/jaes.2020.0056
http://doi.org/10.17743/jaes.2020.0056
http://doi.org/10.1109/TASLP.2017.2690575
http://doi.org/10.1109/MSP.2018.2874719
http://doi.org/10.1109/MSP.2018.2874719
http://doi.org/10.5281/zenodo.5624604
http://doi.org/10.1016/j.jcss.2013.03.007
http://doi.org/10.1109/CVPR.2019.00366
http://doi.org/10.1109/IJCNN52387.2021.9533407
http://doi.org/10.5281/zenodo.3527773
http://doi.org/10.5281/zenodo.1418014


Bibliography

[33] Nicolae Cleju, Maria G. Jafari, and Mark D. Plumbley. Analysis-based sparse reconstruction with synthesis-
based solvers. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 5401–5404, Kyoto, Japan, 2012. doi: 10.1109/ICASSP.2012.6289142.

[34] Jason Cramer, Vincent Lostanlen, Andrew Farnsworth, Justin Salamon, and Juan Pablo Bello. Chirping up
the right tree: Incorporating biological taxonomies into deep bioacoustic classifiers. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 901–905, Barcelona, Spain, 2020.
doi: 10.1109/ICASSP40776.2020.9052908.

[35] Marco Cuturi and Mathieu Blondel. Soft-DTW: a differentiable loss function for time-series. In Proceedings
of the International Conference on Machine Learning (ICML), pages 894–903, Sydney, NSW, Australia,
2017. URL http://proceedings.mlr.press/v70/cuturi17a.html.

[36] Steven B. Davis and Paul Mermelstein. Comparison of parametric representations for monosyllabic word
recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(4):357–366, 1980. doi: 10.1109/TASSP.1980.1163420.

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, (NAACL-HLT), pages
4171–4186, Minneapolis, MN, USA, 2019. doi: 10.18653/v1/n19-1423.

[38] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever. Jukebox:
A generative model for music. arXiv, abs/2005.00341, 2020. doi: 10.48550/arXiv.2005.00341.

[39] Christian Dittmar, Bernhard Lehner, Thomas Prätzlich, Meinard Müller, and Gerhard Widmer. Cross-version
singing voice detection in classical opera recordings. In Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), pages 618–624, Málaga, Spain, October 2015. doi:
10.5281/zenodo.1416958.

[40] Simon Dixon and Gerhard Widmer. MATCH: A music alignment tool chest. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), pages 492–497, London, UK,
2005. doi: 10.5281/zenodo.1416952.

[41] Laurence Dreyfus and Carolin Rindfleisch. Using digital libraries in the research of the reception and
interpretation of Richard Wagner’s leitmotifs. In Proceedings of the International Workshop on Digital
Libraries for Musicology (DLfM), pages 1–3, London, UK, 2014. doi: 10.1145/2660168.2660181.

[42] Zhiyao Duan, Bryan Pardo, and Changshui Zhang. Multiple fundamental frequency estimation by modeling
spectral peaks and non-peak regions. IEEE Transactions on Audio, Speech, and Language Processing, 18(8):
2121–2133, 2010. doi: 10.1109/TASL.2010.2042119.

[43] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv,
abs/1603.07285, 2016. doi: 10.48550/arXiv.1603.07285.

[44] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-label classification
with partial labels. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 647–657,
Long Beach, CA, USA, 2019. doi: 10.1109/CVPR.2019.00074.

136

http://doi.org/10.1109/ICASSP.2012.6289142
http://doi.org/10.1109/ICASSP40776.2020.9052908
http://proceedings.mlr.press/v70/cuturi17a.html
http://doi.org/10.1109/TASSP.1980.1163420
http://doi.org/10.18653/v1/n19-1423
http://doi.org/10.48550/arXiv.2005.00341
http://doi.org/10.5281/zenodo.1416958
http://doi.org/10.5281/zenodo.1416958
http://doi.org/10.5281/zenodo.1416952
http://doi.org/10.1145/2660168.2660181
http://doi.org/10.1109/TASL.2010.2042119
http://doi.org/10.48550/arXiv.1603.07285
http://doi.org/10.1109/CVPR.2019.00074


Bibliography

[45] Jana Eggink and Guy J. Brown. A missing feature approach to instrument identification in polyphonic music.
In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 553–556,
Hong Kong, China, 2003. doi: 10.1109/ICASSP.2003.1200029.

[46] Anders Elowsson and Anders Friberg. Modeling music modality with a key-class invariant pitch chroma
CNN. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages
541–548, Delft, The Netherlands, 2019. doi: 10.5281/zenodo.3527864.

[47] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam Roberts. DDSP: Differentiable digital signal
processing. In Proceedings of the International Conference on Learning Representations (ICLR), Virtual,
2020. URL https://openreview.net/forum?id=B1x1ma4tDr.

[48] Jesse Engel, Rigel Swavely, Lamtharn Hanoi Hantrakul, Adam Roberts, and Curtis Hawthorne. Self-
supervised pitch detection by inverse audio synthesis. In International Conference on Machine Learning
(ICML), Workshop on Self-Supervision in Audio and Speech, Vienna, Austria, 2020. URL https://
openreview.net/forum?id=RlVTYWhsky7.

[49] Antti J. Eronen and Anssi P. Klapuri. Musical instrument recognition using cepstral coefficients and temporal
features. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 2, pages II753–II756, Istanbul, Turkey, 2000. doi: 10.1109/ICASSP.2000.859069.

[50] Slim Essid, Gaël Richard, and Bertrand David. Hierarchical classification of musical instruments on solo
recordings. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 817–820, Toulouse, France, 2006. doi: 10.1109/ICASSP.2006.1661401.

[51] Sebastian Ewert, Meinard Müller, and Peter Grosche. High resolution audio synchronization using chroma
onset features. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 1869–1872, Taipei, Taiwan, 2009. doi: 10.1109/ICASSP.2009.4959972.

[52] Sebastian Ewert, Meinard Müller, Verena Konz, Daniel Müllensiefen, and Gerraint A. Wiggins. Towards
cross-version harmonic analysis of music. IEEE Transactions on Multimedia, 14(3-2):770–782, 2012. doi:
10.1109/TMM.2012.2190047.

[53] Arthur Flexer. A closer look on artist filters for musical genre classification. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pages 341–344, Vienna, Austria, 2007. doi:
10.5281/zenodo.1415668.

[54] Jonathan Foote. Automatic audio segmentation using a measure of audio novelty. In Proceedings of the IEEE
International Conference on Multimedia and Expo (ICME), pages 452–455, New York, NY, USA, 2000. doi:
10.1109/ICME.2000.869637.

[55] Peter Foster, Siddharth Sigtia, Sacha Krstulovic, Jon Barker, and Mark D. Plumbley. Chime-home: A
dataset for sound source recognition in a domestic environment. In Proceedings of the IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2015. doi:
10.1109/WASPAA.2015.7336899.

[56] Joachim Fritsch and Mark D. Plumbley. Score informed audio source separation using constrained
nonnegative matrix factorization and score synthesis. In Proceedings of the IEEE International Conference

137

http://doi.org/10.1109/ICASSP.2003.1200029
http://doi.org/10.5281/zenodo.3527864
https://openreview.net/forum?id=B1x1ma4tDr
https://openreview.net/forum?id=RlVTYWhsky7
https://openreview.net/forum?id=RlVTYWhsky7
http://doi.org/10.1109/ICASSP.2000.859069
http://doi.org/10.1109/ICASSP.2006.1661401
http://doi.org/10.1109/ICASSP.2009.4959972
http://doi.org/10.1109/TMM.2012.2190047
http://doi.org/10.1109/TMM.2012.2190047
http://doi.org/10.5281/zenodo.1415668
http://doi.org/10.5281/zenodo.1415668
http://doi.org/10.1109/ICME.2000.869637
http://doi.org/10.1109/ICME.2000.869637
http://doi.org/10.1109/WASPAA.2015.7336899
http://doi.org/10.1109/WASPAA.2015.7336899


Bibliography

on Acoustics, Speech, and Signal Processing (ICASSP), pages 888–891, Vancouver, Canada, May 2013. doi:
10.1109/ICASSP.2013.6637776.

[57] Ferdinand Fuhrmann and Perfecto Herrera. Polyphonic instrument recognition for exploring semantic similar-
ities in music. In Proceedings of the International Conference on Digital Audio Effects (DAFx), Graz, Austria,
2010. URL https://www.dafx.de/paper-archive/details.php?id=cSZcp2xDEkQDPQGdJKDA3w.

[58] Hugo Flores Garcia, Aldo Aguilar, Ethan Manilow, and Bryan Pardo. Leveraging hierarchical structures for
few-shot musical instrument recognition. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 220–228, Online, 2021. doi: 10.5281/zenodo.5624615.

[59] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2:
665–673, 2020. doi: 10.1038/s42256-020-00257-z.

[60] Bruno Di Giorgi, Matthias Mauch, and Mark Levy. Downbeat tracking with tempo-invariant convolutional
neural networks. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 216–222, Montréal, Canada, 2020. doi: 10.5281/zenodo.4245408.

[61] Eleonora Giunchiglia and Thomas Lukasiewicz. Coherent hierarchical multi-label classifica-
tion networks. In Advances in Neural Information Processing Systems (NeurIPS), pages
9662–9673, Virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

6dd4e10e3296fa63738371ec0d5df818-Abstract.html.

