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Chapter 5: Chord Recognition

5.1 Basic Theory of Harmony

3
5.2 Template-Based Chord Recognition
5.3 HMM-Based Chord Recognition / \\

5.4 Further Notes

In Chapter 5, we consider the problem of analyzing harmonic properties of a
piece of music by determining a descriptive progression of chords from a given
audio recording. We take this opportunity to first discuss some basic theory of
harmony including concepts such as intervals, chords, and scales. Then,
motivated by the automated chord recognition scenario, we introduce
template-based matching procedures and hidden Markov models—a concept
of central importance for the analysis of temporal patterns in time-dependent
data streams including speech, gestures, and music.

Recall: Chroma Features

= Human perception of pitch is periodic
= Two components: tone height (octave) and chroma (pitch class)
Chromatic circle Shepard’s helix of pitch

(03 Tone height
C#/Db




Recall: Chroma Features
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Harmony Analysis: Overview

= Western music (and most other music): Different aspects of harmony
= Referring to different time scales

Movement level Global key Global key detection
A

Segment level | C major | Gmajor |Cmajor| Local key detection
A A A
chordlevel | ¢ [ & [ Am | [ [ || chord recognition

Note level 2 Middle voices == Music transcription
Bass line

Christof Weil: Computational Methods for Tonality-Based Style Analysis of
Classical Music Audio Recordings, PhD thesis, limenau University of Technology, 2017

Harmony Analysis: Overview

= Western music (and most other music): Different aspects of harmony
= Referring to different time scales

chordievel [ C | G | Am | [ [ || chord recognition

Christof Weil: Computational Methods for Tonality-Based Style Analysis of
Classical Music Audio Recordings, PhD thesis, limenau University of Technology, 2017

Chord Recognition

Let It Be chords
The Beatles 1970 (Let It Be)

[Intro]

CGAmFCG

FCDmC
[Verse 1]
c G Am F
When I find myself in times of trouble, Mother Mary comes to me
c G FCDmC

Speaking words of wisdom, let it be

c G Am
And in my hour of darkness, she is standing right in front of me
c G FCDmC
Speaking words of wisdom, let it be
[Chorus] | 2

Source: www.ultimate-guitar.com
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Chord Recognition
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Chord Recognition: Basics

= Chord: Group of three or more pitch classes (sound simultaneously)
= Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...

= Chord classes: major, minor, diminished, augmented

= Here: focus on major and minor triads

Chord Recognition: Basics

= Chord: Group of three or more pitch classes (sound simultaneously)

= Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...

= Chord classes: major, minor, diminished, augmented

= Here: focus on major and minor triads
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Chord Recognition: Basics

= Chord: Group of three or more pitch classes (sound simultaneously)

= Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...
= Chord classes: major, minor, diminished, augmented

= Here: focus on major and minor triads

n Major Root note Maijor third Fifth
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= Enharmonic equivalence: 12 root notes — 24 major/minor triads

Chord Recognition: Basics
Chords appear in different forms:
= Inversions P
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= Different voicings
=SB

= Harmonic figuration: Broken chords (arpeggio)

= Melodic figuration: Different melody note (suspension, passing tone, ...)
= Further: Additional notes, incomplete chords

Chord Recognition: Basics

= Templates: Major Triads
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Chord Recognition: Basics

= Templates: Major Triads

Chord Recognition: Basics

= Templates: Minor Triads
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Chord Recognition: Template Matching Chord Recognition: Label Assignment
c ¢ D Cm C’m Dm c ¢ D Cm C’m Dm
Chroma vector 24 chord templates Blo|lo|o olofo Chroma vector 24 chord templates Blo|lolo olofo
for each audio frame (12 major, 12 minor) for each audio frame (12 major, 12 minor)
Alofo]oO o|lo0]o0 Alofo0]oO o|lo]o
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Chord Recognition: Template Matching Chord Recognition: Template Matching
= Similarity measure: Cosine similarity (inner product of normalized
vectors) '
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Chord Recognition: Label Assignment

