INTERNATIONAL AUDIO LABORATORIES ERLANGEN B A U D I o
LABS

Lecture

Music Processing

Chord Recognition

Meinard Miiller and Christof Weil}
International Audio Laboratories Erlangen
meinard.mueller@audiolabs-erlangen.de

=
oo Z Fraunhofer

RLANGEN-NURNBERG
ns

Book: Fundamentals of Music Processing

Meinard Miiller
Fundamentals of Music Processing

= - Audio, Analysis, Algorithms, Applications
Meinard Miiller 483 p., 249 illus., hardcover

ISBN: 978-3-319-21944-8
Fundamentals of [seiehughee

Music Processing

Audio, Analysis, Accompanying website:
Algorithms, Applications WWW.mUSiC-processing.de

) Springer

Book: Fundamentals of Music Processing

Music Processing

Chapter Scenario . -

- Meinard Miiller
1| 4= 7 | Music Represenations Fundamentals of Music Processing

- - Audio, Analysis, Algorithms, Applications
2| /| B 483 p., 249 illus., hardcover
1m i - ISBN: 978-3-319-21944-8

3 il] Music Synchronization Springer 2015
4 ' X:::;Sisstructure

m) Accompanying website:
S Rerzeriin www.music-processing.de

Tempo and Beat
Tracking

Content-Based Audio
Retrieval

Musically Informed
Audio Decomposition

Book: Fundamentals of Music Processing

Music Processing

Accompanying website:
G Rz i www.music-processing.de

Chaptey Scenario . -

- Meinard Miiller
1| 4= 7. | Music Represenations Fundamentals of Music Processing

- - Audio, Analysis, Algorithms, Applications
2| /| B 483 p., 249 illus., hardcover
EE i - ISBN: 978-3-319-21944-8

3 i] Music Synchronization Springer 2015
4 ' ‘h\l::::;;isstructure

Tempo and Beat
" | Tracking

Content-Based Audio
Retrieval

| %) | Musically Informed
8 D Audio Decomposition

Chapter 5: Chord Recognition

5.1 Basic Theory of Harmony

3
5.2 Template-Based Chord Recognition
5.3 HMM-Based Chord Recognition / \\

5.4 Further Notes

In Chapter 5, we consider the problem of analyzing harmonic properties of a
piece of music by determining a descriptive progression of chords from a given
audio recording. We take this opportunity to first discuss some basic theory of
harmony including concepts such as intervals, chords, and scales. Then,
motivated by the automated chord recognition scenario, we introduce
template-based matching procedures and hidden Markov models—a concept
of central importance for the analysis of temporal patterns in time-dependent
data streams including speech, gestures, and music.

Recall: Chroma Features

= Human perception of pitch is periodic
= Two components: tone height (octave) and chroma (pitch class)
Chromatic circle Shepard’s helix of pitch

(03 Tone height
C#/Db

Recall: Chroma Features

srg ool Aor v »
WP S NS S S ST S
EEEIEE: i i i i
P - : 2
TR - SR N
g rrr s o o L
¢ =m = om = 0

Time (seconds)

— capture harmonic progression

Harmony Analysis: Overview

= Western music (and most other music): Different aspects of harmony
= Referring to different time scales

Movement level Global key Global key detection
A

Segment level | C major | Gmajor |Cmajor| Local key detection
A A A
chordlevel | ¢ [& [Am | [[|| chord recognition

Note level 2 Middle voices == Music transcription
Bass line

Christof Weil: Computational Methods for Tonality-Based Style Analysis of
Classical Music Audio Recordings, PhD thesis, limenau University of Technology, 2017

Harmony Analysis: Overview

= Western music (and most other music): Different aspects of harmony
= Referring to different time scales

chordievel [C | G | Am | [[|| chord recognition

Christof Weil: Computational Methods for Tonality-Based Style Analysis of
Classical Music Audio Recordings, PhD thesis, limenau University of Technology, 2017

Chord Recognition

Let It Be chords
The Beatles 1970 (Let It Be)