[62] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge and London,
2016. ISBN 978-0-262-03561-3. URL http://www.deeplearningbook.org.

[63] Mikus Grasis, Jakob Abeßer, Christian Dittmar, and Hanna M. Lukashevich. A multiple-expert framework
for instrument recognition. In Proceedings of the International Symposium on Sound, Music, and Motion
(CMMR), volume 8905 of Lecture Notes in Computer Science, pages 619–634, Marseille, France, 2014.
Springer. doi: 10.1007/978-3-319-12976-1_38.

[64] Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmidhuber. Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the
International Conference on Machine Learning (ICML), pages 369–376, Pittsburgh, Pennsylvania, USA,
2006. doi: 10.1145/1143844.1143891.

[65] Chitralekha Gupta, Emre Yılmaz, and Haizhou Li. Automatic lyrics alignment and transcription in
polyphonic music: Does background music help? In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pages 496–500, Barcelona, Spain, 2020. doi:
10.1109/ICASSP40776.2020.9054567.

[66] Siddharth Gururani and Alexander Lerch. Semi-supervised audio classification with partially labeled
data. In IEEE International Symposium on Multimedia (ISM), pages 111–114, Naple, Italy, 2021. doi:
10.1109/ISM52913.2021.00027.

[67] Siddharth Gururani, Cameron Summers, and Alexander Lerch. Instrument activity detection in polyphonic
music using deep neural networks. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 569–576, Paris, France, 2018. doi: 10.5281/zenodo.1492479.

138

http://doi.org/10.1109/ICASSP.2013.6637776
http://doi.org/10.1109/ICASSP.2013.6637776
https://www.dafx.de/paper-archive/details.php?id=cSZcp2xDEkQDPQGdJKDA3w
http://doi.org/10.5281/zenodo.5624615
http://doi.org/10.1038/s42256-020-00257-z
http://doi.org/10.5281/zenodo.4245408
https://proceedings.neurips.cc/paper/2020/hash/6dd4e10e3296fa63738371ec0d5df818-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dd4e10e3296fa63738371ec0d5df818-Abstract.html
http://www.deeplearningbook.org
http://doi.org/10.1007/978-3-319-12976-1_38
http://doi.org/10.1145/1143844.1143891
http://doi.org/10.1109/ICASSP40776.2020.9054567
http://doi.org/10.1109/ICASSP40776.2020.9054567
http://doi.org/10.1109/ISM52913.2021.00027
http://doi.org/10.1109/ISM52913.2021.00027
http://doi.org/10.5281/zenodo.1492479


Bibliography

[68] Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel. AudioCLIP: Extending clip to image, text
and audio. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 976–980, Singapore, 2022. doi: 10.1109/ICASSP43922.2022.9747631.

[69] Isma Hadji, Konstantinos G. Derpanis, and Allan D. Jepson. Representation learning via global temporal
alignment and cycle-consistency. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11068–11077, Virtual, 2021. doi: 10.1109/CVPR46437.2021.01092.

[70] Philippe Hamel, Sean Wood, and Douglas Eck. Automatic identification of instrument classes in polyphonic
and poly-instrument audio. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 399–404, Kobe, Japan, 2009. doi: 10.5281/zenodo.1415091.

[71] Yoonchang Han, Jae-Hun Kim, and Kyogu Lee. Deep convolutional neural networks for predominant
instrument recognition in polyphonic music. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 25(1):208–221, 2017. doi: 10.1109/TASLP.2016.2632307.

[72] Yushen Han and Christopher Raphael. Informed source separation of orchestra and soloist. In Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR), pages 315–320, Utrecht, The
Netherlands, 2010. doi: 10.5281/zenodo.1416750.

[73] Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin Raffel, Jesse H. Engel, Sageev
Oore, and Douglas Eck. Onsets and frames: Dual-objective piano transcription. In Proceedings of the
International Society for Music Information Retrieval Conference, (ISMIR), pages 50–57, Paris, France, 2018.
doi: 10.5281/zenodo.1492341.

[74] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander Dieleman,
Erich Elsen, Jesse H. Engel, and Douglas Eck. Enabling factorized piano music modeling and generation
with the MAESTRO dataset. In Proceedings of the International Conference on Learning Representations
(ICLR), New Orleans, Louisiana, USA, 2019. URL https://openreview.net/forum?id=r1lYRjC9F7.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, Las Vegas, Nevada,
USA, 2016. doi: 10.1109/CVPR.2016.90.

[76] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked autoencoders
are scalable vision learners. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 15979–15988, New Orleans, LA, USA, 2022. doi: 10.1109/CVPR52688.2022.01553.

[77] Melissa Heikkilä. The viral AI avatar app Lensa undressed me—without my consent. MIT
Technology Review, 2022. URL https://www.technologyreview.com/2022/12/12/1064751/
the-viral-ai-avatar-app-lensa-undressed-me-without-my-consent/.

[78] Toni Heittola, Anssi P. Klapuri, and Tuomas Virtanen. Musical instrument recognition in polyphonic
audio using source-filter model for sound separation. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pages 327–332, Kobe, Japan, 2009. doi: 10.5281/zenodo.1417377.

[79] Toni Heittola, Annamaria Mesaros, and Tuomas Virtanen. Acoustic scene classification in DCASE
2020 challenge: Generalization across devices and low complexity solutions. In Proceedings

139

http://doi.org/10.1109/ICASSP43922.2022.9747631
http://doi.org/10.1109/CVPR46437.2021.01092
http://doi.org/10.5281/zenodo.1415091
http://doi.org/10.1109/TASLP.2016.2632307
http://doi.org/10.5281/zenodo.1416750
http://doi.org/10.5281/zenodo.1492341
https://openreview.net/forum?id=r1lYRjC9F7
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR52688.2022.01553
https://www.technologyreview.com/2022/12/12/1064751/the-viral-ai-avatar-app-lensa-undressed-me-without-my-consent/
https://www.technologyreview.com/2022/12/12/1064751/the-viral-ai-avatar-app-lensa-undressed-me-without-my-consent/
http://doi.org/10.5281/zenodo.1417377


Bibliography

of the Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE), pages
56–60, Virtual, 2020. URL http://dcase.community/documents/workshop2020/proceedings/
DCASE2020Workshop_Heittola_56.pdf.

[80] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
November 1997. doi: 10.1162/neco.1997.9.8.1735.

[81] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and
Abdelrahman Mohamed. HuBERT: Self-supervised speech representation learning by masked prediction of
hidden units. IEEE/ACM Transactions on Audio, Speech and Language Processing, 29:3451–3460, 2021.
doi: 10.1109/TASLP.2021.3122291.

[82] Eric J. Humphrey, Simon Durand, and Brian McFee. OpenMIC-2018: An open data-set for multiple instrument
recognition. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
pages 438–444, Paris, France, 2018. doi: 10.5281/zenodo.1492445.

[83] Eric J. Humphrey, Sravana Reddy, Prem Seetharaman, Aparna Kumar, Rachel M. Bittner, Andrew Demetriou,
Sankalp Gulati, Andreas Jansson, Tristan Jehan, Bernhard Lehner, Anna Krupse, and Luwei Yang. An
introduction to signal processing for singing-voice analysis: High notes in the effort to automate the
understanding of vocals in music. IEEE Signal Processing Magazine, 36(1):82–94, 2019. doi: 10.1109/MSP.
2018.2875133.

[84] Yun-Ning Hung and Yi-Hsuan Yang. Frame-level instrument recognition by timbre and pitch. In Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR), pages 135–142, Paris,
France, 2018. doi: 10.5281/zenodo.1492363.

[85] Yun-Ning Hung, Yi-An Chen, and Yi-Hsuan Yang. Multitask learning for frame-level instrument recognition.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 381–385, Brighton, UK, 2019. doi: 10.1109/ICASSP.2019.8683426.

[86] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In Advances in Neural Information Processing Systems
(NeurIPS), pages 125–136, Vancouver, BC, Canada, 2019. URL https://papers.nips.cc/paper/2019/
hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html.

[87] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the International Conference on Machine Learning (ICML), pages
448–456, Lille, France, 2015. URL https://proceedings.mlr.press/v37/ioffe15.html.

[88] Arindam Jati, Naveen Kumar, Ruxin Chen, and Panayiotis G. Georgiou. Hierarchy-aware loss function on a
tree structured label space for audio event detection. In IEEE International Conference on Acoustics, Speech
and Signal Processing ICASSP, pages 6–10, Brighton, United Kingdom, 2019. doi: 10.1109/ICASSP.2019.
8682341.

[89] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Kyogu Lee, and Juhan Nam. VirtuosoNet: A hierarchical
RNN-based system for modeling expressive piano performance. In Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), pages 908–915, Delft, The Netherlands, 2019. doi:
10.5281/zenodo.3527962.