Chord Recognition: Evaluation

f::;mn e — o = Comparison of
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Time (seconds)
Chord Recognition: Evaluation Chord Recognition: Evaluation
N q G Am F [ G F [ A C’ G Am F c G F c
& i o f33F > 18 3 3 F ot d & i o #3351 §# 3 3 F &t ¢
/- e
{ v v v < v 2 { v e - . v
[ c G G Am AmAm7 Fmaj7 F6 C [ G G F C Dm7C [+
onf T onf T T T T T T
s _— > Sl Q- I - S IS L
Fom| Fom|
el or
emr : = 1 e ol : = 1 e
coml- 11 coml- 11
gl 1 eml U
At - At
é: L FP é: L P
;3#: [ | ;3#: [ |
s 1 - s 1 -
D# D# -
A ar
c I | . [ . L] c I | . [ . L]
0 2 4 6 8 10 0 2 4 6 8 10 12
Time (seconds) Time (seconds)
Chord Recognition: Smoothing Chord Recognition: Smoothing
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Chord Recognition: Smoothing

= Evaluation on all 180 Beatles songs (10 studio albums)

F-measure
o
o
&

0.4 I Binary templates

1 5 9 13 17 21 25
Smoothing length

~2 seconds at
10 Hz feature rate

Chord Recognition: Smoothing

= Apply average filter of length L € N:
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Markov Chains

= Probabilistic model for sequential data

= Markov property: Next state only depends on current state
(transition model — time-invariant, no “memory”)

= Consist of:
= |Set of states
= State transition probabilities 08
(1

= Initial state probabilities

07 @DOG

Markov Chains

Notation:

a; fori € [1:1]
State transition probabilities a;j
AEUENS N NS
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Initial state probabilities
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Markov Chains

= Application examples:

= Compute probability of a sequence using given a model (evaluation)
= Compare two sequences using a given model
= Evaluate a sequence with two different models (classification)

0.8

(1

07 @DOG
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Hidden Markov Models

= States as hidden variables

= Consist of:

= [Set of states (hidden
= State transition probabilities
0.8

= Initial state probabilities 0
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Hidden Markov Models

= States as hidden variables

Consist of:

= [Set of states (hidden
= State transition probabilities
0.8

= Initial state probabilities ﬂ

= |Observations (visible @
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Hidden Markov Models

= States as hidden variables

= Consist of:
= |Set of states (hidden AR, AAA AR
AN 09/ 1102 o
e arege NN, s/
= State transition probabilities | %, ™07 PN s
A 0N {ah a0 s
= Initial state probabilities \ . / OIS v
Vo
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Hidden Markov Models

Notation:

a; fori € [1:1]
State transition probabilities aj
AEUENS N NS

[ D

9y |a1 |2 |43

Ty |a21 |a22 |ao3

Q5 |as1 |asp [ass

Initial state probabilities

Observation symbols | S for k € [1:K]

Emission probabmtles-) bix

G5 |bss [bs [bas

Markov Chains

= Analogon: the student’s life

= |Set of states (hidden
= State transition probabilities

= |nitial state probabilities

Hidden Markov Models

= Analogon: the student's life

= Consists of:

= |Set of states (hidden
= State transition probabilities

= |nitial state probabilities

= |Observations (visible

* Emission probabilities |




Hidden Markov Models

= Only observation sequence is visible!
Different algorithmic problems:
= Evaluation problem
= Given: observation sequence and model
= Find: fitness (how well the model matches the sequence)
= Uncovering problem:
= Given: observation sequence and model
= Find: optimal hidden state sequence
= Estimation problem (,training“ the HMM):
= Given: observation sequence
= Find: model parameters
= Baum-Welch algorithm (Expectation-Maximization)

Uncovering problem

= Given: observation sequence O = (o4, ..., 0y) of length N € N and
HMM 6 (model parameters)

= Find: optimal hidden state sequence S* = (s, ..., sy)

= Corresponds to chord estimation task!
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Uncovering problem

= Given: observation sequence O = (o4, ..., 0y) of length N € N and
HMM 6 (model parameters)

= Find: optimal hidden state sequence S* = (sj, ..., sy)

= Corresponds to chord estimation task!

