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Motivation

§ DNNs are very powerful methods

§ Define the state of the art in different domains

§ Lots of decisions involved when designing a DNN
§ Input representation, input preprocessing
§ #layers, #neurons, layer type, dropout, regularizers, cost function
§ Initialization, mini-batch size, #epochs, early stopping (patience)
§ Optimizer, learning rate…
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Neural Networks
Black Box

𝑏"

𝑏#

𝑏$

𝑏%

𝑦" 𝑡

𝑦# 𝑡

𝑦$ 𝑡

𝑦% 𝑡
𝑊

𝑥%(𝑡)

𝑥#(𝑡)

𝑥$(𝑡)

𝑥"(𝑡)

𝜎

𝜎

𝜎

𝜎

Input Output

𝑋 ∈ ℝ0 𝑌 ∈ ℝ2

f : RN ! RM
, f(x) = �(Wx

T + b),

Animal Images {Cats, Dogs}
Speech Text
Music Genre, era, chords…



© AudioLabs, 2017
Müller, Weiss, Balke

Tutorial: Deep Neural Networks in MIR
4

Neural Networks
Black Box
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Neural Networks
Black Box
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Neural Networks
Black Box
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Neural Network
Intuition
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Deep Neural Network
Going Deep
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Deep Neural Networks
Training

§ Collect labeled dataset (e.g., images with cats and dogs)

§ Define a quality measure: Loss function

§ Task: Find minimum of loss function (not trivial)

➡ Gradient Descent
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Deep Neural Networks
Gradient Descent

§ Idea: Find the minimum of a function in an iterative way by 
following the direction of steepest descent of the gradient

§ Initialize all free parameters randomly
§ Repeat until convergence:

§ Let the DNN perform predictions on the dataset
§ Measure the quality of the predictions w. r. t. the loss function
§ Update the free parameters based on the prediction quality

§ Common extension: Stochastic Gradient Descent
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Overview

1. Feature Learning
2. Beat and Rhythm Analysis
3. Music Structure Analysis
4. Literature Overview
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Feature Learning

Solo	Voice
Enhancement
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Feature Learning
…where it all began

§ Core task for DNNs:
Learn a representation from the data to solve a problem.

§ Task is very hard to define!
Often evaluated in tagging, chord recognition, or retrieval 
application.
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Application: Query-by-Example/Solo

Solo Voice
Enhancement

Collection of Polyphonic
Music Recordings

Monophonic
Transcription

Matching
Procedure

vs.

Our Data-Driven Approach
Use a DNN to learn the mapping from a “polyphonic” TF representation to a 
“monophonic” TF representation.

Retrieval Scenario
Given a monophonic transcription of a jazz solo as query, find the corresponding 
document in a collection of polyphonic music recordings.

Solo Voice Enhancement
1. Model-based Approach [Salamon13]
2. Data-Driven Approach [Rigaud16, Bittner15]
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Weimar Jazz Database (WJD)

Transcription

Beats

| E7 A7 | D7 G7 | … Chords
…

[Pfleiderer17]

§ 456 transcribed jazz solos of 

monophonic instruments.

§ Transcriptions specify a musical pitch for 

physical time instances.

§ 810 min. of audio recordings.

Thanks to the Jazzomat research team: M. Pfleiderer, K. Frieler, J. Abeßer, W.-G. Zaddach
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DNN Training
Stefan Balke, Christian Dittmar, Jakob Abeßer, Meinard Müller, ICASSP 17

9
4 5 6 7 8 9 4 5 6 7 8 94 5 6 7 8 9

Time (s)

9

28

110

440

1760

8372

Fre
que

ncy
(Hz

)

4 5 6 7 8 9
Time (s)

9

28

110

440

1760

8372

Fre
que

ncy
(Hz

)

8372

1760

440

110

28

Fr
eq

ue
nc

y 
(H

z)

Time (s) Time (s)

TargetInput

§ Input: Log-freq. Spectrogram (120 semitones, 10 Hz feature rate)

§ Target: Solo instrument’s pitch activations

§ Output: Pitch activations (120 semitones, 10 Hz feature rate)

§ Architecture: FNN, 5 hidden layers, ReLU, Loss: MSE, layer-wise training

§ Demo: https://www.audiolabs-erlangen.de/resources/MIR/2017-ICASSP-SoloVoiceEnhancement
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Walking Bass Line Extraction

§ Harmonic analysis
§ Composition (lead sheet) vs. actual performance 
§ Polyphonic transcription from ensemble recordings is challenging 
§ Walking bass line can provide first clues about local harmonic 

changes

§ Features for style & performer classification
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What is a Walking Bass Line?
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Dm7 (D, F, A, C)

C A F A D F A D A D A F AF

§ Example: Miles Davis: So What (Paul Chambers: b)

§ Our assumptions for this work:

§ Quarter notes (mostly chord tones)

§ Representation: beat-wise pitch values
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Example

Initial model

M1 - without data aug.
M1

+ - with data aug.

