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ABSTRACT

In this paper, we present a fast, simple and effective method to sep-
arate the harmonic and percussive parts of a monaural audio signal.
The technique involves the use of median filtering on a spectro-
gram of the audio signal, with median filtering performed across
successive frames to suppress percussive events and enhance har-
monic components, while median filtering is also performed across
frequency bins to enhance percussive events and supress harmonic
components. The two resulting median filtered spectrograms are
then used to generate masks which are then applied to the origi-
nal spectrogram to separate the harmonic and percussive parts of
the signal. We illustrate the use of the algorithm in the context of
remixing audio material from commercial recordings.

1. INTRODUCTION

The separation of harmonic and percussive sources from mixed au-
dio signals has numerous applications, both as an audio effect for
the purposes of remixing and DJing, and as a preprocessing stage
for other purposes. This includes the automatic transcription of
pitched instruments,key signature detection and chord detection,
where elimination of the effects of the percussion sources can help
improve results. Similarly, the elimination of the effects of pitched
instruments can help improve results for the automatic transcrip-
tion of drum instruments, rhythm analysis beat tracking.

Recently, the authors proposed a tensor factorisation based al-
gorithm capable of obtaining good quality separation of harmonic
and percussive sources [1]]. This algorithm incorporated an addi-
tive synthesis based source-filter model for pitched instruments,
as well as constraints to encourage temporal continuity on pitched
sources. A principal advantage of this approach was that it re-
quired little or no pretraining in comparison to many other ap-
proaches [2 3| 4]. Unfortunately, a considerable shortcoming of
the tensor factorisation approach is that it is both processor and
memory intensive, making it impractical for use when whole songs
need to be processed, for example such as when remixing a song.

In an effort to overcome this, it was decided to investigate
other approaches capable of separating harmonic and percussive
components without pretraining, but which were also computa-
tionally less intensive. Of particular interest was the approach de-
veloped by Ono et al [5]]. This technique was based on the intuitive
idea that stable harmonic or stationary components form horizon-
tal ridges on the spectrogram, while percussive components form
vertical ridges with a broadband frequency response. This can be
seen in Figure 1, where the harmonic components are visible as
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horizontal lines, while the percussive events can be seen as ver-
tical lines. Therefore, a process which emphasises the horizontal
lines in the spectrogram while suppressing vertical lines should re-
sult in a spectrogram which contains mainly pitched sources, and
vice-versa for the vertical lines to recover the percussion sources.
To this end, a cost function which minimised the Lo norm of the
power spectrogram gradients was proposed.
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Figure 1: Spectrogram of pitched and percussive mixture

Letting W}, ; denote the element of the power spectrogram W
of a given signal at frequency bin h and the ith time frame, and
similarly defining H}, ; as an element of H the harmonic power
spectrogram and P, ; as an element of P the percussive power
spectrogram, the cost function can then be defined as:

1

J(H,P) =557 Z(Hh,iq — Hp,)?
H pi
1 , M
P, ifPLi
+ 202 > (Pa1i— Puy)

h,i

where o and op are parameters used to control the weights of
the harmonic and percussive smoothness respectively. The cost
function is further subject to the additional constraints that

Hpi+ Prni =W )
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Hp; >0, Pp;>0 (3)

In effect, this is equivalent to assuming that the spectrogram gra-
dients (Hp,i—1 — Hp,;) and (Ph—1,; — Pn,;) follow gaussian dis-
tributions. This is not the case, and so a compressed version of
the power spectrogram, W = W7 where 0 < v < 1, is used
instead to partially compensate for this. Iterative update equations
to minimise J(H, P) for H and P were then derived, and the re-
covered harmonic and percussive spectrograms used to generate
masks which were then applied to the original spectrogram before
inversion to the time domain.

In [6]] an alternative cost function based on the generalised
Kullback-Liebler divergence was proposed:

Jrkr(H,P)
:Z{WhilogL*WhiJthiJrPhi}
hoi ’ Hh,i +Ph,'i ’ ’ ’
1
t 22 > (VHnio1 = /Hn)? 4
H pq
1
+ F Z(\/ thl,i - \/K)Q
P i

and new update equations for H and P derived from this cost func-
tion. A real-time implementation of the algorithm using a sliding
block analysis, rather than processing the whole signal, was also
implemented and described in [6].

The system was shown to give good separation performance
at low computational cost, thereby making it suitable as a prepro-
cessor for other applications. Further, the underlying principle of
the algorithm represents a simple intuitive idea that can be used
to derive alternate means of separating harmonic and percussive
components, as will be seen in the next section.