140

http://dcase.community/documents/workshop2020/proceedings/DCASE2020Workshop_Heittola_56.pdf
http://dcase.community/documents/workshop2020/proceedings/DCASE2020Workshop_Heittola_56.pdf
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/TASLP.2021.3122291
http://doi.org/10.5281/zenodo.1492445
http://doi.org/10.1109/MSP.2018.2875133
http://doi.org/10.1109/MSP.2018.2875133
http://doi.org/10.5281/zenodo.1492363
http://doi.org/10.1109/ICASSP.2019.8683426
https://papers.nips.cc/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://papers.nips.cc/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://proceedings.mlr.press/v37/ioffe15.html
http://doi.org/10.1109/ICASSP.2019.8682341
http://doi.org/10.1109/ICASSP.2019.8682341
http://doi.org/10.5281/zenodo.3527962
http://doi.org/10.5281/zenodo.3527962


Bibliography

[90] Il-Young Jeong and Kyogu Lee. Learning temporal features using a deep neural network and its application
to music genre classification. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 434–440, New York City, New York, USA, 2016. doi: 10.5281/zenodo.1416416.

[91] Cyril Joder, Slim Essid, and Gaël Richard. Temporal integration for audio classification with application to
musical instrument classification. IEEE Transactions on Audio, Speech, and Language Processing, 17(1):
174–186, 2009. doi: 10.1109/TASL.2008.2007613.

[92] Rainer Kelz and Gerhard Widmer. An experimental analysis of the entanglement problem in neural-network-
based music transcription systems. In Proceedings of the AES International Conference on Semantic Audio,
pages 194–201, Erlangen, Germany, 2017. URL https://www.aes.org/e-lib/browse.cfm?elib=
18761.

[93] Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck, Andreas Arzt, and Gerhard Widmer. On
the potential of simple framewise approaches to piano transcription. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pages 475–481, New York City, New York,
USA, 2016. doi: 10.5281/zenodo.1416488.

[94] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of the
International Conference for Learning Representations (ICLR), San Diego, California, USA, 2015. URL
http://arxiv.org/abs/1412.6980.

[95] Tetsuro Kitahara. Computational Musical Instrument Recognition and its Application to Content-based
Music Information Retrieval. PhD thesis, Kyoto University, Japan, 2007. URL http://hdl.handle.net/
2433/135955.

[96] Sefki Kolozali, Mathieu Barthet, György Fazekas, and Mark B. Sandler. Knowledge representation
issues in musical instrument ontology design. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pages 465–470, Miami, Florida, USA, 2011. doi: https:
//doi.org/10.5281/zenodo.1416141.

[97] Verena Konz, Meinard Müller, and Rainer Kleinertz. A cross-version chord labelling approach for exploring
harmonic structures—a case study on Beethoven’s Appassionata. Journal of New Music Research, 42(1):
61–77, 2013. doi: 10.1080/09298215.2012.750369.

[98] Andreas Kornstädt. The JRing system for computer-assisted musicological analysis. In Proceedings of the
International Symposium on Music Information Retrieval (ISMIR), pages 93–98, Bloomington, Indiana, USA,
2001. doi: 10.5281/zenodo.1416100.

[99] Filip Korzeniowski and Gerhard Widmer. Genre-agnostic key classification with convolutional neural
networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
pages 264–270, Paris, France, 2018. doi: 10.5281/zenodo.1492399.

[100] Aris Kosmopoulos, Ioannis Partalas, Éric Gaussier, Georgios Paliouras, and Ion Androutsopoulos. Evaluation
measures for hierarchical classification: a unified view and novel approaches. Data Mining and Knowledge
Discovery, 29(3):820–865, 2015. doi: 10.1007/s10618-014-0382-x.

141

http://doi.org/10.5281/zenodo.1416416
http://doi.org/10.1109/TASL.2008.2007613
https://www.aes.org/e-lib/browse.cfm?elib=18761
https://www.aes.org/e-lib/browse.cfm?elib=18761
http://doi.org/10.5281/zenodo.1416488
http://arxiv.org/abs/1412.6980
http://hdl.handle.net/2433/135955
http://hdl.handle.net/2433/135955
http://doi.org/https://doi.org/10.5281/zenodo.1416141
http://doi.org/https://doi.org/10.5281/zenodo.1416141
http://doi.org/10.1080/09298215.2012.750369
http://doi.org/10.5281/zenodo.1416100
http://doi.org/10.5281/zenodo.1492399
http://doi.org/10.1007/s10618-014-0382-x


Bibliography

[101] Agelos Kratimenos, Kleanthis Avramidis, Christos Garoufis, Athanasia Zlatintsi, and Petros Maragos.
Augmentation methods on monophonic audio for instrument classification in polyphonic music. In Proceedings
of the European Signal Processing Conference (EUSIPCO), pages 156–160, Amsterdam, Netherlands, 2020.
doi: 10.23919/Eusipco47968.2020.9287745.

[102] Michael Krause and Meinard Müller. Hierarchical classification for singing activity, gender, and type in
complex music recordings. In Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 406–410, Virtual and Singapore, 2022. doi: 10.1109/ICASSP43922.
2022.9747690.

[103] Michael Krause and Meinard Müller. Hierarchical classification for instrument activity detection in orchestral
music recordings. IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP), 31:
2567–2578, 2023. doi: 10.1109/TASLP.2023.3291506.

[104] Michael Krause, Frank Zalkow, Julia Zalkow, Christof Weiß, and Meinard Müller. Classifying leitmotifs in
recordings of operas by Richard Wagner. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 473–480, Montréal, Canada, 2020. doi: 10.5281/zenodo.4245472.

[105] Michael Krause, Meinard Müller, and Christof Weiß. Towards leitmotif activity detection in opera recordings.
Transactions of the International Society for Music Information Retrieval (TISMIR), 4(1):127–140, 2021. doi:
10.5334/tismir.116.

[106] Michael Krause, Meinard Müller, and Christof Weiß. Singing voice detection in opera recordings: A case study
on robustness and generalization. Electronics, 10(10):1214:1–14, 2021. doi: 10.3390/electronics10101214.

[107] Michael Krause, Sebastian Strahl, and Meinard Müller. Weakly supervised multi-pitch estimation using
cross-version alignment. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Milano, Italy, 2023.

[108] Michael Krause, Christof Weiß, and Meinard Müller. A cross-version approach to audio representation
learning for orchestral music. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Milano, Italy, 2023.

[109] Michael Krause, Christof Weiß, and Meinard Müller. Soft dynamic time warping for multi-pitch estimation
and beyond. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Rhodes Island, Greece, 2023. doi: 10.1109/ICASSP49357.2023.10095907.

[110] Anna M. Kruspe. Application of Automatic Speech Recognition Technologies to Singing. PhD thesis,
Technische Universität Ilmenau, Germany, 2018. URL https://www.db-thueringen.de/receive/
dbt_mods_00035065.

[111] Rajath Kumar, Yi Luo, and Nima Mesgarani. Music source activity detection and separation using deep
attractor network. In Proceedings of the Annual Conference of the International Speech Communication
Association (Interspeech), pages 347–351, Hyderabad, India, 2018. doi: 10.21437/Interspeech.2018-2326.

[112] Stefan Lattner, Monika Dörfler, and Andreas Arzt. Learning complex basis functions for invariant represen-
tations of audio. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 700–707, Delft, The Netherlands, 2019. doi: 10.5281/zenodo.3527906.

142

http://doi.org/10.23919/Eusipco47968.2020.9287745
http://doi.org/10.1109/ICASSP43922.2022.9747690
http://doi.org/10.1109/ICASSP43922.2022.9747690
http://doi.org/10.1109/TASLP.2023.3291506
http://doi.org/10.5281/zenodo.4245472
http://doi.org/10.5334/tismir.116
http://doi.org/10.5334/tismir.116
http://doi.org/10.3390/electronics10101214
http://doi.org/10.1109/ICASSP49357.2023.10095907
https://www.db-thueringen.de/receive/dbt_mods_00035065
https://www.db-thueringen.de/receive/dbt_mods_00035065
http://doi.org/10.21437/Interspeech.2018-2326
http://doi.org/10.5281/zenodo.3527906


Bibliography

[113] Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan Engstrom, Vibhav Vineet, Kai Yuanqing
Xiao, Pengchuan Zhang, Shibani Santurkar, Greg Yang, Ashish Kapoor, and Aleksander Madry. 3DB: A
framework for debugging computer vision models. arXiv, abs/2106.03805, 2021. doi: 10.48550/arXiv.2106.
03805.

[114] Kyungyun Lee, Keunwoo Choi, and Juhan Nam. Revisiting singing voice detection: A quantitative review and
the future outlook. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 506–513, Paris, France, 2018. doi: 10.5281/zenodo.1492463.

[115] Simon Leglaive, Romain Hennequin, and Roland Badeau. Singing voice detection with deep recurrent neural
networks. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 121–125, Brisbane, Australia, 2015. doi: 10.1109/ICASSP.2015.7177944.

[116] Bernhard Lehner, Gerhard Widmer, and Reinhard Sonnleitner. On the reduction of false positives in singing
voice detection. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 7480–7484, Florence, Italy, 2014. doi: 10.1109/ICASSP.2014.6855054.

[117] Bernhard Lehner, Gerhard Widmer, and Sebastian Böck. A low-latency, real-time-capable singing voice
detection method with LSTM recurrent neural networks. In Proceedings of the European Signal Processing
Conference (EUSIPCO), pages 21–25, Nice, France, 2015. doi: 10.1109/EUSIPCO.2015.7362337.

[118] Bernhard Lehner, Jan Schlüter, and Gerhard Widmer. Online, loudness-invariant vocal detection in mixed
music signals. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(8):1369–1380,
2018. doi: 10.1109/TASLP.2018.2825108.

