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Abstract—In this paper, we propose a convolutional recurrent
neural network for joint sound event localization and detection
(SELD) of multiple overlapping sound events in three-dimensional
(3-D) space. The proposed network takes a sequence of consec-
utive spectrogram time frames as input and maps it to two out-
puts in parallel. As the first output, the sound event detection
(SED) is performed as a multi-label classification task on each
time frame producing temporal activity for all the sound event
classes. As the second output, localization is performed by esti-
mating the 3-D Cartesian coordinates of the direction-of-arrival
(DOA) for each sound event class using multi-output regression.
The proposed method is able to associate multiple DOAs with re-
spective sound event labels and further track this association with
respect to time. The proposed method uses separately the phase
and magnitude component of the spectrogram calculated on each
audio channel as the feature, thereby avoiding any method- and
array-specific feature extraction. The method is evaluated on five
Ambisonic and two circular array format datasets with different
overlapping sound events in anechoic, reverberant, and real-life
scenarios. The proposed method is compared with two SED, three
DOA estimation, and one SELD baselines. The results show that
the proposed method is generic and applicable to any array struc-
tures, robust to unseen DOA values, reverberation, and low SNR
scenarios. The proposed method achieved a consistently higher
recall of the estimated number of DOAs across datasets in compar-
ison to the best baseline. Additionally, this recall was observed to
be significantly better than the best baseline method for a higher
number of overlapping sound events.

Index Terms—Sound event detection, direction of arrival esti-
mation, convolutional recurrent neural network.

I. INTRODUCTION

SOUND event localization and detection (SELD) is the
combined task of identifying the temporal activities of

each sound event, estimating their respective spatial location
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trajectories when active, and further associating textual labels
with the sound events. Such a method can for example
automatically describe social and human activities and assist
the hearing impaired to visualize sounds. Robots can employ
this for navigation and natural interaction with surround-
ings [1]–[4]. Smart cities, smart homes, and industries could
use it for audio surveillance [5]–[8]. Smart meeting rooms can
recognize speech among other events and use this information
to beamform and enhance the speech for teleconferencing or
for robust automatic speech recognition [9]–[13]. Naturalists
could use it for bio-diversity monitoring [14]–[16]. Further, in
virtual reality (VR) applications with 360◦ audio SELD can be
used to assist the user in visualizing sound events.

A. Sound Event Detection

The SELD task can be broadly divided into two sub-tasks,
sound event detection (SED) and sound source localization.
SED aims at detecting temporally the onsets and offsets of
sound events and further associating textual labels to the de-
tected events. The sound events in real-life most often overlap
with other sound events in time and the task of recognizing all
the overlapping sound events is referred as polyphonic SED.
The SED task in literature has most often been approached us-
ing different supervised classification methods that predict the
framewise activity of each sound event class. Some of the classi-
fiers include Gaussian mixture model (GMM) - hidden Markov
model (HMM) [27], fully connected (FC) neural networks [28],
recurrent neural networks (RNN) [29]–[32], and convolutional
neural networks (CNN) [33], [34]. More recently state-of-the-
art results were obtained by stacking CNN, RNN and FC layers
consecutively, referred jointly as the convolutional recurrent
neural network (CRNN) [35]–[39].

Lately, in order to improve recognition of overlapping sound
events, several multichannel SED methods have been pro-
posed [39]–[43] and these were among the top performing meth-
ods in the real-life SED task of DCASE 20161 and 20172 evalua-
tion challenges. More recently, we studied the SED performance
on identical sound scenes captured using single, binaural and

1http://www.cs.tut.fi/sgn/arg/dcase2016/task-results-sound-event-detection-
in-real-life-audio#system-characteristics

2http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-sound-event-
detection-in-real-life-audio-results#system-characteristics
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first-order Ambisonics (FOA) microphones [35], where the or-
der denotes the spatial resolution of the format and the first
order corresponds to four channels. The results showed that the
recognition of overlapping sound events improved with increase
in spatial sampling, and the best performance was obtained with
FOA.