[Intro]

CGAmFCG

FCDmC
[Verse 1]
c G Am F
When I find myself in times of trouble, Mother Mary comes to me
c G FCDmC

Speaking words of wisdom, let it be

c G Am
And in my hour of darkness, she is standing right in front of me
c G FCDmC
Speaking words of wisdom, let it be
[Chorus] | 2

Source: www.ultimate-guitar.com

Chord Recognition

[

®
>
m
o
@
m
o

m

Chord Recognition

C G Am F C G F Cc
) [
(11'4-'-'?!!{\{\!1 e s — e s
7 e e e s B
5d4-¢g ¢ oo 2 = aaa o ¢ oo § o ¢
)@ 33 $$S 3333 3,83

Chord Recognition

Prefiltering Postfiltering aQ
- Compression = Smoothing //
= Overtones = Transition \9
+ Smoothing CHWM R
Audio Chroma l Pattern | Recognition
representation representation matching result
Major
triads
L Ll |
—
L — Minor

triads

Chord Recognition: Basics

= Chord: Group of three or more pitch classes (sound simultaneously)
= Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...

= Chord classes: major, minor, diminished, augmented

= Here: focus on major and minor triads

Chord Recognition: Basics

= Chord: Group of three or more pitch classes (sound simultaneously)

= Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...

= Chord classes: major, minor, diminished, augmented

= Here: focus on major and minor triads

Major Root note Maijor third Fifth

/)
7

g t

C Major (C)
>

Chord Recognition: Basics

= Chord: Group of three or more pitch classes (sound simultaneously)

= Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...
= Chord classes: major, minor, diminished, augmented

= Here: focus on major and minor triads

n Major Root note Maijor third Fifth
)4 I T T i | .
bg— | | | cwaior©
F=>
>
n Minor Root note Minor third Fifth
)" 4 T T T i | .
7 i : :] C Minor (Cm)
% i T 1 i |
RS d
>

= Enharmonic equivalence: 12 root notes — 24 major/minor triads

Chord Recognition: Basics
Chords appear in different forms:
= Inversions P

% = =

%g:ﬂ:g:ﬂ—e_—ﬂ

= Different voicings
=SB

= Harmonic figuration: Broken chords (arpeggio)

= Melodic figuration: Different melody note (suspension, passing tone, ...)
= Further: Additional notes, incomplete chords

Chord Recognition: Basics

= Templates: Major Triads

[

by

B
AR
A
GIA
G >
led
F
E
DYE
D
ciD
c

Chord Recognition: Basics

= Templates: Major Triads

Chord Recognition: Basics

= Templates: Minor Triads

Cm C‘mDm EPm Em Fm F‘m Gm G‘m Am B'm Bm

g g S e S S O |
B
AYB
A
GYIA
S > >
led
F
E
DiE
D | —
CHD
[}
Chord Recognition: Template Matching Chord Recognition: Label Assignment
c ¢ D Cm C’m Dm c ¢ D Cm C’m Dm
Chroma vector 24 chord templates Blo|lo|o olofo Chroma vector 24 chord templates Blo|lolo olofo
for each audio frame (12 major, 12 minor) for each audio frame (12 major, 12 minor)
Alofo]oO o|lo0]o0 Alofo0]oO o|lo]o
\ Alo|o]|1 oo |1 \ Alo|o|1 oo |1
G'lof1]o0 ofl1]o0 G'lof1]o0 ofl1]o0
Compute for each frame the G|1]0]0 11010 Compute for each frame the Gl1]l0]o0 1/01]0
similarity of the chroma vector similarity of the chroma vector
to the 24 templates FPlojofpt 0joyo to the 24 templates Frlojofpt 0jojo
Flo|1]o oo |1 o110 oo |1
E|1]|0]0 0|10 1/0|0 o110
D[0|00 1000 4 [N] 1/0|o0
plolol1 olol1 Assign to each frame the chord label plolol1 olol1
ot of the template that maximizes the ct
0j1]o 0j1]o similarity to the chroma vector 0j1]o 0j1]o0
cl1]|ofo 1/0|o0 cl1]/ofo 1/0|o0
Chord Recognition: Template Matching Chord Recognition: Template Matching
= Similarity measure: Cosine similarity (inner product of normalized
vectors) '
© o8
E o5
12 = 04
Chord template: teR © N
o
'
12 os
Chroma vector: ceR o
° o7 >
o os
o
(tlc) 5 o
Similarity measure: s(t‘ c) = — o
el - llell i
o1