[119] Alexander Lerch, Claire Arthur, Ashis Pati, and Siddharth Gururani. Music performance analysis: A survey.
In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages
33–43, Delft, The Netherlands, 2019. doi: 10.5281/zenodo.3527735.

[120] Bochen Li and Aparna Kumar. Query by video: Cross-modal music retrieval. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), pages 604–611, Delft, The
Netherlands, 2019. doi: 10.5281/zenodo.3527882.

[121] Yanxiong Li, Mingle Liu, Konstantinos Drossos, and Tuomas Virtanen. Sound event detection via dilated
convolutional recurrent neural networks. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 286–290, 2020. doi: 10.1109/ICASSP40776.2020.9054433.

[122] Che-Yuan Liang, Li Su, Yi-Hsuan Yang, and Hsin-Ming Lin. Musical offset detection of pitched instruments:
The case of violin. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 281–287, Málaga, Spain, 2015. doi: 10.5281/zenodo.1416834.

[123] Cynthia C. S. Liem and Chris Mostert. Can’t trust the feeling? How open data reveals unexpected behavior
of high-level music descriptors. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 240–247, Montreal, Canada, 2020. doi: 10.5281/zenodo.4245413.

[124] Cynthia C. S. Liem, Emilia Gómez, and George Tzanetakis. Multimedia technologies for enriched music
performance, production, and consumption. IEEE MultiMedia, 24(1):20–23, 2017. doi: 10.1109/MMUL.
2017.20.

143

http://doi.org/10.48550/arXiv.2106.03805
http://doi.org/10.48550/arXiv.2106.03805
http://doi.org/10.5281/zenodo.1492463
http://doi.org/10.1109/ICASSP.2015.7177944
http://doi.org/10.1109/ICASSP.2014.6855054
http://doi.org/10.1109/EUSIPCO.2015.7362337
http://doi.org/10.1109/TASLP.2018.2825108
http://doi.org/10.5281/zenodo.3527735
http://doi.org/10.5281/zenodo.3527882
http://doi.org/10.1109/ICASSP40776.2020.9054433
http://doi.org/10.5281/zenodo.1416834
http://doi.org/10.5281/zenodo.4245413
http://doi.org/10.1109/MMUL.2017.20
http://doi.org/10.1109/MMUL.2017.20


Bibliography

[125] David Little and Bryan Pardo. Learning musical instruments from mixtures of audio with weak labels. In
Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 127–132,
Philadelphia, Pennsylvania, USA, 2008. doi: 10.5281/zenodo.1417815.

[126] Shuo Liu, Adria Mallol-Ragolta, Emilia Parada-Cabaleiro, Kun Qian, Xin Jing, Alexander Kathan, Bin
Hu, and Björn W. Schuller. Audio self-supervised learning: A survey. Patterns, 3(12):100616, 2022. doi:
10.1016/j.patter.2022.100616.

[127] Gilles Louppe. Understanding Random Forests: From Theory to Practice. PhD thesis, University of Liege,
Belgium, 2014. URL https://hdl.handle.net/2268/170309.

[128] Mehran Maghoumi, Eugene Matthew Taranta, and Joseph LaViola. DeepNAG: Deep non-adversarial gesture
generation. In Proceedings of the International Conference on Intelligent User Interfaces (IUI), pages
213–223, College Station, Texas, USA, 2021. doi: 10.1145/3397481.3450675.

[129] Thor Magnusson. Musical organics: A heterarchical approach to digital organology. Journal of New Music
Research, 46(3):286–303, 2017. doi: 10.1080/09298215.2017.1353636.

[130] Ilaria Manco, Emmanouil Benetos, Elio Quinton, and György Fazekas. Learning music audio representations
via weak language supervision. In Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 456–460, Singapore, 2022. doi: 10.1109/ICASSP43922.2022.9746996.

[131] Ethan Manilow, Gordon Wichern, and Jonathan Le Roux. Hierarchical musical instrument separation. In
Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 376–383,
Montreal, Canada, 2020. doi: 10.5281/zenodo.4245448.

[132] Ethan Manilow, Patrick O’Reilly, Prem Seetharaman, and Bryan Pardo. Source separation by steering
pretrained music models. In Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 126–130, Singapore, 2022. doi: 10.1109/ICASSP43922.2022.9747909.

[133] Matthew C. McCallum. Unsupervised learning of deep features for music segmentation. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 346–350,
Brighton, UK, 2019. doi: 10.1109/ICASSP.2019.8683407.

[134] Matthew C. McCallum, Filip Korzeniowski, Sergio Oramas, Fabien Gouyon, and Andreas Ehmann. Supervised
and unsupervised learning of audio representations for music understanding. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pages 256–263, Bengaluru, India, 2022. doi:
10.5281/zenodo.7316644.

[135] Mark S Melenhorst, Ron van der Sterren, Andreas Arzt, Agustín Martorell, and Cynthia C.S. Liem.
A tablet app to enrich the live and post-live experience of classical concerts. In Proceedings of the
International Workshop on Interactive Content Consumption (WSICC), Brussels, Belgium, 2015. URL
https://ceur-ws.org/Vol-1516/p4.pdf.

[136] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Metrics for polyphonic sound event detection.
Applied Sciences, 6(6):162, 2016. doi: 10.3390/app6060162.

[137] Annamaria Mesaros, Toni Heittola, Tuomas Virtanen, and Mark D. Plumbley. Sound event detection: A
tutorial. IEEE Signal Processing Magazine, 38(5):67–83, 2021. doi: 10.1109/MSP.2021.3090678.

144

http://doi.org/10.5281/zenodo.1417815
http://doi.org/10.1016/j.patter.2022.100616
http://doi.org/10.1016/j.patter.2022.100616
https://hdl.handle.net/2268/170309
http://doi.org/10.1145/3397481.3450675
http://doi.org/10.1080/09298215.2017.1353636
http://doi.org/10.1109/ICASSP43922.2022.9746996
http://doi.org/10.5281/zenodo.4245448
http://doi.org/10.1109/ICASSP43922.2022.9747909
http://doi.org/10.1109/ICASSP.2019.8683407
http://doi.org/10.5281/zenodo.7316644
http://doi.org/10.5281/zenodo.7316644
https://ceur-ws.org/Vol-1516/p4.pdf
http://doi.org/10.3390/app6060162
http://doi.org/10.1109/MSP.2021.3090678


Bibliography

[138] Alessandro Ilic Mezza, Emanuël A. P. Habets, Meinard Müller, and Augusto Sarti. Unsupervised domain
adaptation for acoustic scene classification using band-wise statistics matching. In Proceedings of the
European Signal Processing Conference (EUSIPCO), pages 11–15, Amsterdam, The Netherlands, 2020. doi:
10.23919/Eusipco47968.2020.9287533.

[139] Stylianos I. Mimilakis, Christof Weiß, Vlora Arifi-Müller, Jakob Abeßer, and Meinard Müller. Cross-version
singing voice detection in opera recordings: Challenges for supervised learning. In Machine Learning and
Knowledge Discovery in Databases – Proceedings of the International Workshops of ECML PKDD 2019,
Part II, volume 1168 of Communications in Computer and Information Science, pages 429–436, Würzburg,
Germany, 2019. doi: 10.1007/978-3-030-43887-6_35.

[140] Marius Miron, Julio J. Carabias-Orti, Juan J. Bosch, Emilia Gómez, and Jordi Janer. Score-informed source
separation for multichannel orchestral recordings. Journal of Electrical and Computer Engineering, 2016
(8363507), 2016. doi: 10.1155/2016/8363507.

[141] Veronica Morfi, Yves Bas, Hanna Pamula, Hervé Glotin, and Dan Stowell. NIPS4Bplus: A richly annotated
birdsong audio dataset. PeerJ Computer Science, 5:e223, 2019. doi: 10.7717/peerj-cs.223.

[142] Yuko Morimoto, Toru Kamekawa, and Atsushi Marui. Verbal effect on memorisation and recognition of
Wagner’s leitmotifs. In Triennial Conference of the European Society for the Cognitive Sciences of Music
(ESCOM), pages 357–361, Jyväskylä, Finland, 2009. URL https://jyx.jyu.fi/handle/123456789/
20903.

[143] Daniel Müllensiefen, David Baker, Christophe Rhodes, Tim Crawford, and Laurence Dreyfus. Recognition
of leitmotives in Richard Wagner’s music: An item response theory approach. In Analysis of Large and
Complex Data, pages 473–483. Springer, Cham, Switzerland, 2016. doi: 10.1007/978-3-319-25226-1.

[144] Matthias Müller, Thilo Schulz, Tatiana Ermakova, and Philipp P. Caffier. Lyric or dramatic - vibrato analysis
for voice type classification in professional opera singers. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 29:943–955, 2021. doi: 10.1109/TASLP.2021.3054299.

[145] Meinard Müller. Fundamentals of Music Processing – Using Python and Jupyter Notebooks. Springer Verlag,
2nd edition, 2021. ISBN 978-3-030-69807-2. doi: 10.1007/978-3-030-69808-9.

[146] Meinard Müller, Thomas Prätzlich, and Jonathan Driedger. A cross-version approach for stabilizing
tempo-based novelty detection. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 427–432, Porto, Portugal, 2012. doi: 10.5281/zenodo.1417753.