B. Sound Source Localization

Sound source localization is the task of determining the direc-
tion or position of a sound source with respect to the microphone.
In this paper, we only deal with the estimation of the sound event
direction, generally referred as direction-of-arrival (DOA) esti-
mation. The DOA methods in literature can be broadly catego-
rized into parametric- and deep neural network (DNN)-based
approaches. Some popular parametric methods are based on
time-difference-of-arrival (TDOA) [44], the steered-response-
power (SRP) [45], multiple signal classification (MUSIC) [46],
and the estimation of signal parameters via rotational invariance
technique (ESPRIT) [47]. These methods vary in terms of al-
gorithmic complexity, constraints in array geometry, and model
assumptions on the acoustic scenarios. Subspace methods like
MUSIC can be applied with different array types and can pro-
duce high-resolution DOA estimates of multiple sources. On
the other hand, subspace methods require a good estimate of the
number of active sources that may be hard to obtain, and they
have been found sensitive to reverberant and low signal-to-noise
(SNR) scenarios [48].

Recently, DNN-based methods were employed to overcome
some of the drawbacks of parametric methods, while being
robust towards reverberation and low SNR scenarios. Addition-
ally, implementing the localization task in the DNN framework
allows seamless integration into broader DNN tasks such as
SELD [20], robots can use it for sound source based navigation
and natural interaction in multi-speaker scenarios [1]–[4]. A
summary of the most recent DNN-based DOA estimation meth-
ods is presented in Table I. All these methods estimate DOAs for
static point sources and were shown to perform equally or better
than the parametric methods in reverberant scenarios. Further,
methods [4], [18], [20], [25] proposed to simultaneously detect
DOAs of overlapping sound events by estimating the number
of active sources from the data itself. Most methods used a
classification approach, thereby estimating the source presence
likelihood at a fixed set of angles, while [22], [23] used a re-
gression approach and let the DNN produce continuous output.

All of the past works were evaluated on different array geome-
tries, making a direct performance comparison difficult. Most
of the methods estimated full azimuth (‘Full’ in Table I) using
microphones mounted on a robot, circular and distributed ar-
rays, while the rest of the methods used linear arrays thereby
estimating only the azimuth angles in a range of 180◦. Al-
though few of the existing methods estimated the azimuth and
elevation jointly [24], [25], most of them estimated only the
azimuth angle [1]–[4], [17]–[20]. In particular, we studied the
joint estimation of azimuth and elevation angles in [25], this
was enabled by the use of Ambisonic signals (FOA) obtained

using a spherical array. Ambisonics are also known as spherical
harmonic (SH) signals in the array processing literature, and
they can be obtained from various array configurations such as
circular or planar (for 2D capture) and spherical or volumetric
(for 3D capture) using an appropriate linear transform of the
recordings [49]. The same ambisonic channels have the same
spatial characteristics independent of the recording setup, and
hence, studies on such hardware-independent formats make the
evaluation and results more easily comparable in the future.

Most of the previously proposed DNN-based DOA estima-
tion methods that relied on a single array or distributed arrays
of omnidirectional microphones, captured source location infor-
mation mostly in phase- or time-delay differences between the
microphones. However, compact microphone arrays with full
azimuth and elevation coverage, such as spherical microphone
arrays, rely strongly on the directionality of the sensors to cap-
ture spatial information, this reflects mainly in the magnitude
differences between channels. Motivated by this fact we pro-
posed to use both the magnitude and phase component of the
spectrogram as input features in [25]. Thus making the DOA es-
timation method [25] generic to array configuration by avoiding
method-specific feature extractions like inter-aural level differ-
ence (ILD), the inter-aural time difference (ITD), generalized
cross-correlation (GCC) or eigenvectors of spatial covariance
matrix used in previous methods (Table I).