— Uo
0 2 4 g g 10 12
/ Time (se%)

C# as overtone of A — major—minor confusion

Chord Recognition: Label Assignment

Chord Recognition: Evaluation

f::;mn e — o = Comparison of
£ — el — — o7 »
o W = - os — reference labels (ground truth; relevant “items”)
S U — = — — |
S & — - o — estimated labels (computed)
¢ — = - — - o
¢ - : - Uy = TP (true positive):
o ‘ , >y 3 Reference label and estimated label agree
2:7‘: —-— 08
T r;.%;fm = o = FN (false negative):
5% os References label not detected
EF“— 1 - -_— o
& I = FP (false positive):
C— o e— . m — Estimated label not covered by reference label
Time (seconds)
Chord Recognition: Evaluation Chord Recognition: Evaluation
N q G Am F [G F [A C’ G Am F c G F c
& i o f33F > 18 3 3 F ot d & i o #3351 §# 3 3 F &t ¢
/- e
{ v v v < v 2 { v e - . v
[c G G Am AmAm7 Fmaj7 F6 C [G G F C Dm7C [+
onf T onf T T T T T T
s _— > Sl Q- I - S IS L
Fom| Fom|
el or
emr : = 1 e ol : = 1 e
coml- 11 coml- 11
gl 1 eml U
At - At
é: L FP é: L P
;3#: [| ;3#: [|
s 1 - s 1 -
D# D# -
A ar
c I | . [. L] c I | . [. L]
0 2 4 6 8 10 0 2 4 6 8 10 12
Time (seconds) Time (seconds)
Chord Recognition: Smoothing Chord Recognition: Smoothing
= Apply average filter of length L € N: > = Apply average filter of length L € N: >
Y IS
C Dm G Cc C Dm G Cc
éh ﬂJTE iﬁjjﬁ ¥ ﬁm? ﬂijji : Ffﬁi, Fﬂ? ¥ pﬁ? ﬂmﬁ éh ﬂJTE iﬁjjﬁ ¥ ﬁm? ﬂijji : Ffﬁi, Fﬂ? ¥ pﬁ? ﬂmﬁ
VIR Y SV RN EF SIS D ST | SN | S FT o A e Y S IV SR) S [V S SR E VI e
PEEE E £ F £ £ iE iE PEEE E £ F £ £ iE £
AE#7 ' i W ' I j ! AE#A !
Gi;‘: - - -+ Wos GA”: e 1 Qos
I:G“I-ZI_ N . :-:-—1: 06 FG“_ _ 06
D%‘i_;- T m— 04 D%‘i_ — 04
CD#: g 02 CD#: 02
c 0 ¢ L 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Time (seconds)

Time (seconds)

Chord Recognition: Smoothing

= Evaluation on all 180 Beatles songs (10 studio albums)

F-measure
o
o
&

0.4 I Binary templates

1 5 9 13 17 21 25
Smoothing length

~2 seconds at
10 Hz feature rate

Chord Recognition: Smoothing

= Apply average filter of length L € N:

| 2
Cc Dm G C

b BRRTE PR B BB BT AT
%9 . yz)n réd ru\—q Im—u ;)r\l ru\—q]zg%ﬂg %J.HA

= T T T T T “ 1
A# 1
Gtt: & 1 1 08
& E— T
© — — (04
DD#:] 0.2
C#

0 1 2 4 é é ; 8 9 °

Time (s€ \

blurring of
boundaries!