[147] Meinard Müller, Yigitcan Özer, Michael Krause, Thomas Prätzlich, and Jonathan Driedger. Sync Toolbox: A
Python package for efficient, robust, and accurate music synchronization. Journal of Open Source Software
(JOSS), 6(64):3434:1–4, 2021. doi: 10.21105/joss.03434.

[148] Juhan Nam, Keunwoo Choi, Jongpil Lee, Szu-Yu Chou, and Yi-Hsuan Yang. Deep learning for audio-based
music classification and tagging: Teaching computers to distinguish rock from bach. IEEE Signal Processing
Magazine, 36(1):41–51, 2019. doi: 10.1109/MSP.2018.2874383.

[149] Inês Nolasco and Dan Stowell. Rank-based loss for learning hierarchical representations. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 3623–3627,
Singapore, 2022. doi: 10.1109/ICASSP43922.2022.9746907.

145

http://doi.org/10.23919/Eusipco47968.2020.9287533
http://doi.org/10.23919/Eusipco47968.2020.9287533
http://doi.org/10.1007/978-3-030-43887-6_35
http://doi.org/10.1155/2016/8363507
http://doi.org/10.7717/peerj-cs.223
https://jyx.jyu.fi/handle/123456789/20903
https://jyx.jyu.fi/handle/123456789/20903
http://doi.org/10.1007/978-3-319-25226-1
http://doi.org/10.1109/TASLP.2021.3054299
http://doi.org/10.1007/978-3-030-69808-9
http://doi.org/10.5281/zenodo.1417753
http://doi.org/10.21105/joss.03434
http://doi.org/10.1109/MSP.2018.2874383
http://doi.org/10.1109/ICASSP43922.2022.9746907


Bibliography

[150] Tin Lay Nwe and Ye Wang. Automatic detection of vocal segments in popular songs. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), pages 138–144, Barcelona, Spain,
2004. doi: 10.5281/zenodo.1417846.

[151] Hiroshi G. Okuno, Tetsuya Ogata, and Kazunori Komatani. Computational auditory scene analysis and its
application to robot audition: Five years experience. In International Conference on Informatics Research
for Development of Knowledge Society Infrastructure (ICKS), pages 69–76, Kyoto, Japan, 2007. doi:
10.1109/ICKS.2007.7.

[152] Yigitcan Özer, Michael Krause, and Meinard Müller. Using the sync toolbox for an experiment on
high-resolution music alignment. In Demos and Late Breaking News of the International Society for
Music Information Retrieval Conference (ISMIR), Online, 2021. URL https://archives.ismir.net/
ismir2021/latebreaking/000025.pdf.

[153] Kevin R. Page, Terhi Nurmikko-Fuller, Carolin Rindfleisch, David M. Weigl, Richard Lewis, Laurence
Dreyfus, and David De Roure. A toolkit for live annotation of opera performance: Experiences capturing
Wagner’s Ring cycle. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 211–217, Málaga, Spain, 2015. doi: 10.5281/zenodo.1415582.

[154] Elias Pampalk, Arthur Flexer, and Gerhard Widmer. Improvements of audio-based music similarity and
genre classification. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 628–633, London, UK, 2005. doi: 10.5281/zenodo.1418083.

[155] Emilia Parada-Cabaleiro, Maximilian Schmitt, Anton Batliner, Simone Hantke, Giovanni Costantini, Klaus R.
Scherer, and Björn W. Schuller. Identifying emotions in opera singing: Implications of adverse acoustic
conditions. In Proceedings of the International Conference on Digital Libraries for Musicology (DLfM),
pages 376–382, Paris, France, 2018. doi: 10.5281/zenodo.1492429.

[156] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le.
SpecAugment: A simple data augmentation method for automatic speech recognition. In Proceedings of the
Annual Conference of the International Speech Communication Association (Interspeech), pages 2613–2617,
Graz, Austria, 2019. doi: 10.21437/Interspeech.2019-2680.

[157] Kailash Patil and Mounya Elhilali. Biomimetic spectro-temporal features for music instrument recognition in
isolated notes and solo phrases. EURASIP Journal on Audio, Speech, and Music Processing, 2015(27), 2015.
doi: 10.1186/s13636-015-0070-9.

[158] Johan Pauwels, Ken O’Hanlon, Emilia Gómez, and Mark B. Sandler. 20 years of automatic chord recognition
from audio. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
pages 54–63, Delft, The Netherlands, 2019. doi: 10.5281/zenodo.3527739.

[159] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12(85):2825–2830, 2011. URL
http://jmlr.org/papers/v12/pedregosa11a.html.

146

http://doi.org/10.5281/zenodo.1417846
http://doi.org/10.1109/ICKS.2007.7
http://doi.org/10.1109/ICKS.2007.7
https://archives.ismir.net/ismir2021/latebreaking/000025.pdf
https://archives.ismir.net/ismir2021/latebreaking/000025.pdf
http://doi.org/10.5281/zenodo.1415582
http://doi.org/10.5281/zenodo.1418083
http://doi.org/10.5281/zenodo.1492429
http://doi.org/10.21437/Interspeech.2019-2680
http://doi.org/10.1186/s13636-015-0070-9
http://doi.org/10.5281/zenodo.3527739
http://jmlr.org/papers/v12/pedregosa11a.html


Bibliography

[160] Graham E. Poliner and Daniel P.W. Ellis. A discriminative model for polyphonic piano transcription.
EURASIP Journal on Advances in Signal Processing, 2007(1), 2007. doi: 10.1155/2007/48317.

[161] Archontis Politis, Annamaria Mesaros, Sharath Adavanne, Toni Heittola, and Tuomas Virtanen. Overview
and evaluation of sound event localization and detection in DCASE 2019. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:684–698, 2021. doi: 10.1109/TASLP.2020.3047233.

[162] Archontis Politis, Kazuki Shimada, Parthasaarathy Sudarsanam, Sharath Adavanne, Daniel Krause, Yuichiro
Koyama, Naoya Takahashi, Shusuke Takahashi, Yuki Mitsufuji, and Tuomas Virtanen. STARSS22: A
dataset of spatial recordings of real scenes with spatiotemporal annotations of sound events. In Proceed-
ings of the Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE), Nancy,
France, 2022. Tampere University. URL https://dcase.community/documents/workshop2022/
proceedings/DCASE2022Workshop_Politis_51.pdf.

[163] Edward Polrolniczak and Michal Kramarczyk. Estimation of singing voice types based on voice parameters
analysis. In Signal Processing: Algorithms, Architectures, Arrangements, and Applications, (SPA), pages
63–68, Poznan, Poland, 2017. doi: 10.23919/SPA.2017.8166839.

[164] Jordi Pons, Thomas Lidy, and Xavier Serra. Experimenting with musically motivated convolutional neural
networks. In Proceedings of International Workshop on Content-Based Multimedia Indexing (CBMI), pages
1–6, Bucharest, Romania, 2016. doi: 10.1109/CBMI.2016.7500246.

[165] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik Schmidt, Andreas Ehmann, and Xavier Serra. End-to-end
learning for music audio tagging at scale. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 637–644, Paris, France, 2018. doi: 10.5281/zenodo.1492497.

[166] Thomas Prätzlich, Meinard Müller, Benjamin W. Bohl, and Joachim Veit. Freischütz Digital: Demos of
audio-related contributions. In Demos and Late Breaking News of the International Society for Music
Information Retrieval Conference (ISMIR), Malága, Spain, 2015. URL https://ismir2015.ismir.net/
LBD/LBD18.pdf.

[167] Thomas Prätzlich, Jonathan Driedger, and Meinard Müller. Memory-restricted multiscale dynamic time
warping. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 569–573, Shanghai, China, March 2016. doi: 10.1109/ICASSP.2016.7471739.

[168] Katharina Prinz, Arthur Flexer, and Gerhard Widmer. On end-to-end white-box adversarial attacks in music
information retrieval. Transactions of the International Society for Music Information Retrieval (TISMIR), 4
(1):93, 2021. doi: 10.5334/tismir.85.

[169] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In Proceedings of the International Conference on Machine
Learning (ICML), pages 8748–8763, Virtual, 2021. URL https://proceedings.mlr.press/v139/
radford21a.

[170] Mathieu Ramona, Gäel Richard, and Bertrand David. Vocal detection in music with support vector machines.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 1885–1888, Las Vegas, Nevada, USA, 2008. doi: 10.1109/ICASSP.2008.4518002.

147

http://doi.org/10.1155/2007/48317
http://doi.org/10.1109/TASLP.2020.3047233
https://dcase.community/documents/workshop2022/proceedings/DCASE2022Workshop_Politis_51.pdf
https://dcase.community/documents/workshop2022/proceedings/DCASE2022Workshop_Politis_51.pdf
http://doi.org/10.23919/SPA.2017.8166839
http://doi.org/10.1109/CBMI.2016.7500246
http://doi.org/10.5281/zenodo.1492497
https://ismir2015.ismir.net/LBD/LBD18.pdf
https://ismir2015.ismir.net/LBD/LBD18.pdf
http://doi.org/10.1109/ICASSP.2016.7471739
http://doi.org/10.5334/tismir.85
https://proceedings.mlr.press/v139/radford21a
https://proceedings.mlr.press/v139/radford21a
http://doi.org/10.1109/ICASSP.2008.4518002


Bibliography

[171] Lise Regnier and Geoffroy Peeters. Singing voice detection in music tracks using direct voice vibrato detection.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 1685–1688, Taipei, Taiwan, 2009. doi: 10.1109/ICASSP.2009.4959926.