Observation sequence 0 =

=(01,0;
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Hidden state sequence S*=( sy, s3 , S3 , S5 , St , S )

Uncovering problem

= Given: observation sequence 0 = (o4, ..., 0y) of length N € N and
HMM 6 (model parameters)

= Find: optimal hidden state sequence S* = (s, ..., sy)

= Corresponds to chord estimation task!
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Hidden state sequence S*=( sy, s3 , S3 , S; , S& , S )

Uncovering problem

= Optimal hidden state sequence?
= “Best explains” given observation sequence 0
= Maximizes probability P[0, S | 0]

Prob* = max Pl0,S | 0]

S§* = argmax P[0,S | 0]
s

= Straight-forward computation (naive approach):
= Compute probability for each possible sequence S

= Number of possible sequences of length N (I = number of states):

[ .-l =1V
computationally infeasible!

N factors

Viterbi Algorithm

= Based on dynamic programming (similar to DTW)
= |dea: Recursive computation from sub-problems

= Use truncated versions of observation sequence
0(1:n) := (04, ..., 0,), length n € [1:N]
= Define D(i,n) as the highest probability along a single state sequence
(54, .-, Sy) that ends in state s, = «;

D(i,n) = 13X ) P[O(1:n), (S1, ) Sn—1,Sp = @;) | O]

S1eee s
= Then, our solution is the state sequence yielding

Prob* = max D(i,N)
i€[1:1]




Viterbi Algorithm

= D: matrix of size I x N
= Recursive computation of D(i, n) along the column index n
= |nitialization:

=n=1

= Truncated observation sequence: 0(1) = (0)

= Current observation: 0, = f,

D(i,1) = ¢; by, forsome i€ [1:]]

Viterbi Algorithm

= D: matrix of size I x N
= Recursive computation of D(i, n) along the column index n
= Recursion:

= n€[2:N]

= Truncated observation sequence: 0(1:n) = (04, ..., 05)

= Last observation: o, = fy,,

D(i,n) = by, - aj+; - P[O(l:n = 1), (51, ) Sn—1 = @j+) | O] fori € [1:1]
L J

T .
must be maximal!

D(i,n) = by, - a;+; - D(j",n—1)

Viterbi Algorithm

= D: matrix of size I x N
= Recursive computation of D(i, n) along the column index n
= Recursion:

= n€[2:N]

= Truncated observation sequence: 0(1:n) = (04, ..., 05)

= Last observation: o, = By,

D(i,n) = by, - aj+; - P[O(1in = 1), (51, ) Spog = @)
L

0] fori € [1:1]

must be| maximal!
D(i,n) = by, @+ - D(j",n—1)
must be maximal (best index j*)

D(i,n) = by, - max (e D(jn—1))

Viterbi Algorithm

= D given — find optimal state sequence S* = (sf, ..., sy) = (a;,, ., @1y )
= Backtracking procedure (reverse order)
= Last element:

*=n=N

= Optimal state: a;,

iy = argmaxD(j,N)
e[

Viterbi Algorithm

= D given — find optimal state sequence S* = (sf, ..., sy) = (a;, ., @iy )
= Backtracking procedure (reverse order)
= Further elements:

*n=N-1,N-2,..1

= Optimal state: a;,,

in = afeg[rﬂﬁx (ajin+1 . D(],n))

Viterbi Algorithm

= D given — find optimal state sequence S* = (sf, ..., sy) = (a;,, ., @1y )
= Backtracking procedure (reverse order)
= Further elements:

*n=N-1,N-2,..1

= Optimal state: a;,,

in = alr_Eg[Tla]x (ajin+1 . D(],n))

= Simplification of backtracking: Keep track of maximizing index j in
D(i,n) = by, 'jgl[;il:)z(] (a,-i -D(j,n— 1))
= Define (I X (N — 1)) matrix E:

E(i,n — 1) = argmax (aﬁ -D(j,n— 1))
jefa




Viterbi Algorithm

01 = Py,
Initialization
8
7
6
States
ie[1:1]

Sequence indexn € [1:N]

Viterbi Algorithm

Initialization Recursion

States
i€[1:1]

Sequence indexn € [1:N]

Viterbi Algorithm

Viterbi Algorithm

D(i,n) = by, - max (aﬁ -D(j,n— 1))

o = ey je[t)
Initialization Recursion Initialization Recursion
States States
i€[L:1] i€[1:1]
N P e v n-1 o
Sequence indexn € [1: N] Sequence indexn € [1: N]
S = (57, s S) 3= (@i i)
Viterbi Algorithm Viterbi Algorithm iy = argmaxD(j, N)
je[1]
i, = argmax (ajin+1 -D(J, n))
je[1]
Initialization Recursion Termination Initialization Recursion Termination
- - — — o — — — — Backtracking
zi 74’ - matrix E
— —
States - States -
i €[1:1] D(i,N) i €[1:1] D(i,N)
~ ~