Markov Chains

= Probabilistic model for sequential data

= Markov property: Next state only depends on current state
(transition model — time-invariant, no “memory”)

= Consist of:
= |Set of states
= State transition probabilities 08
(1

= Initial state probabilities

07 @DOG

Markov Chains

Notation:

a; fori € [1:1]
State transition probabilities a;j
AEUENS N NS

el

9y |a1 |2 |43

Ty |a21 |a22 |ao3

Q5 |as1 |asp [ass

Initial state probabilities

>
3

(@

07 @DOG

Markov Chains

= Application examples:

= Compute probability of a sequence using given a model (evaluation)
= Compare two sequences using a given model
= Evaluate a sequence with two different models (classification)

0.8

(1

07 @DOG

Hidden Markov Model

o
3

(@

07 @DOG

Hidden Markov Models

= States as hidden variables

= Consist of:

= [Set of states (hidden
= State transition probabilities
0.8

= Initial state probabilities 0

(<)

7Z’§§

NaO=—0Cn}

Hidden Markov Models

= States as hidden variables

Consist of:

= [Set of states (hidden
= State transition probabilities
0.8

= Initial state probabilities ﬂ

= |Observations (visible @

/AN

0 7C@:%2®Do 6

Hidden Markov Models

= States as hidden variables

= Consist of:
= |Set of states (hidden AR, AAA AR
AN 09/ 1102 o
e arege NN, s/
= State transition probabilities | %, ™07 PN s
A 0N {ah a0 s
= Initial state probabilities \ . / OIS v
Vo
0 oy 4V !
= |Observations (visible ',x‘ /
! (Y
= babilit N7\ Wi

Hidden Markov Models

Notation:

a; fori € [1:1]
State transition probabilities aj
AEUENS N NS

[D

9y |a1 |2 |43

Ty |a21 |a22 |ao3

Q5 |as1 |asp [ass

Initial state probabilities

Observation symbols | S for k € [1:K]

Emission probabmtles-) bix

G5 |bss [bs [bas

Markov Chains

= Analogon: the student’s life

= |Set of states (hidden
= State transition probabilities

= |nitial state probabilities

Hidden Markov Models

= Analogon: the student's life

= Consists of:

= |Set of states (hidden
= State transition probabilities

= |nitial state probabilities

= |Observations (visible

* Emission probabilities |

Hidden Markov Models

= Only observation sequence is visible!
Different algorithmic problems:
= Evaluation problem
= Given: observation sequence and model
= Find: fitness (how well the model matches the sequence)
= Uncovering problem:
= Given: observation sequence and model
= Find: optimal hidden state sequence
= Estimation problem (,training“ the HMM):
= Given: observation sequence
= Find: model parameters
= Baum-Welch algorithm (Expectation-Maximization)

Uncovering problem

= Given: observation sequence O = (o4, ..., 0y) of length N € N and
HMM 6 (model parameters)

= Find: optimal hidden state sequence S* = (s, ..., sy)

= Corresponds to chord estimation task!

S
£y
-

Observation sequence 0 = (oy ,

:

1
A
H
i
i
i
i

o
Ny

N e i
o> = [IEL S
o> PN $
> PN S
> (I 5

Uncovering problem

= Given: observation sequence O = (o4, ..., 0y) of length N € N and
HMM 6 (model parameters)

= Find: optimal hidden state sequence S* = (sj, ..., sy)

= Corresponds to chord estimation task!

Observation sequence 0 =

=(01,0;
B By
A
o
o

[a]

Y

we> PO $

> P[OED &
ol |

Hidden state sequence S*=(sy, s3 , S3 , S5 , St , S)

Uncovering problem

= Given: observation sequence 0 = (o4, ..., 0y) of length N € N and
HMM 6 (model parameters)

= Find: optimal hidden state sequence S* = (s, ..., sy)

= Corresponds to chord estimation task!