[172] Francisco Rodríguez-Algarra, Bob L. Sturm, and Hugo Maruri-Aguilar. Analysing scattering-based music
content analysis systems: Where’s the music? In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pages 344–350, New York City, New York, USA, 2016. doi:
10.5281/zenodo.1414723.

[173] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know about
how BERT works. Transactions of the Association for Computational Linguistics, 8:842–866, 2020. doi:
10.1162/tacl\_a\_00349.

[174] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10674–10685, New Orleans, LA, USA, 2022. doi: 10.1109/CVPR52688.2022.
01042.

[175] Aaqib Saeed, David Grangier, and Neil Zeghidour. Contrastive learning of general-purpose audio representa-
tions. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3875–3879, Toronto, Canada, 2021. doi: 10.1109/ICASSP39728.2021.9413528.

[176] Justin Salamon and Juan Pablo Bello. Unsupervised feature learning for urban sound classification. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 171–175, South Brisbane, Australia, 2015. doi: 10.1109/ICASSP.2015.7177954.

[177] Justin Salamon, Rachel M. Bittner, Jordi Bonada, Juan José Bosch Vicente, Emilia Gómez, and Juan P.
Bello. An analysis/synthesis framework for automatic f0 annotation of multitrack datasets. In Proceedings of
International Society for Music Information Retrieval Conference (ISMIR), pages 71–78, Suzhou, China,
2017. doi: 10.5281/zenodo.1415588.

[178] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In Advances in Neural Information Processing Systems (NeurIPS), pages
2488–2498, Montréal, Canada, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
905056c1ac1dad141560467e0a99e1cf-Abstract.html.

[179] Saurjya Sarkar, Emmanouil Benetos, and Mark B. Sandler. EnsembleSet: A new high quality dataset for
chamber ensemble separation. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Bengaluru, India, 2022. doi: 10.5281/zenodo.7316740.

[180] Axel Sauer and Andreas Geiger. Counterfactual generative networks. In Proceedings of the International
Conference on Learning Representations (ICLR), Virtual, 2021. URL https://openreview.net/forum?
id=BXewfAYMmJw.

[181] Jan Schlüter and Thomas Grill. Exploring data augmentation for improved singing voice detection with
neural networks. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 121–126, Málaga, Spain, 2015. doi: 10.5281/zenodo.1417745.

148

http://doi.org/10.1109/ICASSP.2009.4959926
http://doi.org/10.5281/zenodo.1414723
http://doi.org/10.5281/zenodo.1414723
http://doi.org/10.1162/tacl_a_00349
http://doi.org/10.1162/tacl_a_00349
http://doi.org/10.1109/CVPR52688.2022.01042
http://doi.org/10.1109/CVPR52688.2022.01042
http://doi.org/10.1109/ICASSP39728.2021.9413528
http://doi.org/10.1109/ICASSP.2015.7177954
http://doi.org/10.5281/zenodo.1415588
https://proceedings.neurips.cc/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
http://doi.org/10.5281/zenodo.7316740
https://openreview.net/forum?id=BXewfAYMmJw
https://openreview.net/forum?id=BXewfAYMmJw
http://doi.org/10.5281/zenodo.1417745


Bibliography

[182] Jan Schlüter and Bernhard Lehner. Zero-mean convolutions for level-invariant singing voice detection. In
Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 321–326,
Paris, France, 2018. doi: 10.5281/zenodo.1492413.

[183] Florian Scholz, Igor Vatolkin, and Günter Rudolph. Singing voice detection across different music genres. In
Proceedings of the AES International Conference on Semantic Audio, pages 140–147, Erlangen, Germany,
2017. URL https://www.aes.org/e-lib/browse.cfm?elib=18771.

[184] Christian Schörkhuber and Anssi P. Klapuri. Constant-Q transform toolbox for music processing. In
Proceedings of the Sound and Music Computing Conference (SMC), Barcelona, Spain, 2010. doi: 10.5281/
zenodo.849741.

[185] Hendrik Schreiber, Christof Weiß, and Meinard Müller. Local key estimation in classical music audio
recordings: A cross-version study on Schubert’s Winterreise. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 501–505, Barcelona, Spain, 2020.
doi: 10.1109/ICASSP40776.2020.9054642.

[186] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified embedding for face recognition
and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 815–823, Boston, Massachusetts, USA, 2015. doi: 10.1109/CVPR.2015.7298682.

[187] Kilian Schulze-Forster, Clement S. J. Doire, Gaël Richard, and Roland Badeau. Phoneme level lyrics
alignment and text-informed singing voice separation. IEEE/ACM Transactions on Audio, Speech and
Language Processing, 29:2382–2395, 2021. doi: 10.1109/TASLP.2021.3091817.

[188] Simon Schwär, Michael Krause, Michael Fast, Sebastian Rosenzweig, Frank Scherbaum, and Meinard Müller.
Singing voice reconstruction from larynx microphone signals. Submitted for publication, 2023.

[189] Carlos Nascimento Silla, Jr. and Alex Alves Freitas. A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery, 22(1-2):31–72, 2011. doi: 10.1007/
s10618-010-0175-9.

[190] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, California,
USA, 2015. URL http://arxiv.org/abs/1409.1556.

[191] Janne Spĳkervet and John Ashley Burgoyne. Contrastive learning of musical representations. In Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR), pages 673–681, Online,
2021. doi: 10.5281/zenodo.5624573.

[192] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):
1929–1958, June 2014. URL https://jmlr.org/papers/v15/srivastava14a.html.

[193] Daniel Stoller, Simon Durand, and Sebastian Ewert. End-to-end lyrics alignment for polyphonic music using
an audio-to-character recognition model. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 181–185, Brighton, UK, 2019. doi: 10.1109/ICASSP.2019.
8683470.

149

http://doi.org/10.5281/zenodo.1492413
https://www.aes.org/e-lib/browse.cfm?elib=18771
http://doi.org/10.5281/zenodo.849741
http://doi.org/10.5281/zenodo.849741
http://doi.org/10.1109/ICASSP40776.2020.9054642
http://doi.org/10.1109/CVPR.2015.7298682
http://doi.org/10.1109/TASLP.2021.3091817
http://doi.org/10.1007/s10618-010-0175-9
http://doi.org/10.1007/s10618-010-0175-9
http://arxiv.org/abs/1409.1556
http://doi.org/10.5281/zenodo.5624573
https://jmlr.org/papers/v15/srivastava14a.html
http://doi.org/10.1109/ICASSP.2019.8683470
http://doi.org/10.1109/ICASSP.2019.8683470


Bibliography

[194] Dan Stowell, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange, and Mark D. Plumbley. Detection
and classification of acoustic scenes and events. IEEE Transactions on Multimedia, 17(10):1733–1746, 2015.
doi: 10.1109/TMM.2015.2428998.

[195] Dan Stowell, Mike Wood, Yannis Stylianou, and Hervé Glotin. Bird detection in audio: A survey and a
challenge. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing
(MLSP), Vietri sul Mare, Salerno, Italy, 2016. doi: 10.1109/MLSP.2016.7738875.

[196] Bob L. Sturm. A simple method to determine if a music information retrieval system is a “horse”. IEEE
Transactions on Multimedia, 16(6):1636–1644, 2014. doi: 10.1109/TMM.2014.2330697.

[197] Bob L. Sturm. The "horse" inside: Seeking causes behind the behaviors of music content analysis systems.
Computers in Entertainment, 14(2):3:1–3:32, 2016. doi: 10.1145/2967507.

[198] Bob L. Sturm, Corey Kereliuk, and Jan Larsen. ¿El caballo viejo? Latin genre recognition with deep learning
and spectral periodicity. In International Conference on Mathematics and Computation in Music (MCM),
pages 335–346, London, UK, 2015. doi: 10.1007/978-3-319-20603-5_34.

[199] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. In Proceedings of the International Conference on
Learning Representations (ICLR), Banff, AB, Canada, 2014. URL https://openreview.net/forum?
id=kklr_MTHMRQjG.

[200] Michael Taenzer, Jakob Abeßer, Stylianos I. Mimilakis, Christof Weiß, Hanna Lukashevich, and Meinard
Müller. Investigating CNN-based instrument family recognition for Western classical music recordings. In
Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 612–619,
Delft, The Netherlands, 2019. doi: 10.5281/zenodo.3527884.

[201] Zheng Tang and Dawn A. A. Black. Melody extraction from polyphonic audio of Western opera: A method
based on detection of the singer’s formant. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 161–166, Taipei, Taiwan, October 2014. doi: 10.5281/zenodo.1416714.

[202] Hiroko Terasawa, Malcolm Slaney, and Jonathan Berger. The thirteen colors of timbre. In Proceedings of the
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 323–326,
New Paltz, NY, USA, 2005. doi: 10.1109/ASPAA.2005.1540234.

[203] John Thickstun, Zaïd Harchaoui, and Sham M. Kakade. Learning features of music from scratch. In
Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 2017.
URL https://openreview.net/forum?id=rkFBJv9gg.