C. Joint Localization and Detection

In the presence of multiple overlapping sound events, the
DOA estimation task becomes the classical tracking problem of
associating correctly the multiple DOA estimates to respective
sources, without necessarily identifying the source [50], [51].
The problem is further extended for the polyphonic SELD task
if the SED and DOA estimation are done separately, resulting
in the data association problem between the recognized sound
events and the estimated DOAs [13]. One solution to the data
association problem is to jointly predict the SED and DOA. In
this regard, to the best of the authors’ knowledge, [20] is the
only DNN-based method which performs SELD. Other works
combining SED and parametric DOA estimation include [6],
[13], [52], [53]. Lopatka et al. [53] used a 3D sound intensity
acoustic vector sensor, with MPEG-7 spectral and temporal fea-
tures along with a support vector machine classifier to estimate
DOA along azimuth for five classes of non-overlapping sound
events. Butko et al. [13] used distributed microphone arrays to
recognize 14 different sound events with an overlap of two at a
time, using a GMM-HMM classifier, and localized them inside
a meeting room using the SRP method. Chakraborty et al. [52]
replaced SRP-based localization in [13] with a sound-model-
based localization, thereby fixing the data association problem
faced in [13]. In contrast, Hirvonen [20], extracted the frame-
wise spectral power from each microphone of a circular array
and used a CNN classifier to map it to eight angles in full az-
imuth for each sound event class in the dataset. In this output
format, the resolution of azimuth is limited to the trained direc-
tions and the performance of unseen DOA values is unknown.
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TABLE I
SUMMARY OF DNN BASED DOA ESTIMATION METHODS IN THE LITERATURE. THE AZIMUTH AND ELEVATION ANGLES ARE DENOTED AS ‘AZI’ AND ‘ELE’,

DISTANCE AS ‘DIST’, ‘X’ AND ‘Y’ REPRESENT THE DISTANCE ALONG THE RESPECTIVE CARTESIAN AXIS. ‘FULL’ REPRESENTS THE ESTIMATION IN THE COMPLETE

RANGE OF THE RESPECTIVE FORMAT, AND ‘REGRESSION’ REPRESENTS THE CLASSIFIER ESTIMATION TYPES

For larger datasets with a higher number of sound events and
increased resolution along azimuth and elevation directions, this
approach results in a large number of output nodes. Training
such a DNN with a large number of output nodes where the
number of positive class labels per frame is one or two with
respect to a high number of negative class labels poses chal-
lenges of an imbalanced dataset. Additionally, training such a
large number of classes requires a huge dataset with enough
examples for each class. On the other hand, this output for-
mat allows the network to simultaneously recognize more than
one instance of the same sound event in a given time frame, at
different locations.

D. Contributions of this Paper

In general, the number of existing SELD methods is lim-
ited [6], [13], [20], [52], [53], with only one published DNN-
based approach [20]. On the other hand, there are several DNN-
based methods in the literature for the SELD sub-tasks of SED
and DOA estimation. Yet, there is no comprehensive work pub-
lished that studies the various choices affecting the performance
of these DNN-based SED, DOA and SELD methods, compare
them with multiple competitive baselines, and evaluate them
over a wide range of acoustic conditions. Besides, with respect
to the SELD task, the existing methods [6], [13], [52], [53] lo-
calize up to one or maximum two overlapping sound events and
do not scale to a higher number of overlapping sources. Fur-
ther, the only DNN-based SELD method [20] localizes sound
events exclusively at a predefined grid of directions and requires
a large number of output classes for a higher number of sound
event labels and increased spatial resolution. Additionally, all
the above SELD approaches use method-specific features and
hence not independent of input array structure.

In contrast to existing SELD methods, this paper presents
novelty in two broad areas: the proposed SELD method, and
the exhaustive evaluation studies presented. The novelty of the
proposed SELD method is as follows. It is the first method
that addresses the problem of localizing and recognizing more

than two overlapping sound events simultaneously and tracking
their activity with respect to time. The proposed method is able
to localize sources at any azimuth and elevation angles while
being robust to unseen spatial locations, reverberation, and
ambiance. Further, the method itself is generic enough to learn
to perform SELD from any input array structure. Specifically, as
our method, we propose to use the polyphonic SED output [39]
as a confidence measure for choosing the DOAs estimated in
a regression manner. By this approach, we not only extend
the state-of-the-art polyphonic SED performance [39] for
polyphonic SELD but also tackle the data-association problem
faced due to the polyphony in SELD tasks [13]. As the second
broad area of novelty, we present the performance of the
proposed method with respect to various design choices made
such as the DNN architecture, input feature and DOA output
format. Additionally, we also present the comprehensive results
of the proposed method with respect to six baselines (two SED,
three DOA estimation, and one SELD baseline) evaluated on
seven datasets with different acoustic conditions (anechoic
and reverberant scenarios with simulated and real-life impulse
responses), array configurations (Ambisonic and circular array)
and the number of overlapping sound events.

In order to facilitate reproducibility of research, the proposed
method and all the datasets used have been made publicly
available.3 Additionally, the real-life impulse responses used
to simulate datasets have also been published to enable users to
experiment with custom sound events.

