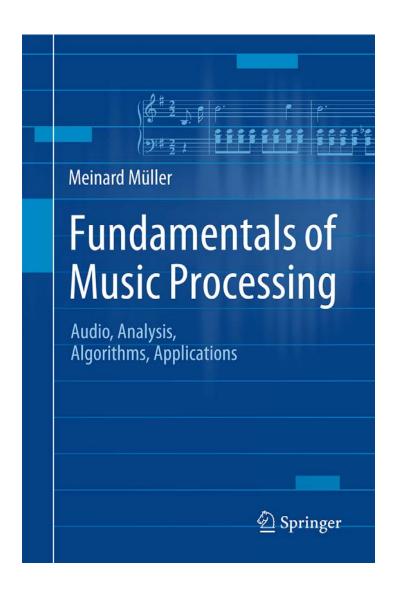


Tutorial Automatisierte Methoden der Musikverarbeitung 47. Jahrestagung der Gesellschaft für Informatik

Style Classification


Meinard Müller, Christof Weiss, Stefan Balke

International Audio Laboratories Erlangen {meinard.mueller, christof.weiss, stefan.balke}@audiolabs-erlangen.de

Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

С	hapter	Music Processing Scenario
1		Music Represenations
2		Fourier Analysis of Signals
3		Music Synchronization
4		Music Structure Analysis
5		Chord Recognition
6	A++++	Tempo and Beat Tracking
7		Content-Based Audio Retrieval
8		Musically Informed Audio Decomposition

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

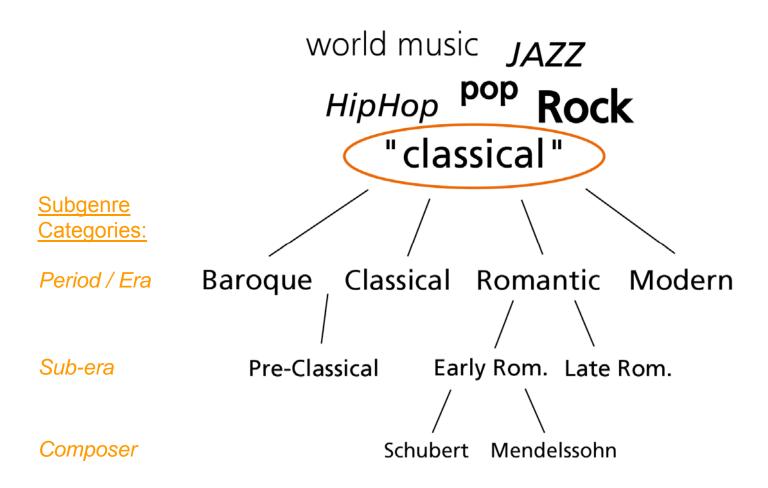
Accompanying website: www.music-processing.de

Dissertation: Tonality-Based Style Analysis

Christof Weiß
Computational Methods for Tonality-Based Style Analysis of
Classical Music Audio Recordings
PhD thesis, Technical University of Ilmenau, 2017

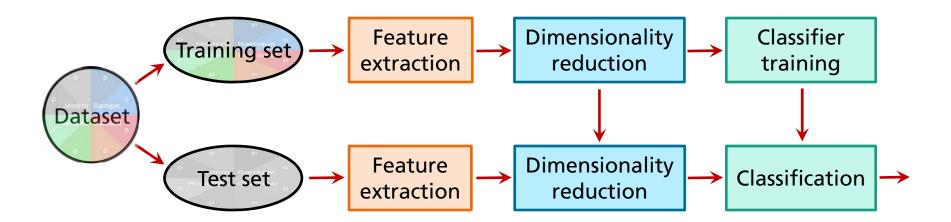
Chapter 7: Clustering and Analysis of Musical Styles