[204] Verena Thomas, Christian Fremerey, David Damm, and Michael Clausen. SLAVE: a Score-Lyrics-Audio-
Video-Explorer. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 717–722, Kobe, Japan, 2009. doi: 10.5281/zenodo.1418029.

[205] Carl Thomé, Sebastian Piwell, and Oscar Utterbäck. Musical audio similarity with self-supervised convo-
lutional neural networks. In Demos and Late Breaking News of the International Society for Music Infor-
mation Retrieval Conference (ISMIR), Online, 2021. URL https://archives.ismir.net/ismir2021/
latebreaking/000012.pdf.

150

http://doi.org/10.1109/TMM.2015.2428998
http://doi.org/10.1109/MLSP.2016.7738875
http://doi.org/10.1109/TMM.2014.2330697
http://doi.org/10.1145/2967507
http://doi.org/10.1007/978-3-319-20603-5_34
https://openreview.net/forum?id=kklr_MTHMRQjG
https://openreview.net/forum?id=kklr_MTHMRQjG
http://doi.org/10.5281/zenodo.3527884
http://doi.org/10.5281/zenodo.1416714
http://doi.org/10.1109/ASPAA.2005.1540234
https://openreview.net/forum?id=rkFBJv9gg
http://doi.org/10.5281/zenodo.1418029
https://archives.ismir.net/ismir2021/latebreaking/000012.pdf
https://archives.ismir.net/ismir2021/latebreaking/000012.pdf


Bibliography

[206] Steven K. Tjoa and K. J. Ray Liu. Musical instrument recognition using biologically inspired filtering of
temporal dictionary atoms. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 435–440, 2010. doi: 10.5281/zenodo.1416166.

[207] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki, and Masataka Goto. AIST dance video database:
Multi-genre, multi-dancer, and multi-camera database for dance information processing. In Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR), pages 501–510, Delft, The
Netherlands, 2019. doi: 10.5281/zenodo.3527854.

[208] Nicolas Turpault, Romain Serizel, Justin Salamon, and Ankit Parag Shah. Sound event detection in
domestic environments with weakly labeled data and soundscape synthesis. In Proceedings of the Work-
shop on Detection and Classification of Acoustic Scenes and Events (DCASE), pages 253–257, New
York, NY, USA, 2019. URL http://dcase.community/documents/workshop2019/proceedings/
DCASE2019Workshop_Turpault_44.pdf.

[209] Shankar Vembu and Stephan Baumann. Separation of vocals from polyphonic audio recordings. In
Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 337–344,
London, UK, 2005. doi: 10.5281/zenodo.1414852.

[210] Tuomas Virtanen, Mark D. Plumbley, and Dan Ellis. Computational Analysis of Sound Scenes and Events.
Springer, 2018. ISBN 978-3-319-63449-4. doi: 10.1007/978-3-319-63450-0.

[211] Marcel A. Vélez Vásquez and John Ashley Burgoyne. Tailed U-Net: Multi-scale music representation
learning. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
pages 67–75, Bengaluru, India, 2022. doi: 10.5281/zenodo.7316596.

[212] Richard Wagner. On the application of music to the drama. In Prose Works, pages 175–191. Broude Brothers,
New York, 1966. Translation of the original edition from 1879.

[213] Richard Wagner. Opera and Drama. University of Nebraska Press, 1995. ISBN 978-0-803-29765-4.
Translation of the original edition from 1851.

[214] Richard Wagner. Der Ring des Nibelungen. Vollständiger Text mit Notentafeln der Leitmotive. Schott Music,
Mainz, 2013. ISBN 978-3-254-08229-9. Reprint of the original edition from 1913 (Ed. Julius Burghold).

[215] Keigo Wakayama and Shoichiro Saito. CNN-Transformer with self-attention network for sound event
detection. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 806–810, Singapore, 2022. doi: 10.1109/ICASSP43922.2022.9747762.

[216] Ju-Chiang Wang, Jordan B. L. Smith, Wei Tsung Lu, and Xuchen Song. Supervised metric learning for music
structure features. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 730–737, Online, 2021. doi: 10.5281/zenodo.5624427.

[217] Ye Wang, Min-Yen Kan, Tin Lay Nwe, Arun Shenoy, and Jun Yin. LyricAlly: Automatic synchronization
of acoustic musical signals and textual lyrics. In Proceedings of the ACM International Conference on
Multimedia, pages 212–219, New York, NY, USA, 2004. doi: 10.1145/1027527.1027576.

151

http://doi.org/10.5281/zenodo.1416166
http://doi.org/10.5281/zenodo.3527854
http://dcase.community/documents/workshop2019/proceedings/DCASE2019Workshop_Turpault_44.pdf
http://dcase.community/documents/workshop2019/proceedings/DCASE2019Workshop_Turpault_44.pdf
http://doi.org/10.5281/zenodo.1414852
http://doi.org/10.1007/978-3-319-63450-0
http://doi.org/10.5281/zenodo.7316596
http://doi.org/10.1109/ICASSP43922.2022.9747762
http://doi.org/10.5281/zenodo.5624427
http://doi.org/10.1145/1027527.1027576


Bibliography

[218] Yu Wang, Justin Salamon, Nicholas J. Bryan, and Juan Pablo Bello. Few-shot sound event detection. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 81–85, Barcelona, Spain, 2020. doi: 10.1109/ICASSP40776.2020.9054708.

[219] Yuxuan Wang, Pascal Getreuer, Thad Hughes, Richard F. Lyon, and Rif A. Saurous. Trainable frontend
for robust and far-field keyword spotting. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pages 5670–5674, New Orleans, USA, 2017. doi:
10.1109/ICASSP.2017.7953242.

[220] Jonatas Wehrmann, Ricardo Cerri, and Rodrigo C. Barros. Hierarchical multi-label classification networks.
In Proceedings of the International Conference on Machine Learning (ICML), pages 5225–5234, Stockholm,
Sweden, 2018. URL https://proceedings.mlr.press/v80/wehrmann18a.html.

[221] Christof Weiß and Geoffroy Peeters. Learning multi-pitch estimation from weakly aligned score-audio pairs
using a multi-label CTC loss. In Proceedings of the IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), pages 121–125, New Paltz, USA, 2021. doi: 10.1109/WASPAA52581.2021.
9632740.

[222] Christof Weiß, Vlora Arifi-Müller, Thomas Prätzlich, Rainer Kleinertz, and Meinard Müller. Analyzing
measure annotations for Western classical music recordings. In Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), pages 517–523, New York, USA, 2016. doi: 10.5281/
zenodo.1417449.

[223] Christof Weiß, Frank Zalkow, Meinard Müller, Stephanie Klauk, and Rainer Kleinertz. Versionsübergreifende
Visualisierung harmonischer Verläufe: Eine Fallstudie zu Wagners Ring-Zyklus. In Proceedings of
the Jahrestagung der Gesellschaft für Informatik (GI), pages 205–217, Chemnitz, Germany, 2017. doi:
10.18420/in2017_14.

[224] Christof Weiß, Hendrik Schreiber, and Meinard Müller. Local key estimation in music recordings: A case
study across songs, versions, and annotators. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 28:2919–2932, 2020. doi: 10.1109/TASLP.2020.3030485.

[225] Christof Weiß, Frank Zalkow, Vlora Arifi-Müller, Meinard Müller, Hendrik Vincent Koops, Anja Volk, and
Harald Grohganz. Schubert Winterreise dataset: A multimodal scenario for music analysis. ACM Journal on
Computing and Cultural Heritage (JOCCH), 14(2):25:1–18, 2021. doi: 10.1145/3429743.

[226] Christof Weiß, Johannes Zeitler, Tim Zunner, Florian Schuberth, and Meinard Müller. Learning pitch-class
representations from score–audio pairs of classical music. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pages 746–753, Online, 2021. doi: 10.5281/zenodo.5624549.

[227] Christof Weiß, Vlora Arifi-Müller, Michael Krause, Frank Zalkow, Stephanie Klauk, Rainer Kleinertz, and
Meinard Müller. Wagner Ring Dataset: A complex opera scenario for music processing and computational
musicology. Transactions of the International Society for Music Information (TISMIR), 2023.

[228] Felix Weninger, Jean-Louis Durrieu, Florian Eyben, Gaël Richard, and Björn W. Schuller. Combining monaural
source separation with long short-term memory for increased robustness in vocalist gender recognition. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 2196–2199, Prague, Czech Republic, 2011. doi: 10.1109/ICASSP.2011.5946764.

152

http://doi.org/10.1109/ICASSP40776.2020.9054708
http://doi.org/10.1109/ICASSP.2017.7953242
http://doi.org/10.1109/ICASSP.2017.7953242
https://proceedings.mlr.press/v80/wehrmann18a.html
http://doi.org/10.1109/WASPAA52581.2021.9632740
http://doi.org/10.1109/WASPAA52581.2021.9632740
http://doi.org/10.5281/zenodo.1417449
http://doi.org/10.5281/zenodo.1417449
http://doi.org/10.18420/in2017_14
http://doi.org/10.18420/in2017_14
http://doi.org/10.1109/TASLP.2020.3030485
http://doi.org/10.1145/3429743
http://doi.org/10.5281/zenodo.5624549
http://doi.org/10.1109/ICASSP.2011.5946764


Bibliography

[229] Curtis Wigington, Brian L. Price, and Scott Cohen. Multi-label connectionist temporal classification. In
Proceedings of the International Conference on Document Analysis and Recognition (ICDAR), pages 979–986,
Sydney, Australia, 2019. doi: 10.1109/ICDAR.2019.00161.

