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Dissertation: Tonality-Based Style Analysis

Christof Weill

Computational Methods for Tonality-Based Style Analysis of
Classical Music Audio Recordings

PhD thesis, Technical University of llmenau, 2017

Chapter 7: Clustering and Analysis of Musical Styles
Chapter 8: Subgenre Classification for Western Classical Music
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Music Genre Classification

= Standard approach (content-based)
= Supervised machine learning
= Based on spectral / timbral features

= In classical music — Instrumentation

= Better categories?
= Musical style
= Independent from instrumentation
= — Tonality / Harmony

Music Genre Classification

= Supervised machine learning

Feature Dimensionality Classifier
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Feature Dlmensw_nallty e
extraction reduction

—

Music Genre Classification

= Experimental design: Evaluation with Cross Validation (CV)
= Separate data into different parts (folds)

Faid 1 Fold 2 Fold 3

Round 1| Training fold | Training fold Test fold
Round 2| Training fold Test fokd Training fold

Round 3 Test fold Training fold Training fold

Music Genre Classification

= Experimental design: Evaluation with Cross Validation (CV)
= Separate data into different parts (folds)

Faid 1 Fold 2
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= Distribution of classes balanced for all folds
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Classification Scenario

= Dataset: CrossEraDB (Historical Periods)
= Balanced Piano (p) — Orchestra (o)
= Each 200 pieces — 1600 in total
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Classification Scenario
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Classification Features

MFCC 16 Interval cat. 6x4
osC 14 Triad types 4x4
ZCR 1 Complexity 7x4
ASE 16 Chord progr. 11 x5
SFM 16

SCF 16

SC 16

LogLoud 12

NormLoud 12

Sum 119 Sum 123
Mean & Std ~ x2 Mean & Std  x2
Total 238 Total 246

Dimensionality Reduction

= Reduce feature space to few dimensions
= Maximize separation of classes with Linear Discriminant Analysis (LDA)
= Using standard features (MFCC, spectral envelope, ...)

Dimensionality Reduction

= Reduce feature space to few dimensions
= Maximize separation of classes with Linear Discriminant Analysis (LDA)

= Using tonal features (interval, triad types, tonal complexity, ... 4 time scales)
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Dimensionality Reduction Classifier
= Reduce feature space to few dimensions = Train Machine Learning Classifier
= Maximize separation of classes with Linear Discriminant Analysis (LDA) = Gaussian Mixture Model (GMM)
= Using tonal & standard features = Using Gaussian distributions to model data points in feature space
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Classification Results

= Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

Full Dataset Piano Orchestra
Standard features 87 % 88 % 85 %
Tonal features 84 % 84 % 86 %
Combined 92 % 86 % 80 %

Weiss / Mauch / Dixon, Timbre-Invariant Audio Features for
Style Analysis of Classical Music, ICMC / SMC 2014

Classification Results

= Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

Full Dataset Piano Orchestra
Standard features 87 % 85 %
Tonal features 84 % 84 % 86 %
Combined 92 % 86 % 80 %

Overfitting???

Weiss / Mauch / Dixon, Timbre-Invariant Audio Features for
Style Analysis of Classical Music, ICMC / SMC 2014

Classification Results

= GMM classifier, LDA reduction, 3-fold cross validation

Full Dataset Piano Orchestra
Standard features 87 % 88 % 85 %
Tonal features 84 % 84 % 86 %
Combined 92 % 86 % 80 %
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Flexer, A Closer Look on Artist Filters for
Musical Genre Classification, ISMIR 2007

Classification Results

= GMM classifier, LDA reduction, 3-fold cross validation

= No composer filter

Full Dataset Piano Orchestra
Standard features 87 % 85 %
Tonal features 84 % 84 % 86 %
Combined 92 % 86 % 80 %

= Using composer filter

Full Dataset Piano Orchestra
Standard features 54 % 70 %
Tonal features 73 % 70 % 78 %
Combined 68 % 44 % 68 %

Weiss / Miiller, Tonal Complexity Features for Style
Classification of Classical Music, ICASSP 2015

Classification Results: Error Examples

= 80 tonal features, GMM with 1 Gaussian, LDA
= Look at consistently and persistently misclassified items (B. Sturm 2012 & 2013)
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Classification Results: Confusion Matrix

80 tonal features, GMM with 1 Gaussian, LDA, composer filtering

Full dataset

Mean accuracy: 75 %
Inter-class standard deviation: 6.7 %
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Classification Results: Unseen Data

80 tonal features, GMM with 1 Gaussian, LDA

Full dataset, 4 historical periods

Training on piano, evaluating on orchestra — mean acurracy 65 %

Training on orchestra, evaluating on piano — mean acurracy 64 %

L Baroque  Classienl  Romantic
= Training on full dataset 5 - =
= Evaluating on a different dataset a6 » 15
= Mean accuracy 62.3 % a9 2 i
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Classification Results: Summary

= Extreme influence of album effect: What is actually learned?
= Tonal features seem to be more robust
= Different tonal features, Combination of time scales beneficial

= Complex classifier does not necessarily lead to better results




