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Chapter 2: Fourier Analysis of Signals

2.1 The Fourier Transform in a Nutshell
2.2 Signals and Signal Spaces
2.3 Fourier Transform
2.4 Discrete Fourier Transform (DFT)
2.5 Short-Time Fourier Transform (STFT)
2.6 Further Notes

Important technical terminology is covered in Chapter 2. In particular, we
approach the Fourier transform—which is perhaps the most fundamental tool
in signal processing—from various perspectives. For the reader who is more
interested in the musical aspects of the book, Section 2.1 provides a summary
of the most important facts on the Fourier transform. In particular, the notion of
a spectrogram, which yields a time–frequency representation of an audio
signal, is introduced. The remainder of the chapter treats the Fourier transform
in greater mathematical depth and also includes the fast Fourier transform
(FFT)—an algorithm of great beauty and high practical relevance.

Chapter 3: Music Synchronization

3.1 Audio Features
3.2 Dynamic Time Warping
3.3 Applications
3.4 Further Notes

As a first music processing task, we study in Chapter 3 the problem of music
synchronization. The objective is to temporally align compatible
representations of the same piece of music. Considering this scenario, we
explain the need for musically informed audio features. In particular, we
introduce the concept of chroma-based music features, which capture
properties that are related to harmony and melody. Furthermore, we study an
alignment technique known as dynamic time warping (DTW), a concept that is
applicable for the analysis of general time series. For its efficient computation,
we discuss an algorithm based on dynamic programming—a widely used
method for solving a complex problem by breaking it down into a collection of
simpler subproblems.



Fourier Transform
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Idea: Decompose a given signal into a superposition
of sinusoids (elementary signals). 
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Fourier Transform
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Example: C4 played by trumpet
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Example: C4 played by violine
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Fourier Transform
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Example: Chirp signal

Fourier Transform
Example: Piano tone (C4, 261.6 Hz)
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Fourier Transform
Example: Piano tone (C4, 261.6 Hz)
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Analysis using sinusoid with 262 Hz
→ high correlation
→ large Fourier coefficient

Fourier Transform
Example: Piano tone (C4, 261.6 Hz)
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Analysis using sinusoid with 400 Hz
→ low correlation
→ small Fourier coefficient

Fourier Transform
Example: Piano tone (C4, 261.6 Hz)

Analysis using sinusoid with 523 Hz
→ high correlation
→ large Fourier coefficient
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Fourier Transform
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Each sinusoid has a physical meaning
and can be described by three parameters:

Fourier Transform

Complex formulation of sinusoids:

Polar coordinates:
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Fourier Transform

 Tells which frequencies occur, but does not 
tell when the frequencies occur.

 Frequency information is averaged over the entire
time interval.

 Time information is hidden in the phase

Signal

Fourier representation

Fourier transform

Fourier Transform
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Idea (Dennis Gabor, 1946):

 Consider only a small section of the signal 
for the spectral analysis

→  recovery of time information

 Short Time Fourier Transform (STFT)

 Section is determined by pointwise multiplication 
of the signal with a localizing window function
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Short Time Fourier Transform
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Short Time Fourier Transform

Frequency (Hz)Time (seconds)

Window functions

→  Trade off between smoothing and “ringing” 

Definition

 Signal

 Window function (                ,              )

 STFT 
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 is “musical note” of frequency ω centered at time t
 Inner product measures the correlation

between the musical note and the signal
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Time-Frequency Representation
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Time-Frequency Representation
Chirp signal and STFT with Hann window of length 50 ms
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Time-Frequency Representation
Chirp signal and STFT with box window of length 50 ms
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 Size of window constitutes a trade-off between time 
resolution and frequency resolution:

Large window : poor time resolution
good frequency resolution

Small window : good time resolution
poor frequency resolution

 Heisenberg Uncertainty Principle: there is no
window function that localizes in time and
frequency with arbitrary precision.