The rest of the paper is organized as follows. In Section II, we
describe the proposed SELD method and the training procedure.
In Section III, we describe the datasets, the baseline methods,
the metrics and the experiments carried out for evaluating the
proposed method. The experimental results on the evaluation
datasets are presented, compared with baselines and discussed
in Section IV. Finally, we summarize the conclusions of the
work in Section V.

3https://github.com/sharathadavanne/seld-net
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II. METHOD

The block diagram of the proposed method for SELD is pre-
sented in Fig. 1(a). The input to the method is the multichannel
audio. The phase and magnitude spectrograms are extracted
from each audio channel and are used as separate features.
The proposed method takes a sequence of features in consec-
utive spectrogram frames as input and predicts all the sound
event classes active for each of the input frames along with
their respective spatial location, producing the temporal activity
and DOA trajectory for each sound event class. In particular, a
CRNN is used to map the feature sequence to the two outputs in
parallel. At the first output, SED is performed as a multi-label
classification task, allowing the network to simultaneously esti-
mate the presence of multiple sound events for each frame. At
the second output, DOA estimates in the continuous 3D space
are obtained as a multi-output regression task, where each sound
event class is associated with three regressors that estimate the
3D Cartesian coordinates x, y and z of the DOA on a unit sphere
around the microphone. The SED output of the network is in the
continuous range of [0 1] for each sound event in the dataset,
and this value is thresholded to obtain a binary decision for the
respective sound event activity as shown in Fig. 1(b). Finally, the
respective DOA estimates for these active sound event classes
provide their spatial locations. The detailed description of the
feature extraction and the proposed method is explained in the
following sections.

A. Feature Extraction

The spectrogram is extracted from each of the C channels of
the multichannel audio using an M -point discrete Fourier trans-
form (DFT) on Hamming window of length M and 50% overlap.
The phase and magnitude of the spectrogram are then extracted
and used as separate features. Only the M/2 positive frequen-
cies without the zeroth bin are used. The output of the feature
extraction block in Fig. 1(a) is a feature sequence of T frames,
with an overall dimension of T × M/2 × 2C, where the 2C
dimension consists of C magnitude and C phase components.

B. Neural Network Architecture

The output of the feature extraction block is fed to the neural
network as shown in Fig. 1(a). In the proposed architecture the
local shift-invariant features in the spectrogram are learned us-
ing multiple layers of 2D CNN. Each CNN layer has P filters
of 3 × 3 × 2C (as in [25]) dimensional receptive fields acting
along the time-frequency-channel axis with a rectified linear
unit (ReLU) activation. The use of filter kernels spanning all
the channels allows the CNN to learn relevant inter-channel fea-
tures required for localization, whereas the time and frequency
dimensions of the kernel allows learning relevant intra-channel
features suitable for both the DOA and SED tasks. After each
layer of CNN, the output activations are normalized using batch
normalization [54], and the dimensionality is reduced using
max-pooling (MPi) along the frequency axis, thereby keeping
the sequence length T unchanged. The output after the final
CNN layer with P filters is of dimension T × 2 × P , where the

Fig. 1. a) The proposed SELDnet and b) the frame-wise output for frame t in
Figure a). A sound event is said to be localized and detected when the confidence
of the SED output exceeds the threshold.

reduced frequency dimension of 2 is a result of max-pooling
across CNN layers (see Section IV).

The output activation from CNN is further reshaped to a T
frame sequence of length 2P feature vectors and fed to bidirec-
tional RNN layers which are used to learn the temporal context
information from the CNN output activations. Specifically, Q
nodes of gated recurrent units (GRU) are used in each layer
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with tanh activations. This is followed by two branches of FC
layers in parallel, one each for SED and DOA estimation. The
FC layers share weights across time steps. The first FC layer in
both the branches contains R nodes each with linear activation.
The last FC layer in the SED branch consists of N nodes with
sigmoid activation, each corresponding to one of the N sound
event classes to be detected. The use of sigmoid activation en-
ables multiple classes to be active simultaneously. The last FC
layer in the DOA branch consists of 3N nodes with tanh activa-
tion, where each of the N sound event classes is represented by
3 nodes corresponding to the sound event location in x, y, and
z, respectively. For a DOA estimate on a unit sphere centered
at the origin, the range of location along each axes is [−1, 1],
thus we use the tanh activation for these regressors to keep the
output of the network in a similar range.