2. MEDIAN FILTERING BASED SEPARATION

As was shown previously, regarding percussive events as vertical
lines and harmonic events as horizontal lines in a spectrogram is
a useful approximation when attempting to separate harmonic and
percussive source. Taking the percussive events as an example,
the algorithms described above in effect smooth out the frequency
spectrum in a given time frame by removing large “spikes” in the
spectrum which correspond to harmonic events. Similarly, har-
monic events in a given frequency bin are smoothed out by remov-
ing “spikes” related to percussive events. Another way of looking
at this is to regard harmonic events as outliers in the frequency
spectrum at a given time frame, and to regard percussive events as
outliers across time in a given frequency bin. This brings us to the
concept of using median filters individually in the horizontal and
vertical directions to separate harmonic and percussive events.

Median filters have been used extensively in image processing
for removing speckle noise and salt and pepper noise from images
[7]. Median filters operate by replacing a given sample in a signal
by the median of the signal values in a window around the sample.
Given an input vector z(n) then y(n) is the output of a median
filter of length [ where [ defines the number of samples over which
median filtering takes place. Where [ is odd, the median filter can
be defined as:

y(n) = median {zx(n —k:n+k),k=(1—-1)/2} (5

In effect, the original sample is replaced with the middle value
obtained from a sorted list of the samples in the neighbourhood
of the original sample. In cases where [ is even, the median is
obtained as the mean of the two values in the middle of in the
sorted list. As opposed to moving average filters, median filters are
effective in removing impulse noise because they do not depend
on values which are outliers from the typical values in the region
around the original sample.

A number of examples are now presented to illustrate the ef-
fects of median filtering in suppressing harmonic and percussive
events in audio spectrograms. Figure 2(a) shows the plot of a fre-
quency spectrum containing a mixture of noise from a snare drum
and notes played by a piano. The harmonics from the piano are
clearly visible as large spikes in the spectrum. Figure 2(b) shows
the same spectrum after median filtering with a filter length of 17.
It can be seen that the spikes associated with the harmonics have
been suppressed, leaving a spectrum where the drum noise now
predominates. Similarly, Figure 3(a) shows the output of a fre-
quency bin across time, again taken from a mixture of snare drum
and piano. The onset of the snare is clearly visible as a large spike
in energy in the frequency bin, while the harmonic energy is more
constant over time. Figure 3(b) shows the output of the frequency
bin after median filtering, and it can be appreciated that the spike
associated with the onset is removed by median filtering, thereby
suppressing the energy due to the percussion event.
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Figure 2: Spectrogram frame containing mixture of piano and
snare a) Original spectrum b) Spectrum after median filtering

Given an input magnitude spectrogram S, and denoting the ith
time frame as .S;, and the hth frequency slice as S}, a percussion-
enhanced spectrogram frame P; can be generated by performing
median filtering on S;:

Pi - M{Sz, lpe'rc} (6)

where M denotes median filtering and l,¢ is the filter length of
the percussion-enhancing median filter. The individual percussion-

enhanced frames P; are then combined to yield a percussion-enhanced

spectrogram P. Similarly, a harmonic-enhanced spectrogram fre-
quency slice H}, can be obtained by median filtering frequency
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Figure 3: Spectrogram frequency slice containing mixture of piano
and snare a) Original slice b) Slice after median filtering

slice S},.

Hi = M{Shylharm} (7)
where lj,q,m 18 the length of the harmonic median filter. The slices
are then combined to give a harmonic enhanced spectrogram H.

The resulting harmonic and percussion suppressed spectro-
grams can then be used to generate masks which can then be ap-
plied to the original spectrogram. Two families of masks were then
investigated for the separation of the sources. The first of these is
a hard or binary mask, where it is assumed that each frequency
bin in the spectrogram belongs either to the percussion or to the
harmonic source. In this case, the masks are defined as:

1, ifHp; >Pp;
M i — ’ ’ 8
. {0, otherwise ®

_ 1, if Ph,i > Hh,i
* 710, otherwise

The second family of masks are soft masks based on Wiener Fil-
tering and are defined as:

)

Mt — 0t (10)
e H}, + P} )
P?
Mp),,; = bt (11)

(H}, + P,

where p denotes the power to which each individual element of the

spectrograms are raised. Typically p is given a value of 1 or 2.
Complex spectrograms are then recovered for inversion from:

H=S®Mu (12)

and

P=S@Mp (13)
where ® denotes elementwise mulitiplication and where S denotes
the original complex valued spectrogram. These complex spectro-
grams are then inverted to the time domain to yield the separated
harmonic and percussive waveforms respectively.

In comparison to the iterative approach developed by Ono et
al., which typically requires 30-50 iterations to converge, only two
passes are required through the input spectrogram, one each for H
and P. This means that the median filter based algorithm is faster,
which is of considerable benefit when used as preprocessing for
other tasks. In tests, the proposed algorithm performs approxi-
mately twice as fast as that of Ono et al with the number of itera-
tions set to 30. This raises the possibility of performing real-time
harmonic/percussive separation on stereo files, as the proposed al-
gorithm can easily be extended to handle stereo signals.