°
o
-

Observation sequence 0 = (oy ,

s mul

o> > ¢

o> PO &
s malt]
4 |

51
A
el

Hidden state sequence S*=(sy, s3 , S3 , S; , S& , S)

Uncovering problem

= Optimal hidden state sequence?
= “Best explains” given observation sequence 0
= Maximizes probability P[0, S | 0]

Prob* = max Pl0,S | 0]

S§* = argmax P[0,S | 0]
s

= Straight-forward computation (naive approach):
= Compute probability for each possible sequence S

= Number of possible sequences of length N (I = number of states):

[.-l =1V
computationally infeasible!

N factors

Viterbi Algorithm

= Based on dynamic programming (similar to DTW)
= |dea: Recursive computation from sub-problems

= Use truncated versions of observation sequence
0(1:n) := (04, ..., 0,), length n € [1:N]
= Define D(i,n) as the highest probability along a single state sequence
(54, .-, Sy) that ends in state s, = «;

D(i,n) = 13X) P[O(1:n), (S1,) Sn—1,Sp = @;) | O]

S1eee s
= Then, our solution is the state sequence yielding

Prob* = max D(i,N)
i€[1:1]

Viterbi Algorithm

= D: matrix of size I x N
= Recursive computation of D(i, n) along the column index n
= |nitialization:

=n=1

= Truncated observation sequence: 0(1) = (0)

= Current observation: 0, = f,

D(i,1) = ¢; by, forsome i€ [1:]]

Viterbi Algorithm

= D: matrix of size I x N
= Recursive computation of D(i, n) along the column index n
= Recursion:

= n€[2:N]

= Truncated observation sequence: 0(1:n) = (04, ..., 05)

= Last observation: o, = fy,,

D(i,n) = by, - aj+; - P[O(l:n = 1), (51,) Sn—1 = @j+) | O] fori € [1:1]
L J

T .
must be maximal!

D(i,n) = by, - a;+; - D(j",n—1)

Viterbi Algorithm

= D: matrix of size I x N
= Recursive computation of D(i, n) along the column index n
= Recursion:

= n€[2:N]

= Truncated observation sequence: 0(1:n) = (04, ..., 05)

= Last observation: o, = By,

D(i,n) = by, - aj+; - P[O(1in = 1), (51,) Spog = @)
L

0] fori € [1:1]

must be| maximal!
D(i,n) = by, @+ - D(j",n—1)
must be maximal (best index j*)

D(i,n) = by, - max (e D(jn—1))

Viterbi Algorithm

= D given — find optimal state sequence S* = (sf, ..., sy) = (a;,, ., @1y)
= Backtracking procedure (reverse order)
= Last element:

*=n=N

= Optimal state: a;,

iy = argmaxD(j,N)
e[

Viterbi Algorithm

= D given — find optimal state sequence S* = (sf, ..., sy) = (a;, ., @iy)
= Backtracking procedure (reverse order)
= Further elements:

*n=N-1,N-2,..1

= Optimal state: a;,,

in = afeg[rﬂﬁx (ajin+1 . D(],n))

Viterbi Algorithm

= D given — find optimal state sequence S* = (sf, ..., sy) = (a;,, ., @1y)
= Backtracking procedure (reverse order)
= Further elements:

*n=N-1,N-2,..1

= Optimal state: a;,,

in = alr_Eg[Tla]x (ajin+1 . D(],n))

= Simplification of backtracking: Keep track of maximizing index j in
D(i,n) = by, 'jgl[;il:)z(] (a,-i -D(j,n— 1))
= Define (I X (N — 1)) matrix E:

E(i,n — 1) = argmax (aﬁ -D(j,n— 1))
jefa

Viterbi Algorithm

01 = Py,
Initialization
8
7
6
States
ie[1:1]

Sequence indexn € [1:N]

Viterbi Algorithm

Initialization Recursion

States
i€[1:1]

Sequence indexn € [1:N]