Semi-supervised learning

M2
0,+ - t0

M2
1,+ - t1

M2
2,+ - t2

M2
3,+ - t3

D - Dittmar et al.
SG - Salamon et al.
RK - Ryynänen & Klapuri

M1
+

§ Chet Baker: “Let’s Get Lost” (0:04 – 0:09)

§ Demo: https://www.audiolabs-erlangen.de/resources/MIR/2017-AES-WalkingBassTranscription
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Feature Learning

§ Less domain knowledge needed to learn working features.
§ Know your task/data.

Accuracy is not everything!
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Beat and Rhythm Analysis
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Beat and Rhythm Analysis

§ Beat Tracking:
Find the pulse in the music which you would tap/clap to.
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Beat and Rhythm Analysis
Sebastian Böck, Florian Krebs, and Gerhard Widmer, DAFx 2011

§ Input: 3 LogMel spectrograms (varying win-length) + derivatives

§ Target: Beat annotations

§ Output: Beat activation function ∈ [0, 1]

§ Post-processing: Peak picking on beat activation function

§ Architecture: RNN, 3 bidirectional layers, 25 LSTM per layer/direction

Input Bi-directional
Layers

Output
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Beat Tracking
Examples

Böck2015
(madmom)

Carlos Gardel
Por una Cabeza

114 bpm

Ellis (librosa)
Init = 120 bpm

Original

Sidney Bechet
Summertime

87 bpm

Wynton Marsalis
Caravan
195 bpm

Borodin
String Quartet 2, III.

65 bpm

Wynton Marsalis
Cherokee
327 bpm
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Beat Tracking

§ DNN-based methods need less task-specific initialization (e.g., tempo).

§ Closer to a “universal” onset detector.

§ Task-specific knowledge is introduced as post-processing step:

[Boeck2014]



© AudioLabs, 2017
Müller, Weiss, Balke

Tutorial: Deep Neural Networks in MIR
26

Music Structure Analysis



Music Structure Analysis

§ Find boundaries/repetitions 
in music

§ Classic approaches:
§ Repetition-based
§ Homogeneity-based
§ Novelty-based

§ Main challenges:
§ What is structure?
§ Model assumptions based on 

musical rules (e.g., sonata).
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Music Structure Analysis
Karen Ullrich, Jan Schlüter, and Thomas Grill, ISMIR 2014
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§ Input: LogMel spectrogram

§ Target: Boundary annotations

§ Output: Novelty function ∈ [0, 1]

§ Post-processing: Peak picking on novelty function

* ignoring bias
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Music Structure Analysis
Results

0.5 s:

Tolerance

3.0 s:

Ullrich et al. (2014) Grill et al. (2015)
SALAMI 1.3 SALAMI 2.0

§ Added features (SSLM)
§ Trained on 2 levels of annotations
§ SUG1 is similar to [Ullrich2014]
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Music Structure Analysis

§ Re-implementation by Cohen-Hadria and Peeters did not 
reach reported results.

§ Possible reasons:
§ Data identical?
§ Different kind of convolution? What was the stride?
§ Didn’t ask?
§ Availability of pre-trained model would be awesome!
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Literature Overview
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Publications by Conference
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Publications by Year
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Publications by Task

VAR AMT ASP BAR FL CR MSA F0

Task
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Publications by Network
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Input Representations
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Feature Preprocessing
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Technical Background
Overview

§ DNN problems are tensor problems
§ Lots of different open source frameworks available

§ Theano (University of Montreal)
§ tensorflow (Google)
§ PyTorch (Facebook)

§ Support training DNNs on GPUs (NVIDIA GPUs are 
currently leading)

§ Python is mainly used in this research area
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Technical Background
Python Starter-Kit

§ NumPy Basics for matrices and tensors
§ Pandas General operations on any data
§ Matplotlib plotting your data 

§ Librosa General Audio library (STFT, Chroma, etc.)
§ Scikit-learn For all kinds of machine learning models
§ Keras High-Level wrapper for neural networks
§ Pescador Data streaming
§ mir_eval Common evaluation metrics used in MIR
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Deep Neural Networks in MIR

§ Online Lectures:
§ Andrew Ng: Machine Learning

(Coursera class, more a general introduction to machine learning)
§ Google: Deep Learning

(Udacity class, hands on with tensorflow)
§ CS231n: Convolutional Neural Networks for Visual Recognition

(Stanford class, available via YouTube)
§ Goodfellow, Bengio, Courville: Deep Learning Book.
§ Other MIR resources:

§ Jordi Pons: http://jordipons.me/wiki/index.php/MIRDL

§ Keunwoo Choi: https://arxiv.org/abs/1709.04396

§ Yann Bayle: https://github.com/ybayle/awesome-deep-learning-music

§ Jan Schlüter: http://www.univie.ac.at/nuhag-php/program/talks_details.php?nl=Y&id=3358



“…if you’re doing an experiment, you 
should report everything that you 
think might make it invalid—not 
only what you think is right about it: 
other causes that could possibly 
explain your results; and things you 
thought of that you’ve eliminated by 
some other experiment, and how they 
worked—to make sure the other fellow 
can tell they have been eliminated.”

Richard Feynman, Surely You're Joking, 
Mr. Feynman!: Adventures of a Curious 
Character
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