[230] Chih-Wei Wu, Christian Dittmar, Carl Southall, Richard Vogl, Gerhard Widmer, Jason Hockman, Meinard
Müller, and Alexander Lerch. A review of automatic drum transcription. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 26(9):1457–1483, 2018. doi: 10.1109/TASLP.2018.2830113.

[231] Ho-Hsiang Wu, Chieh-Chi Kao, Qingming Tang, Ming Sun, Brian McFee, Juan Pablo Bello, and Chao Wang.
Multi-task self-supervised pre-training for music classification. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 556–560, Toronto, Canada, 2021.
doi: 10.1109/ICASSP39728.2021.9414405.

[232] Yu-Te Wu, Berlin Chen, and Li Su. Multi-instrument automatic music transcription with self-attention-based
instance segmentation. IEEE/ACM Transactions on Audio, Speech and Language Processing, 28:2796–2809,
2020. doi: 10.1109/TASLP.2020.3030482.

[233] Xianjun Xia, Roberto Togneri, Ferdous Sohel, Yuanjun Zhao, and Defeng Huang. A survey: Neural
network-based deep learning for acoustic event detection. Circuits, Systems, and Signal Processing, 38(8):
3433–3453, 2019. doi: 10.1007/s00034-019-01094-1.

[234] Yong Xu, Qiang Huang, Wenwu Wang, and Mark D. Plumbley. Hierachical learning for DNN-based acoustic
scene classification. In Proceedings of the Workshop on Detection and Classification of Acoustic Scenes
and Events (DCASE), pages 110–114, Budapest, Hungary, 2016. URL https://dcase.community/
documents/workshop2016/proceedings/Xu-a-DCASE2016workshop.pdf.

[235] Wanqian Yang, Polina Kirichenko, Micah Goldblum, and Andrew Gordon Wilson. Chroma-VAE: Mitigating
shortcut learning with generative classifiers. In Advances in Neural Information Processing Systems (NeurIPS),
New Orleans, LA, USA, 2022. URL https://openreview.net/forum?id=WWVcsfI0jGH.

[236] Frank Zalkow and Meinard Müller. Learning low-dimensional embeddings of audio shingles for cross-version
retrieval of classical music. Applied Sciences, 10(1), 2020. doi: 10.3390/app10010019.

[237] Frank Zalkow, Christof Weiß, and Meinard Müller. Exploring tonal-dramatic relationships in Richard
Wagner’s Ring cycle. In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pages 642–648, Suzhou, China, 2017. doi: 10.5281/zenodo.1415760.

[238] Frank Zalkow, Christof Weiß, Thomas Prätzlich, Vlora Arifi-Müller, and Meinard Müller. A multi-
version approach for transferring measure annotations between music recordings. In Proceedings of
the AES International Conference on Semantic Audio, pages 148–155, Erlangen, Germany, 2017. URL
https://www.aes.org/e-lib/browse.cfm?elib=18772.

[239] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. In Proceedings of the International Conference on Learning
Representations (ICLR), Toulon, France, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

[240] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In Proceedings of the International Conference on Learning Representations (ICLR),
Vancouver, BC, Canada, 2018. URL https://openreview.net/forum?id=r1Ddp1-Rb.

153

http://doi.org/10.1109/ICDAR.2019.00161
http://doi.org/10.1109/TASLP.2018.2830113
http://doi.org/10.1109/ICASSP39728.2021.9414405
http://doi.org/10.1109/TASLP.2020.3030482
http://doi.org/10.1007/s00034-019-01094-1
https://dcase.community/documents/workshop2016/proceedings/Xu-a-DCASE2016workshop.pdf
https://dcase.community/documents/workshop2016/proceedings/Xu-a-DCASE2016workshop.pdf
https://openreview.net/forum?id=WWVcsfI0jGH
http://doi.org/10.3390/app10010019
http://doi.org/10.5281/zenodo.1415760
https://www.aes.org/e-lib/browse.cfm?elib=18772
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=r1Ddp1-Rb


Bibliography

[241] Huan Zhang, Jingjing Tang, Syed Rifat Mahmud Rafee, Simon Dixon, and György Fazekas. ATEPP: A
dataset of automatically transcribed expressive piano performance. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pages 446–453, Bengaluru, India, 2022. doi:
10.5281/zenodo.7342764.

[242] Xulong Zhang, Yi Yu, Yongwei Gao, Xi Chen, and Wei Li. Research on singing voice detection based on a
long-term recurrent convolutional network with vocal separation and temporal smoothing. Electronics, 9(9):
1458, 2020. doi: 10.3390/electronics9091458.

[243] Arman Zharmagambetov, Qingming Tang, Chieh-Chi Kao, Qin Zhang, Ming Sun, Viktor Rozgic, Jasha
Droppo, and Chao Wang. Improved representation learning for acoustic event classification using tree-
structured ontology. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 321–325, Singapore, 2022. doi: 10.1109/ICASSP43922.2022.9746266.

[244] Zhi Zhong, Masato Hirano, Kazuki Shimada, Kazuya Tateishi, Shusuke Takahashi, and Yuki Mitsufuji.
An attention-based approach to hierarchical multi-label music instrument classification. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Rhodes Island,
Greece, 2023. Uploaded to arXiv (2302.08136) on 16.02.2023. doi: 10.48550/arXiv.2302.08136.

[245] Fu Zih-Sing and Li Su. Hierarchical classification networks for singing voice segmentation and transcription.
In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages
900–907, Delft, The Netherlands, 2019. doi: 10.5281/zenodo.3527960.

154

http://doi.org/10.5281/zenodo.7342764
http://doi.org/10.5281/zenodo.7342764
http://doi.org/10.3390/electronics9091458
http://doi.org/10.1109/ICASSP43922.2022.9746266
http://doi.org/10.48550/arXiv.2302.08136
http://doi.org/10.5281/zenodo.3527960

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Structure and Main Contributions of this Thesis
	Publications Related to Ph.D. Thesis
	Additional Publications
	Acknowledgments

	Fundamentals
	Audio Representations
	Waveforms
	Short-Time Fourier Transform
	Log-Frequency Representations

	Activity Detection
	Case Study: Detecting Singing Activity
	Feature-Engineering Approach
	Deep Learning Approach


	Singing Activity Detection in Opera Recordings
	Introduction
	Related Work
	Singing Voice Detection Methods
	Dataset and Training Scenarios
	Experiments
	Training on Different Versions
	Training on Different Musical Material
	Training on Full Splits
	Impact of Dataset Size
	Transfer between Pop and Opera Datasets

	Conclusions

	Hierarchical Approaches for Detecting Singing Activity, Gender, and Type
	Introduction
	Related Work
	Hierarchical Class Model
	Hierarchical Singing Detection
	Experiments
	Dataset
	Evaluation Measures
	Model
	Results

	Conclusion

	Hierarchical Approaches for Instrument Activity Detection
	Introduction
	Related Work
	Instrument Detection
	Hierarchical Classification for Audio
	Orchestra and Opera in MIR

	Hierarchical Instrument Detection
	Hierarchical Class Model
	Classification Approach
	Evaluation Measures

	Orchestral Datasets
	Multi-Track Datasets
	Music Synchronization
	Dataset Overview and Split

	Model Architecture
	Main Results
	Consistency Losses
	Analysis of Confounding Factors
	Conclusion

	A Cross-Version Approach to Representation Learning for Instrumentation
	Introduction
	Related Work
	Cross-Version Approach to Audio Representation Learning
	Experimental Setup
	Dataset and Splits
	Model
	Baselines

	Results
	Feature Analysis using Self-Similarity
	Qualitative Results
	Quantitative Results
	Feature Analysis Using Classification

	Conclusion

	Soft Dynamic Time Warping for Pitch Activity Detection
	Introduction
	Weakly Aligned Training for MPE
	Soft Dynamic Time Warping
	Application to Multi-Pitch Estimation
	Implementation Details and Evaluation Metrics
	Comparison with MCTC
	Incorporating Note Durations
	Cross-Dataset Experiment

	Extension to Real-Valued Targets
	Pitch Estimation with Overtone Model
	Cross-Version Training

	Conclusion

	Leitmotif Classification in Operas by Richard Wagner
	Introduction
	Scenario
	Leitmotifs in Wagner's Ring
	Recorded Performances
	Leitmotif Classification Task

	Recurrent Neural Network for Leitmotif Classification
	Experiments
	Setup and Splits
	Evaluation Measures
	Results on the Performance Split
	Results on the Occurrence Split
	Noise Class
	Random Labels

	Summary and Future Work

	Leitmotif Activity Detection in Opera Recordings
	Introduction
	Musical Scenario and Task Specification
	Leitmotifs in Wagner's Ring
	Cross-Performance Dataset
	Leitmotif Activity Detection

	Deep Learning-Based Leitmotif Activity Detection
	Methods
	Evaluation Measures
	Evaluation with Tolerance
	Experimental Results

	Robustness to Input Modifications
	Tempo Changes
	Pitch Shifts
	Noise
	Shuffling

	Towards Less Informed Scenarios
	Conclusion

	Summary and Future Work
	Abbreviations
	Bibliography