We refer to the above architecture as SELDnet. The SED
output of the SELDnet is in the continuous range of [0, 1] for
each class, while the DOA output is in the continuous range
of [−1, 1] for each axes of the sound class location. A sound
event is said to be active, and its respective DOA estimate is
chosen if the SED output exceeds the threshold of 0.5 as shown
in Fig. 1(b). The network hyperparameters are optimized based
on cross-validation as explained in Section III-D1.

C. Training Procedure

In each frame, the target values for each of the active sound
events in the SED branch output are one while the inactive
events are zero. Similarly, for the DOA branch, the reference
DOA x, y, and z values are used as targets for the active sound
events and x = 0, y = 0, and z = 0 is used for inactive events. A
binary cross-entropy loss is used between the SED predictions
of SELDnet and reference sound class activities, while a mean
square error (MSE) loss is used for the DOA estimates of the
SELDnet and the reference DOA. By using the MSE loss for
DOA estimation in 3D Cartesian coordinates we truly represent
the distance between two points in space. The distance between
two points (x1 , y1 , z1) and (x2 , y2 , z2) in 3D space is given
by

√
SE, where SE = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ,

while the MSE between the same points is given by SE/3. Thus
the MSE loss is simply a scaled version of the distance in 3D
space, and reducing the MSE loss implies the reduction in the
distance between the two points.

Theoretically, the advantage of using Cartesian coordinates
instead of azimuth and elevation for regression can be observed
when predicting DOA in full azimuth and/or full elevation. The
angles are discontinuous at the wrap-around boundary (for ex-
ample the −180◦, 180◦ boundary for azimuth), while the Carte-
sian coordinates are continuous. This continuity allows the net-
work to learn better. Further experiments on this are discussed
in Section III-D.

We train the SELDnet with a weighted combination of MSE
and binary cross-entropy loss for 1000 epochs using Adam opti-
mizer with default parameters as used in the original paper [55].
Early stopping is used to control the network from over-fitting
to training split. The training is stopped if the SELD score
(Section III-C) on the test split does not improve for 100 epochs.

TABLE II
SUMMARY OF DATASETS

The network was implemented using Keras library [56] with
TensorFlow [57] backend.

III. EVALUATION

A. Datasets

The proposed SELDnet is evaluated on seven datasets that
are summarized in Table II. Four of the datasets are synthesized
with artificial impulse responses (IR), that consists of anechoic
and reverberant scenarios virtually recorded both with a circular
array and in the Ambisonics format. Three of the datasets are
synthesized with real-life impulse responses, recorded with a
spherical array and encoded into the Ambisonics format. All the
datasets consist of stationary point sources each associated with
a spatial coordinate. The synthesis procedure in all the datasets
consists of mixing isolated sound event instances at different
spatial locations, since this allows producing the reference event
locations and times of activity for evaluation and training of the
methods.

1) TUT Sound Events 2018 - Ambisonic, Anechoic and Syn-
thetic Impulse Response (ANSYN) Dataset: This dataset con-
sists of spatially located sound events in an anechoic environ-
ment synthesized using artificial IRs. It comprises three subsets:
no temporally overlapping sources (O1), maximum two tempo-
rally overlapping sources (O2) and maximum three temporally
overlapping sources (O3). Each of the subsets consists of three
cross-validation splits with 240 training and 60 testing FOA for-
mat recordings of length 30 s sampled at 44100 Hz. The dataset
is generated using the 11 isolated sound event classes from the
DCASE 2016 task 2 dataset [58] such as speech, coughing,
door slam, page-turning, phone ringing and keyboard. Each of
these sound classes has 20 examples, of which 16 are randomly
chosen for the training set and the rest four for the testing set,
amounting to 176 examples from 11 classes for training, and 44
for testing. During synthesis of a recording, a random collection
of examples are chosen from the respective set and are randomly
placed in a spatial grid of 10◦ resolution along azimuth and ele-
vation, such that two overlapping sound events are separated by
10◦, and the elevation is in the range of [−60◦, 60◦). In order to
have a variability of amplitude, the sound events are randomly
placed at a distance ranging from 1 to 10 m with 0.5 m resolu-
tion from the microphone. More details regarding the synthesis
can be found in [25].