Chapter 8: Subgenre Classification for Western Classical Music


world music JAZZ

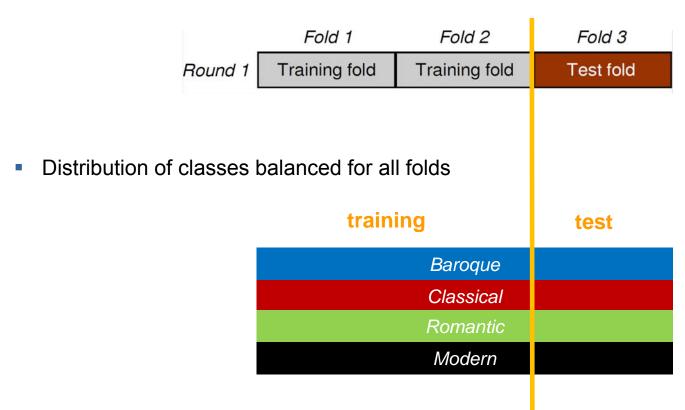
HipHop pop Rock

classical

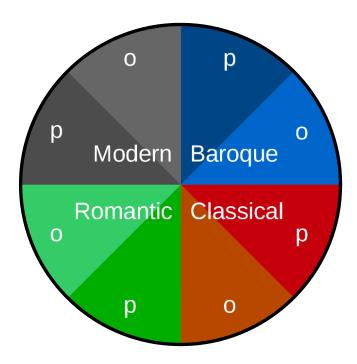


J. S. Bach, Brandenburg Concerto No. 2 in F major, I. Allegro, Cologne Chamber Orch. L. van Beethoven Fidelio, Overture, Slovak Philharm. R. Schumann, Sonata No. 2 op. 22, II. Andantino B. Glemser, Piano A. Webern, Variations for Orchestra op. 30 Ulster Orchestra

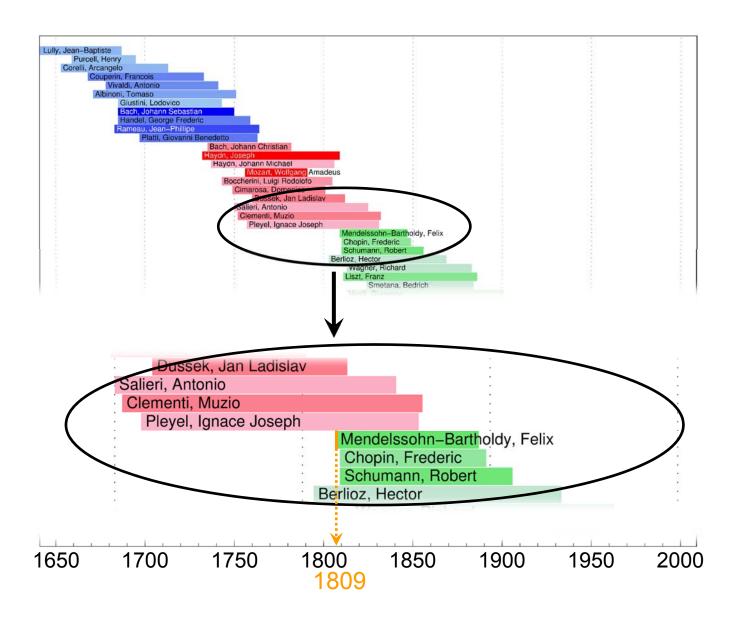
- Standard approach (content-based)
 - Supervised machine learning
 - Based on spectral / timbral features
- In classical music → Instrumentation
- Better categories?
 - Musical style
 - Independent from instrumentation
 - → Tonality / Harmony


Supervised machine learning

- Experimental design: Evaluation with Cross Validation (CV)
- Separate data into different parts (folds)


	Fold 1	Fold 2	Fold 3
Round 1	Training fold	Training fold	Test fold
Round 2	Training fold	Test fold	Training fold
Round 3	Test fold	Training fold	Training fold

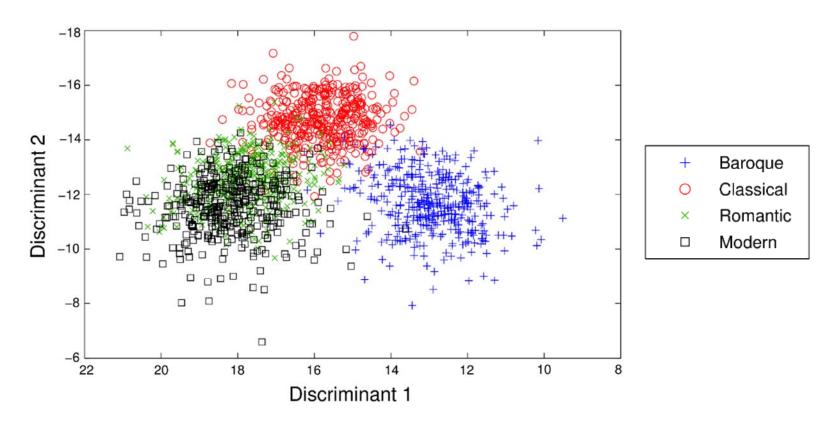
- Experimental design: Evaluation with Cross Validation (CV)
- Separate data into different parts (folds)