Viterbi Algorithm

Viterbi Algorithm

D(i,n) = by, - max (aﬁ -D(j,n— 1))

o = ey je[t)
Initialization Recursion Initialization Recursion
States States
i€[L:1] i€[1:1]
N P e v n-1 o
Sequence indexn € [1: N] Sequence indexn € [1: N]
S = (57, s S) 3= (@i i)
Viterbi Algorithm Viterbi Algorithm iy = argmaxD(j, N)
je[1]
i, = argmax (ajin+1 -D(J, n))
je[1]
Initialization Recursion Termination Initialization Recursion Termination
- - — — o — — — — Backtracking
zi 74’ - matrix E
— —
States - States -
i €[1:1] D(i,N) i €[1:1] D(i,N)
~ ~

Sequence indexn € [1:N]

A

2
\

Sequence indexn € [1:N]

Viterbi Algorithm

Computational Complexity

States
€[1:1]

Recursion

I states

D(j,n—

I states

Sequence indexn € [1:N]

Per recursion step:

I-1

Total recursion:
I?-N

Viterbi Algorithm

Summary

Algorithm: VITERBI

Input: HMM specified by © = (A.A.C.B.B)
Observation sequence O = (0
Output: Optimal state sequence S* = (s7.53..

Procedure: Initialize the (/ x N') matrix D by (1. 1) = ciby, forie[1
anested loop forn=2..... Nandi=1.....I

D(i,n) = maxjeqy) (aji-D(jn—1))-bu,
E(i,n—1) = argmax;c, (a-D(j,n—1))

indices
i = argmax e (@i, -D(jin)) = Eling1,n).

The optimal state sequence S* = (s’

/ﬂ. 0= ﬁh on = fry)

:1]. Then compute in

Set iy = argmax j 1.7 D(j.N) and compute for decreasing n =N —1,...

.sy) is defined by s, = o, forn e [1: N].

1 the maximizing

Viterbi Algorithm: Example

HMM:

States

a; forie[1:1]

State transition probabilities
a;j

| A CIEAER

Gy |01 |17 |213

95 |a21 |az7 |a53

G5 |a31 |a3 |as3

Observation symbols
P fork €[1:K]

Emission probabilities
bk

EX 5.]5. 5
a.

1 (b1 |biz i3

Initial state probabilities

g |b21 [baa |bas

s |b3 [bsa |bss

Viterbi Algorithm: Example

HMM: States

a; forie[1:1]

Observation symbols
P fork €[1:K]

State transition probabilities Emission probabilities

aj by

nu‘ a, | ay EW Bz | Bs
a, [08[0.1[0 a, [07] 0 [03
a, [02[0.7[0A a, [01]09] 0
a,/01]03]06 a, | 0 [02]08

Initial state probabilities
Ci

[os]

Viterbi Algorithm: Example

HMM:

Observation sequence
= (04,02,03,04,05,04,

States
a; forie[1:1]

State transition probabilities
a;j

A EAEAER
a, [0.8]0.1]0.1
a, [0.2]0.7]0.1
a, [0.1]0.3[0.6

)

ElE e

Bi B3 B1 Bs Bs B2

Observation symbols
P fork €[1:K]

Emission probabilities
bk

Initial state probabilities
Ci

B RIS c B

a, |07/ 0 |0.3 0.6/0.2{0.2
a, [0.1]0.9] 0

a, | 0 [0.2]08

Viterbi Algorithm: Example

HMM: States

a; forie[1:1]

Observation symbols
P fork €[1:K]

State transition probabilities Emission probabilities

a;j by

nu‘ a, | ay EW Bz | Bs
a, [08[0.1[04 a, [07] 0 [03
a, [02[0.7[0A a, [01]09] 0
a,/01]03]06 a, | 0 [02]08

Viterbi algorithm)

[Input]—)[
Hoem 0, B [0= B; [0,= B | 0= B [0= B;
a

a,

H e

B1 B3 By Bs Bs B2

Observation sequence
O = (04,02,03,04,05,06)