3. SEPARATION AND REMIXING EXAMPLES

We now present examples of the use of the median filtering har-
monic/percussive separation algorithm. Figure 4 shows an excerpt
from “Animal” by Def Leppard, as well as the separated harmonic
and percussive waveforms respectively, obtained using a median
filter of length 17 for both harmonic and percussive filters, as well
as using a soft mask with p = 2. It can be seen that the recovered
harmonic waveform contains little or no evidence of percussion
events, while the percussive waveform contains little or no evi-
dence of the harmonic instruments. On listening to the waveforms,
some traces of the drums can be heard in the harmonic waveform,
though at a very reduced level, while the attack portion of some of
the instruments such as guitar has been captured by the percussive
waveform, as well as traces of some guitar parts where the pitch
is changing constantly. This is to be expected as the attacks of
many instruments such as guitar and piano can be considered as
percussive in nature, and as the algorithm assumes that the pitched
instruments are stationary in pitch. This also occurs in other algo-
rithms for separating harmonic and percussive components.

Also shown in Figure 4 are remixed versions of the original
signal, the first has the percussion components reduced by 6dB,
while the second shows the harmonic components reduced by 6dB.
On listening to these waveforms, there are no noticeable artifacts in
the resynthesis, while the reduction in amplitude of the respective
sources can clearly be heard. This demonstrates that the algorithm
is capable of generating audio which can be used for high-quality
remixing of the separated harmonic and percussive sources.

Figure 5 shows an excerpt from “Billie Jean” by Michael Jack-
son, the separated harmonic and percussive waveforms, and remixed
versions with the percussion reduced by 6dB, and the harmonics
reduced by 6dB respectively. Again, the algorithm can be seen to
have separated the harmonic and percussive parts well. On listen-
ing, the attack of the bass has been captured by the percussive part,
and a small amount of drum noise can be heard in the harmonic
waveform. In the remixed versions, no artifacts can be heard.

Both of the above examples were carried out using an FFT
size of 4096, with a hopsize of 1024, with a sampling frequency
of 44.1 kHz. Testing showed that better separation quality was
achieved at larger FFT lengths. The median filter length was set to
17 for both the harmonic and percussive filters, and testing showed
that once the median filter lengths were above 15 and below 30,the
separation quality did not vary dramatically, with good separation
achieved in most cases. Further, informal listening tests suggest
that the quality of separation is comparable to that achieved by the
algorithms proposed by Ono et al. The use of the soft masking was
found to result in less artifacts in the resynthesis, though at the ex-
pense of a slight increase in the amount of interference between the
percussive and harmonic sources. In general, it was observed that
setting p = 2 gave considerably better separation results than us-

DAFX-3



Proc. of the 13™ Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

Amplituge
=

Amplituge
o

amplituge

Ampituge
)

Anpituge

Time s

Figure 4: Excerpt from “Animal” by Def Leppard a) Original
waveform, b) Separated harmonic waveform, c) Separated per-
cussive waveform, d) Remix, percussion reduced by 6dB, e) Remix,
harmonic components reduced by 6dB

ing p = 1. Audio examples are available for download at http:

//eleceng.dit.ie/derryfitzgerald/index.php?uid=

489&menu_1d=42

4. CONCLUSIONS

Having described an fast effective method of harmonic-percussive
separation developed by Ono et al [6], which is based on the idea
that percussion events can be regarded as vertical lines, and har-
monic or stationary events as horizontal lines in a spectrogram, we
then took advantage of this idea to develop a simpler, faster and
more effective harmonic/percussive separation algorithm. This was
based on the idea that harmonics could be regarded as outliers in
a spectrum containing a mixture of percussion and pitched instru-
ments, while percussive onsets can be regarded as outliers in a
frequency slice containing a stable harmonic or stationary event.
To remove these outliers, we then used median filtering, as me-
dian filtering is effective at removing outliers for the purposes of
image denoising. The resulting harmonic-enhanced and percussion-
enhanced spectrograms were then used to generate masks which
were then applied to the original spectrogram to separate the har-

monic and percussive components. Real-world separation and remix-

ing examples using the algorithm were then discussed.

Future work will concentrate on developing a real-time im-
plementation of the algorithm and on investigating the use of the
algorithm as a preprocessor for other tasks such as key signature
detection and chord detection, where suppression of percussion
events is helpful in improving results. Further, the use of rank-
order filters, where a different percentile other than 50, which is
used in median filtering will be investigated as a means of poten-
tially improving the separation performance of the algorithm.
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Figure 5: Excerpt from “Billie Jean” by Michael Jackson a) Origi-
nal waveform, b) Separated harmonic waveform, c) Separated per-
cussive waveform, d) Remix, percussion reduced by 6dB, e) Remix,
harmonic components reduced by 6dB
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