Classification Scenario

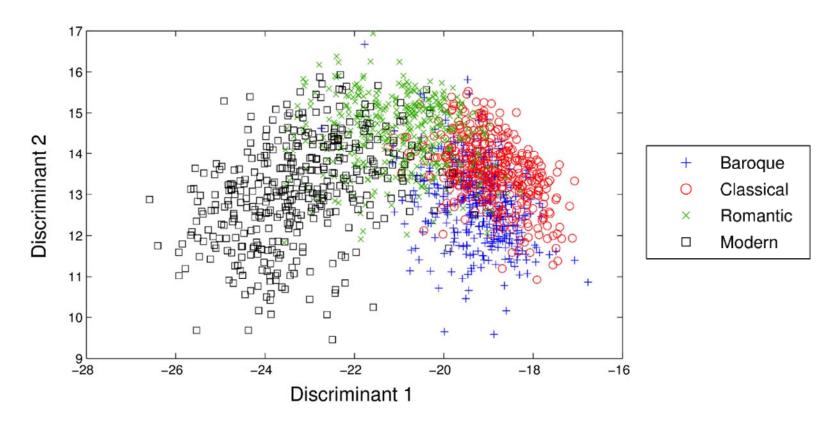
- Dataset: CrossEraDB (Historical Periods)
 - Balanced Piano (p) Orchestra (o)
 - Each 200 pieces → 1600 in total

Classification Scenario

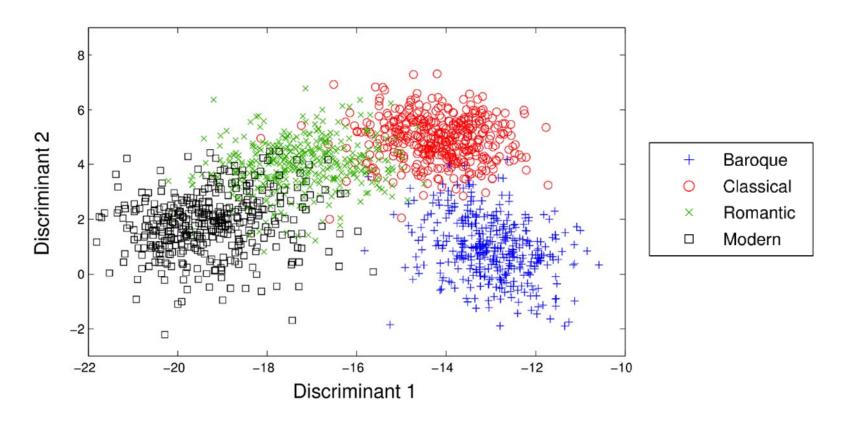


Classification Features

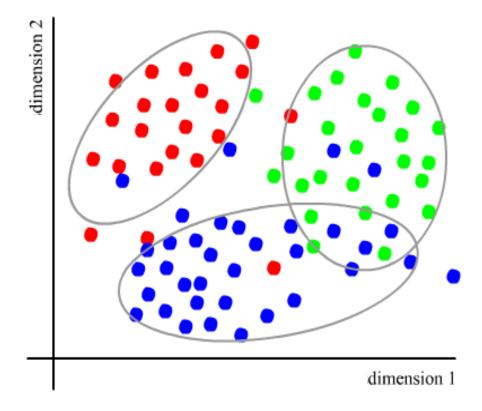
Standard	Dim.	Tonal	Dim.
MFCC	16	Interval cat.	6 x 4
OSC	14	Triad types	4 x 4
ZCR	1	Complexity	7 x 4
ASE	16	Chord progr.	11 x 5
SFM	16		
SCF	16		
SC	16		
LogLoud	12		
NormLoud	12		
Sum	119	Sum	123
Mean & Std	x 2	Mean & Std	x 2
Total	238	Total	246


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using standard features (MFCC, spectral envelope, ...)