Time-Frequency Representation
Time-Frequency Localization



Time-Frequency Representation
Signal and STFT with Hann window of length 20 ms
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Audio Features
Example: Chromatic scale

Fr
eq

ue
nc

y 
(H

z)

In
te

ns
ity

 (d
B)

In
te

ns
ity

(d
B)

  

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

C1
24

C2
36

C3
48

C4
60

C5
72

C6
84

C7
96

C8
108

Spectrogram
C1
24

C2
36

C3
48

C4
60

C5
72

C6
84

C7
96

C8
108

Audio Features
Example: Chromatic scale
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Audio Features

Model assumption:    Equal-tempered scale

 MIDI pitches: 

 Piano notes: p = 21 (A0)    to p = 108 (C8)

 Concert pitch:         p = 69 (A4)   ≙ 440 Hz

 Center frequency: 

→ Logarithmic frequency distribution
Octave: doubling of frequency

Hz

Audio Features

Idea: Binning of Fourier coefficients

Divide up the fequency axis into
logarithmically spaced “pitch regions”
and combine spectral coefficients
of each region to a single pitch coefficient.



Audio Features
Time-frequency representation

Windowing in the time domain 
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Audio Features
Example: Chromatic scale

C4: 262 Hz
C5: 523 Hz

C6: 1046 Hz

C7: 2093 Hz

C8: 4186 Hz

C3: 131 Hz
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Example: Chromatic scale
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Audio Features

Note MIDI 
pitch

Center [Hz] 
frequency

Left [Hz] 
boundary

Right [Hz] 
boundary

Width [Hz] 

A3 57 220.0 213.7 226.4 12.7

A#3 58 233.1 226.4 239.9 13.5

B3 59 246.9 239.9 254.2 14.3

C4 60 261.6 254.2 269.3 15.1

C#4 61 277.2 269.3 285.3 16.0

D4 62 293.7 285.3 302.3 17.0

D#4 63 311.1 302.3 320.2 18.0

E4 64 329.6 320.2 339.3 19.0

F4 65 349.2 339.3 359.5 20.2

F#4 66 370.0 359.5 380.8 21.4

G4 67 392.0 380.8 403.5 22.6

G#4 68 415.3 403.5 427.5 24.0

A4 69 440.0 427.5 452.9 25.4

Frequency ranges for pitch-based log-frequency spectrogram

Audio Features
Chroma features

Chromatic circle Shepard’s helix of pitch



Audio Features
Chroma features

 Human perception of pitch is periodic in the sense 
that two pitches are perceived as similar in color if 
they differ by an octave.

 Seperation of pitch into two components: 
tone height (octave number) and chroma.

 Chroma : 12 traditional pitch classes of the equal-
tempered scale. For example:
Chroma C

 Computation: pitch features  chroma features
Add up all pitches belonging to the same class

 Result: 12-dimensional chroma vector.

Audio Features
Chroma features

Audio Features
Chroma features

C2 C3 C4

Chroma  C

Audio Features
Chroma features

C#2 C#3 C#4

Chroma  C#

Audio Features
Chroma features

D2 D3 D4

Chroma  D

Audio Features
Example: Chromatic scale
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Audio Features
Example: Chromatic scale
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Example: Chromatic scale
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Audio Features
Example: Chromatic scale
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Chroma features
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 Sequence of chroma vectors correlates to the
harmonic progression

 Normalization →            makes features invariant
to changes in dynamics

 Further denoising and smoothing

 Taking logarithm before adding up pitch coefficients
accounts for logarithmic sensation of intensity

Audio Features
Chroma features

Audio Features

For a positive constant
the logarithmic compression

is defined by

A value is replaced
by a compressed value

Logarithmic compression

Audio Features

γ = 1
Identity

γ = 100
γ = 10

C
om

pr
es

se
d 

va
lu

es

Original values

For a positive constant
the logarithmic compression

is defined by

A value is replaced
by a compressed value

The higher
the stronger the compression

Logarithmic compression
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The higher
the stronger the compression

A value is replaced
by a compressed value

Original 
chromagram

Logarithmic compression

Audio Features
Normalization

Replace a vector
by the normalized vector

using a suitable norm

Chroma vector
Example:

Euclidean norm

Audio Features
Normalization

Replace a vector
by the normalized vector

using a suitable norm

Chroma vector
Example:

Euclidean norm

Example: C4 played by piano

Chromagram

Normalized chromagram



Audio Features
Normalization

Replace a vector
by the normalized vector

using a suitable norm

Chroma vector
Example:

Euclidean norm

Example: C4 played by piano

Log-chromagram

Normalized log-chromagram

Karajan

Audio Features
Chroma features (normalized)

Scherbakov

Idealized chromagram

Audio Features
Schubert Winterreise (Wetterfahne)

Real chromagram

Audio Features
Chroma features

Time (seconds)

Chromagram

Chromagram after logarithmic 
compression and normalization

Chromagram based on a piano 
tuned 40 cents upwards

Chromagram after applying a 
cyclic shift of four semitones 
upwards

Audio Features

 There are many ways to implement chroma features

 Properties may differ significantly

 Appropriateness depends on respective application

 Chroma Toolbox (MATLAB)
https://www.audiolabs-erlangen.de/resources/MIR/chromatoolbox

 LibROSA (Python)
https://librosa.github.io/librosa/

 Feature learning: “Deep Chroma”
[Korzeniowski/Widmer, ISMIR 2016]

Additional Material



Inner Product

•

Length of a vector Angle between
two vectors

Orthogonality of
two vectors

for

Inner Product

Time (seconds)

Measuring the similarity of two functions

→ Area mostly positive and large
→ Integral large
→ Similarity high

Inner Product

Time (seconds)

Measuring the similarity of two functions

→ Area positive and negative
→ Integral small
→ Similarity low
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Discretization
Quantization
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CT-signal

Sampling period

Equidistant sampling,
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Discretization
Aliasing
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Discretization
Integrals and Riemann sums
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Discretization
Integrals and Riemann sums
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CT-signal

DT-signals (obtained by 1-sampling)

Integral (total area)

Riemann sum (total area) → Approximation of integral



Discretization
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First CT-signal 
and DT-signal

Second CT-signal 
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Product of CT-signals 
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Integrals and Riemann sums

Discretization
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Riemann sumIntegral

Integrals and Riemann sums

Exponential Function
Polar coordinate representation of a complex number

Exponential Function
Real and imaginary part (Euler’s formula)

Exponential Function
Complex conjugate number

Exponential Function
Additivity property



Fourier Transform
Chirp signal with λ = 0.003
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Magnitude Fourier transform
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Chirp signal with λ = 0.004
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DT-signal (1-sampling)

Magnitude Fourier transform

Magnitude Fourier transform

Fourier Transform
DFT approximation of Fourier transform

CT-signal Magnitude Fourier transform

DT-signal (1-sampling) Magnitude Fourier transform

IndexIndex
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Fourier Transform
DFT approximation of Fourier transform

CT-signal Magnitude Fourier transform

DT-signal (1-sampling) Magnitude Fourier transform

IndexIndex

Frequency (Hz)Time (seconds)

Fourier coefficient for frequency 
index and time frame  

Fourier Transform

DT-signal

Window function of length

Discrete STFT

Hop size

Index corresponding to Nyquist frequency

Fourier Transform
Discrete STFT

= Hop size

Physical time position associated with :

Physical frequency associated with :

= Sampling rate
(seconds)

(Hertz)



Fourier Transform
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Index (frames)
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Parameters

Computational world Physical world

Discrete STFT

Log-Frequency Spectrogram
Pooling procedure for discrete STFT = 2048

= 44100 Hz

= 4096
Parameters

p = 67

p = 68

p = 69

p = 70

Frames

Fpitch (69.5) = 452.9

Fpitch (68.5) = 427.5

Fpitch (67.5) = 403.5

Fcoef (42) = 452.2

Fcoef (41) = 441.4

Fcoef (43) = 463.0

Fcoef (40) = 430.7

Fcoef (39) = 419.9

Fcoef (38) = 409.1

Fcoef (37) = 398.4

Frames

Fast Fourier Transform Signal Spaces and Fourier Transforms