°
i
3
°
i
[=
lo
il
3

Initial state probabilities

Viterbi Algorithm: Example

HMM: States
a; forie[1:1]
State transition probabilities
a;j
A EAEAER
a, [0.8]0.1]0.1

010,030,0505 a, [0.2[0.7]0.1
B1 Bs B1 Ba Bs By %]0.1]03]06
[Viterbi algorithm]
Hoﬂx 0,= B [0= B [0,= By | 0= B: [0= B,
a9
[|
T |
0,=: [0;= s [[0= B [0= B 0= Bs
a
e |
oy |

Observation symbols
P fork €[1:K]

Emission probabilities
bk

Initial state probabilities
Ci

B RIS [o [[|
a, |07/ 0 |0.3 0.6/0.2{0.2
a, [0.1]0.9] 0
a, | 0 [0.2]08

Viterbi Algorithm: Example

HMM: States
a; forie[1:1]
State transition probabilities
a;j
/A EAEAEN
a, [0.8]0.1]0.1

010,050,0505 a, [0.2[0.7]0.1
By Bs Br Ba Bs Bz %]0.1]03]08
[Viterbi algorithm]
Moea‘ 7= B [05= B: [0= B [05= By [0= B;
a;, [0.4200
[, [0.0200
ay 0
me 0= B[0= B, [0= B [0=
0]
o |
oy |

Observation symbols
P fork €[1:K]

Emission probabilities Initial state probabilities
bk G

& DIEAES c FAEAES

a, [0.7] 0 03 o]

a, [0.1]0.9] 0
a, | 0 [0.2[08

Initialization

D(i, 1) = ¢; - by,

Viterbi Algorithm: Example

HMM: States

a; forie[1:1]

State transition probabilities

a;j
(A E1EAES
;0505040505 a, [0.2[0.7]0.1
o [0.1]0.3]0.6
B1 Bs B B3 B3 B, .
[Viterbi algorithm]
01= P | 0,= B3| 0= By | 0= Bs | 05= B3 | 0= B
o, |0.4200
o, [0.0200
[« 0
01=PB; | 0= B3] 05= By | 0= B3 | 0= B3
a
[|
[|

Observation symbols
P fork €[1:K]

Emission probabilities
bk

EX 5.]5. 5

a, [07] 0 03

Initial state probabilities

q, [01]os] 0
o | 0 [02]08

Initialization
D(i,1) = ¢; - by,

Recursion

D(i,n) = by, Cmax (aji -D(j,n— 1))

E(i,n — 1) = argmax (aﬁ -D(j,n— 1))
je

Viterbi Algorithm: Example

HMM: States
a; forie[1:1]
State transition probabilities
a;j

| A EAEAES
%

0.8]0.1]0.1

010,030,0505 a, [0.2[0.7]0.1
BBy By s By B, | [22101103]06
[Viterbi algorithm]

0= By | 0;= By | 05=Bs | 0= By | 05= Bs | 0= B,
a; [0.4200]0.1008

[, [00200] 0

o, | 0 00336

me o= B[0,= By [0,=Ba [0 B
a, 1

[o [1

[o [1

Observation symbols
P fork €[1:K]

Emission probabilities Initial state probabilities
bk G

& IR c B
a, [0.7] 0 03 o]
a, [0.1]0.9] 0
a, | 0 [0.2][08

0.42*0.8*0.3=0.1008
042%02°0 =0
0.42*0.1*0.8=0.0336

Initialization

D(i,1) = ¢; - by,

Recursion

D(i,n) = by, Cmax (aji -D(j,n— 1))

E(i,n — 1) = argmax (aﬁ -D(j,n— 1))
jel:]

Viterbi Algorithm: Example

HMM: States
a; forie[1:1]
State transition probabilities
a;j
A EAEAER
a, [0.8]0.1]0.1

010,050,0505 a, [0.2[0.7]0.1
BBy By BsBs B, | [101103]06
[Viterbi algorithm]