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal features (interval, triad types, tonal complexity, ... 4 time scales)


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal & standard features

Classifier

- Train Machine Learning Classifier
- Gaussian Mixture Model (GMM)
- Using Gaussian distributions to model data points in feature space

Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Weiss / Mauch / Dixon, *Timbre-Invariant Audio Features for Style Analysis of Classical Music*, ICMC / SMC 2014

Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Overfitting???

Weiss / Mauch / Dixon, *Timbre-Invariant Audio Features for Style Analysis of Classical Music*, ICMC / SMC 2014

GMM classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

training	test
Baroque	
Classical	
Romantic	
Modern	

"Album effect"

Flexer, A Closer Look on Artist Filters for Musical Genre Classification, ISMIR 2007

- GMM classifier, LDA reduction, 3-fold cross validation
- No composer filter

•	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Using composer filter

	Full Dataset	Piano	Orchestra
Standard features	54 %	36 %	70 %
Tonal features	73 %	70 %	78 %
Combined	68 %	44 %	68 %

Weiss / Müller, Tonal Complexity Features for Style Classification of Classical Music, ICASSP 2015

Classification Results: Error Examples

- 80 tonal features, GMM with 1 Gaussian, LDA
- Look at consistently and persistently misclassified items (B. Sturm 2012 & 2013)

Class	Composer	Piece	Classified	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Eb minor BWV 853	Romantic	_
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in F major BWV 856	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Aminor BWV 865	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Bb major BWV 866	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Bb minor BWV 867	Romantic	
Baroque	Bach, J. S.	English Suite No. 3 in Gminor BWV 808, Sarabande	Romantic	
Baroque	Bach, J. S.	Brandenburg Conc. No. 1 in F major BWV 1046, Adagio	Romantic	
Baroque	Bach, J. S.	Overture No. 2 in B minor BWV 1067, Badinerie	Romantic	
Baroque	Bach, J. S.	Overture No. 3 in D major BWV 1068, Gigue	Romantic	
Baroque	Couperin, F.	27 Ordres, Huitième ordre, IX. Rondeau passacaille	Romantic	
Baroque	Corelli, A.	Concerto grosso op. 6 No. 2, III. Grave – Andante largo	Romantic	
Baroque	Lully, JB.	Ballet de Xerces LWV 12, Gavotte en rondeau	Romantic	
Baroque	Purcell, H.	Opera "Dido and Aeneas" Z. 626, Overture	Romantic	
Baroque	Vivaldi, A.	"The Four Seasons," RV 293 "Autumn," Adagio molto	Romantic	
Romantic	Schumann, R.	Kinderszenen op. 15, "Haschemann"	Baroque	
Romantic	Grieg, E.	Holberg suite op. 40, Gavotte	Baroque	
Romantic	Mendelssohn, F.	Symphony No. 4 in A major, IV. Saltarello, presto	Baroque	
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 1 in C major	Baroque	
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 5 in D major	Baroque	

Classification Results: Confusion Matrix

- 80 tonal features, GMM with 1 Gaussian, LDA, composer filtering
- Full dataset
- Mean accuracy: 75 %
- Inter-class standard deviation: 6.7 %

	Baroque	65.2	23.2	10.9	0.6	
Era (correct)	Classical	17.0	74.9	8.1	0.0	
	Romantic	6.5	5.0	77.7	10.8	
	Modern	1.7	0.9	16.8	80.6	
	•	Baroque	Jiassical C	onartic	Modern	
		Era (classified)				

Classification Results: Unseen Data

- 80 tonal features, GMM with 1 Gaussian, LDA
- Full dataset, 4 historical periods
- Training on piano, evaluating on orchestra → mean acurracy 65 %
- Training on orchestra, evaluating on piano → mean acurracy 64 %
- Training on full dataset
- Evaluating on a different dataset
- Mean accuracy 62.3 %
 (Ignoring Beethoven & Schubert)

Classified Era	Baroque	Classical	Classical Romanti	
Bach	68	5	9	18
Handel	56	23	15	6
Rameau	69	22	6	3
Haydn	25	53	19	3
Mozart	28	51	7	14
Beethoven	16	37	38	9
Schubert	7	16	24	53
Mendelssohn	15	19	55	11
Brahms	6	13	69	12
Dvořak	14	17	65	4
Shostakovich	15	2	8	75

Classification Results: Summary

- Extreme influence of album effect: What is actually learned?
- Tonal features seem to be more robust
- Different tonal features, Combination of time scales beneficial
- Complex classifier does not necessarily lead to better results