Sequence indexn € [1:N]

A

2
\

Sequence indexn € [1:N]




Viterbi Algorithm

Computational Complexity

States
€[1:1]

Recursion

I states

D(j,n—

I states

Sequence indexn € [1:N]

Per recursion step:

I-1

Total recursion:
I?-N

Viterbi Algorithm

Summary

Algorithm: VITERBI

Input: HMM specified by © = (A.A.C.B.B)
Observation sequence O = (0
Output: Optimal state sequence S* = (s7.53..

Procedure: Initialize the (/ x N') matrix D by (1. 1) = ciby, forie[1
anested loop forn=2..... Nandi=1.....I

D(i,n) = maxjeqy) (aji-D(jn—1))-bu,
E(i,n—1) = argmax;c, (a-D(j,n—1))

indices
i = argmax e (@i, -D(jin)) = Eling1,n).

The optimal state sequence S* = (s’

/ﬂ. 0= ﬁh ..... on = fry)

:1]. Then compute in

Set iy = argmax j 1.7 D(j.N) and compute for decreasing n =N —1,...

.sy) is defined by s, = o, forn e [1: N].

1 the maximizing

Viterbi Algorithm: Example

HMM:

States

a; forie[1:1]

State transition probabilities
a;j

| A CIEAER

Gy |01 |17 |213

95 |a21 |az7 |a53

G5 |a31 |a3 |as3

Observation symbols
P fork €[1:K]

Emission probabilities
bk

EX 5. ]5. 5
a.

1 (b1 |biz i3

Initial state probabilities

g |b21 [baa |bas

s |b3 [bsa |bss

Viterbi Algorithm: Example

HMM: States

a; forie[1:1]

Observation symbols
P fork €[1:K]

State transition probabilities Emission probabilities

aj by

nu‘ a, | ay EW Bz | Bs
a, [08[0.1[0 a, [07] 0 [03
a, [02[0.7[0A a, [01]09] 0
a,/01]03]06 a, | 0 [02]08

Initial state probabilities
Ci

[os]

Viterbi Algorithm: Example

HMM:

Observation sequence
= (04,02,03,04,05,04,

States
a; forie[1:1]

State transition probabilities
a;j

A EAEAER
a, [0.8]0.1]0.1
a, [0.2]0.7]0.1
a, [0.1]0.3[0.6

)

ElE e

Bi B3 B1 Bs Bs B2

Observation symbols
P fork €[1:K]

Emission probabilities
bk

Initial state probabilities
Ci

B RIS c B

a, |07/ 0 |0.3 0.6/0.2{0.2
a, [0.1]0.9] 0

a, | 0 [0.2]08

Viterbi Algorithm: Example

HMM: States

a; forie[1:1]

Observation symbols
P fork €[1:K]

State transition probabilities Emission probabilities

a;j by

nu‘ a, | ay EW Bz | Bs
a, [08[0.1[04 a, [07] 0 [03
a, [02[0.7[0A a, [01]09] 0
a,/01]03]06 a, | 0 [02]08

Viterbi algorithm )

[ Input ]—)[
Hoem 0, B [ 0= B; [0,= B | 0= B [ 0= B;
a

a,

H e

B1 B3 By Bs Bs B2

Observation sequence
O = (04,02,03,04,05,06)

°
i
3
°
i
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il
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Initial state probabilities




Viterbi Algorithm: Example

HMM: States
a; forie[1:1]
State transition probabilities
a;j
A EAEAER
a, [0.8]0.1]0.1

010,030,0505 a, [0.2[0.7]0.1
B1 Bs B1 Ba Bs By %]0.1]03]06
[ Viterbi algorithm ]
Hoﬂx 0,= B [ 0= B [ 0,= By | 0= B: [ 0= B,
a9
[ |
T |
0,=: [ 0;= s [[0= B [ 0= B 0= Bs
a
e |
oy |