0= B [0= By [02= B [0= Ba [0= B
0.1008(0.0564 [0.0135(0.0033 0

0 0.0010 0 0 0.0006
0.0336 0 0.0045(0.0022|0.0003

0,=B; | 0,= B3] 0:= By | 0,=B3 | 0= By

a | 1 1 1 1 1
e [1 1 1 1 3
o [1 3 1 3 3

Observation symbols
P fork €[1:K]

Emission probabilities
bk

Initial state probabilities
Ci

B RIS c B

a, |07/ 0 |0.3 0.6/0.2{0.2
a, [0.1]0.9] 0

a, | 0 [0.2]08

Backtracking

iy = argmaxD(j,n)

JjE[1:1]

in = E(in41,0)

Viterbi Algorithm: Example

HMM: States

a; forie[1:1]

State transition probabilities
a;j

/A EAEAEN
o, [0.8]0.1]0.1
o, [0.2]0.7]0.1
a, [0.1]0.3[0.6

Observation symbols
P fork €[1:K]

Emission probabilities Initial state probabilities

bk G

8 FAEAEN [c [o]
a, [0.7] 0 03 o]
a, [0.1]09] 0

a, | 0 [02[08

>

[Input

Viterbi algorithm

—>{

Output]

0=B | 0;=Bs

05= By | 0= Bs | 0= B | 0= B,

Observation sequence
a, |0.4200/0.1008

0.0564]0.0135/0.0033| 0

Optimal state sequence

O = (04,0,,05,04,05,05)

0.0010 0 0 0.0006

$* = (0y,04,04,003,003,02)

[« %0.0200 0

0

0.0045|0.0022|0.0003

0;=B1 0= B; | 0=B
1 1

1

e

1

1

gy
B s BB B B | O

1

3
3 3

HMM: Application to Chord Recognition

= Effect of HMM-based chord estimation and smoothing: | 2 =
c Dm G c

0 aFs A AL AN AR BSOS AFS AT

o P e P Paa—i P P P

b

7 i, 7 7, i 7, i 7.
IELR L S P a Rt e R E B P e R
Es t t

(a) Template Matching (frame-wise) (b) HMM
6 T 6
A A
am [] 1 s £ Ll
i i
En En
o - FN o — N
Gim Gim
& &
GG“ - GG“ I
& &
H y H
¥ 1 ¥
%‘ I L " I %‘ I

0o 12) 0o 12)

s 4 5 6 s 4 5 6
Time (seconds) Time (seconds)

HMM: Application to Chord Recognition

= Parameters: Transition probabilities
= Estimated from data

State a;

Log probability

0R08mn308>%w
&

State q;

HMM: Application to Chord Recognition

= Parameters: Transition probabilities
= Estimated from data

Minor chords
Log probability

Major chords

Homm w| mm. W .
C C# DD# E FF# GG# AA# BEm Dm Em Gm Am Bm
J\ J
v
Major chords Minor chords

HMM: Application to Chord Recognition

= Parameters: Transition probabilities

= Transposition-invariant

Minor chords

Log probability

Major chords

v
Major chords Minor chords

HMM: Application to Chord Recognition

= Parameters: Transition probabilities

= Uniform, diagonal-enhanced transition matrix (only smoothing)

0

Bm
Am
Am
G#m »
Gm
Fom
Fm
Em >
D#m 22
S g 2
m
L em 2
S s S
2 Al a
: g
% 4 3
F#
4
o8 5
D
o
c

CCH#DD#E FF# GG# AALBCT Dm Em Gm Am Bm

State q;

HMM: Application to Chord Recognition

= Evaluation on all Beatles songs

0.8

0.75

07, R

F-measure
o
n
3

0.45

m— Templates i
HMM

0.4

1 5 9 13 17 21 25
Smoothing length

Chord Recognition: Further Challenges

= Chord ambiguities

> Cmaj7
‘V.
= Acoustic ambiguities (overtones)

= Use advanced templates (model overtones, learned templates)

= Enhanced chroma (logarithmic compression, overtone reduction)
= Tuning inconsistency