2) TUT Sound Events 2018 - Ambisonic, Reverberant and
Synthetic Impulse Response (RESYN) Dataset: This dataset is
synthesized with the same details as the ambisonic ANSYN
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Fig. 2. Recording real-life impulse responses for sound scene generation. A
person walks around the Eigenmike4 holding a Genelec loudspeaker5 playing
a maximum length sequence at different elevation angles and distances.

dataset, with the only difference being that the sound events
are spatially placed within a room using the image source
method [59]. Specifically, the microphone is placed at the center
of the room, and the sound events are randomly placed around
the microphone, with their distance ranging from 1 m from the
microphone to the respective end of the room at 0.5 m res-
olution. The three cross-validation splits of each of the three
subsets O1, O2 and O3 are generated for a moderately rever-
berant room of size 10 × 8 × 4 m (Room 1), with reverberation
times 1.0, 0.8, 0.7, 0.6, 0.5, and 0.4 s per each octave band, and
125 Hz–4 kHz band center frequencies. Additionally, to study
the performance in mismatched reverberant scenarios, testing
splits are generated for two different sized rooms: room 2 that is
80% the volume (8 × 8 × 4 m) and reverberation-time per band
of room 1, and room 3 that is 125% the volume (10 × 10 × 4 m)
and reverberation-time per band of room 1. In order to remove
any ambiguity while comparing the performance difference of
room 1 with room 2 and 3, we keep the sound events and their re-
spective spatial locations in room 2 and 3 identical to the testing
split of room 1. But the individual sound events whose distance
from the microphone exceeded the room size were reassigned a
new distance within the room. Further details on the reverberant
synthesis can be read in [25].

3) TUT Sound Events 2018 - Ambisonic, Reverberant and
Real-life Impulse Response (REAL) Dataset: In order to study
the performance of SELDnet in a real-life scenario, we gen-
erated a dataset by collecting impulse responses from a real
environment using the Eigenmike4 spherical microphone array.
For the IR acquisition, we used a continuous measurement sig-
nal as in [60]. The measurement was done by slowly moving a
Genelec G Two loudspeaker5 continuously playing a maximum
length sequence around the array in circular trajectory in one
elevation at a time, as shown in Fig. 2. The playback volume was
set to be 30 dB greater than the ambient sound level. The record-
ing was done in a corridor inside the university with classrooms
around it.

The moving-source IRs were obtained by a freely available
tool from CHiME challenge [61] which estimates the time-
varying responses in STFT domain by forming a least-squares
regression between the known measurement signal and the far-
field recording independently at each frequency. The IR for
any azimuth within one trajectory can be analyzed by assuming
block-wise stationarity of acoustic channel. The average angular

4https://mhacoustics.com/products
5https://www.genelec.com/home-speakers/g-series-active-speakers

speed of the loudspeaker in the measurements was 6◦/s and we
used a block size of 860 ms (81 STFT frames with analysis frame
size of 1024 with 50% overlap and sample rate Fs = 48 kHz)
for estimation of IR of length 170 ms (16 STFT frames).

The IRs were collected at elevations −40◦ to 40◦ with
10◦ increments at 1 m from the Eigenmike and at eleva-
tions −20◦ to 20◦ with 10◦ increments at 2 m. For the
dataset creation, we analyzed the DOA of each time frame
using MUSIC and extracted IRs for azimuthal angles at 10◦

resolution (36 IRs for each elevation). The IR estimation
tool [61] was applied independently on all 32 channels of the
Eigenmike.

In order to synthesize the sound scene from the estimated
IRs, we used isolated real-life sound events from the urban-
sound8k dataset [62]. This dataset consists of 10 sound event
classes such as: air conditioner, car horn, children playing, dog
barking, drilling, engine idling, gunshot, jackhammer, siren and
street music. Among these, we did not include children play-
ing and air conditioner classes since these can also occur in
our ambiance recording which we use as background recording
in dataset REALBIGAMB (Section III-A5). From the sound
examples in urbansound8k, we only used the ones marked as
foreground in order to have clean isolated sound events. Simi-
larly to the other datasets used in this paper, we used the splits
1, 8 and 9 provided in the urbansound8k as the three cross-
validation splits. These splits were chosen as they had a good
number of examples for all the chosen sound event classes af-
ter selecting only the foreground examples. The final selected
examples varied in length from 100 ms to 4 s and amount to
15671.5 seconds from 4542 examples.