Observation symbols
P fork €[1:K]

Emission probabilities
bk

Initial state probabilities
Ci

B RIS [ o [ [ |
a, |07/ 0 |0.3 0.6/0.2{0.2
a, [0.1]0.9] 0
a, | 0 [0.2]08

Viterbi Algorithm: Example

HMM: States
a; forie[1:1]
State transition probabilities
a;j
/A EAEAEN
a, [0.8]0.1]0.1

010,050,0505 a, [0.2[0.7]0.1
By Bs Br Ba Bs Bz %]0.1]03]08
[ Viterbi algorithm ]
Moea‘ 7= B [ 05= B: [ 0= B [ 05= By [ 0= B;
a;, [0.4200
[, [0.0200
ay 0
me 0= B[ 0= B, [ 0= B [ 0=
0]
o |
oy |

Observation symbols
P fork €[1:K]

Emission probabilities Initial state probabilities
bk G

& DIEAES c FAEAES

a, [0.7] 0 03 o]

a, [0.1]0.9] 0
a, | 0 [0.2[08

Initialization

D(i, 1) = ¢; - by,

Viterbi Algorithm: Example

HMM: States

a; forie[1:1]

State transition probabilities

a;j
(A E1EAES
;0505040505 a, [0.2[0.7]0.1
o [0.1]0.3]0.6
B1 Bs B B3 B3 B, .
[ Viterbi algorithm ]
01= P | 0,= B3| 0= By | 0= Bs | 05= B3 | 0= B
o, |0.4200
o, [0.0200
[« 0
01=PB; | 0= B3] 05= By | 0= B3 | 0= B3
a
[ |
[ |

Observation symbols
P fork €[1:K]

Emission probabilities
bk

EX 5. ]5. 5

a, [07] 0 03

Initial state probabilities

q, [01]os] 0
o | 0 [02]08

Initialization
D(i,1) = ¢; - by,

Recursion
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Viterbi Algorithm: Example

HMM: States
a; forie[1:1]
State transition probabilities
a;j

| A EAEAES
%

0.8]0.1]0.1

010,030,0505 a, [0.2[0.7]0.1
BBy By s By B, | [22101103]06
[ Viterbi algorithm ]
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042%02°0 =0
0.42*0.1*0.8=0.0336

Initialization

D(i,1) = ¢; - by,

Recursion

D(i,n) = by, Cmax (aji -D(j,n— 1))

E(i,n — 1) = argmax (aﬁ -D(j,n— 1))
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Viterbi Algorithm: Example

HMM: States
a; forie[1:1]
State transition probabilities
a;j
A EAEAER
a, [0.8]0.1]0.1

010,050,0505 a, [0.2[0.7]0.1
BBy By BsBs B, | [101103]06
[ Viterbi algorithm ]
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Observation symbols
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Emission probabilities
bk

Initial state probabilities
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a, | 0 [0.2]08

Backtracking

iy = argmaxD(j,n)

JjE[1:1]

in = E(in41,0)

Viterbi Algorithm: Example

HMM: States

a; forie[1:1]

State transition probabilities
a;j

/A EAEAEN
o, [0.8]0.1]0.1
o, [0.2]0.7]0.1
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[ Input

Viterbi algorithm
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HMM: Application to Chord Recognition

= Effect of HMM-based chord estimation and smoothing: | 2 =
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HMM: Application to Chord Recognition

= Parameters: Transition probabilities
= Estimated from data

State a;

Log probability

0R08mn308>%w
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State q;

HMM: Application to Chord Recognition

= Parameters: Transition probabilities
= Estimated from data
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HMM: Application to Chord Recognition

= Parameters: Transition probabilities

= Transposition-invariant

Minor chords

Log probability

Major chords

v
Major chords Minor chords

HMM: Application to Chord Recognition

= Parameters: Transition probabilities

= Uniform, diagonal-enhanced transition matrix (only smoothing)
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HMM: Application to Chord Recognition

= Evaluation on all Beatles songs
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Chord Recognition: Further Challenges

= Chord ambiguities

> Cmaj7
‘V.
= Acoustic ambiguities (overtones)

= Use advanced templates (model overtones, learned templates)

= Enhanced chroma (logarithmic compression, overtone reduction)
= Tuning inconsistency