During the sound scene synthesis, we randomly chose a sound
event example and associated it with a random distance among
the collected ones, azimuth and elevation angle. The sound event
example was then convolved with the respective IR for the given
distance, azimuth and elevation to spatially position it. Finally,
after positioning all the sound events in a recording we con-
verted this multichannel audio to FOA format. The transform of
the microphone signals to FOA was performed using the tools
published in [63]. In total, we generated 300 such 30 s record-
ings in a similar fashion as ANSYN and RESYN with 240 of
them earmarked for training and 60 for testing. Similar to the
ANSYN recordings we also generated three subsets O1, O2 and
O3 with a different number of overlapping sound events.

4) TUT Sound Events 2018 - Ambisonic, Reverberant and
Real-life Impulse Response big (REALBIG) Dataset: In order
to study the performance of SELDnet with respect to the size
of the dataset, we generated for each of three ambisonic REAL
subsets a 750 recordings REALBIG subset of 30 s length, with
600 for training and 150 for testing.

5) TUT Sound Events 2018 - Ambisonic, Reverberant, Real-
life Impulse Response and Ambiance big (REALBIGAMB)
Dataset: Additionally, to simulate a real sound-scene we
recorded 30 min of ambient sound to use as background noise
in the same location as the IR recordings without changing the
setup. We mixed randomly chosen segments of the recorded
ambiance at three different SNRs: 0, 10 and 20 dB for each
of the three ambisonic REALBIG subsets and refer to it as
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TABLE III
BASELINE AND PROPOSED METHOD SUMMARY

∗Parametric, all other methods are DNN based

REALBIGAMB subsets. The ambiance used for the testing set
was kept separate from the training set.

6) TUT Sound Events 2018 - Circular array, Anechoic and
Synthetic Impulse Response (CANSYN) Dataset: To study the
performance of SELDnet on generic array configurations, sim-
ilarly to the SELD baseline method [20] (Section III-B3),
we synthesized the ANSYN recordings for a circular array
of radius 5 cm with eight omnidirectional microphones at
0, 45, 90, 135, 180, 225, 270, 315◦, and the array plane parallel
to the ground, and refer to it as CANSYN. It is an exact replica
of the ANSYN dataset in terms of the synthesized sound events
except for the microphone array setup, and hence the number of
channels. Similar to ANSYN, the CANSYN dataset has three
subsets with a different number of overlapping sound events
each with three cross-validation splits.

7) TUT Sound Events 2018 - Circular array, Reverberant
and Synthetic Impulse Response (CRESYN) Dataset: Similar to
the CANSYN dataset, we synthesize the circular array version
of ambisonic RESYN room 1 dataset, referred as CRESYN.
During synthesis, the circular microphone array is placed in the
center of the room, and the array plane parallel to the floor.

B. Baseline Methods

The SELDnet is compared with six different baselines as
summarized in Table III: two SED baselines (single- and mul-
tichannel), three DOA baselines (parametric and DNN-based),
and a SELD baseline.

1) SED Baseline: The SED capabilities of the proposed
SELDnet is compared with the existing state-of-the-art mul-
tichannel SED method [39], referred here as MSEDnet. MSED-
net is easily scalable to any number of input audio channels and
won [38] the recently concluded real-life SED task in DCASE
2017 [64]. In particular, it won the top two positions among 34
submissions, first using single-channel mode (referred as SED-
net) and a close second using multichannel mode. The SED
performance of SELDnet is compared with both the single- and
the multichannel modes of MSEDnet.

In the original MSEDnet implementation [39] the input is a
sequence of log mel-band energy (40-bands) frames, that are
mapped to an equal-length sequence of sound event activities.
The SED metrics (Section III-C) for MSEDnet did not change
much on using phase and magnitude components of the STFT
spectrogram instead of log mel-band energies. Hence, in order
to have a one-to-one comparison with SELDnet, we use the

phase and magnitude components of the STFT spectrogram for
MSEDnet in this paper. We train the MSEDnet for 500 epochs
and use early stopping when SED score (Section III-C) stops
improving for 100 epochs.

2) DOA Baseline: The DOA estimation performance of the
SELDnet is evaluated with respect to three baselines. As a para-
metric baseline, we use MUSIC [46] and as DNN-based base-
lines, we use the recently proposed DOAnet [25] that estimates
DOAs in 3D and [18] that estimates only the DOA azimuth
angle referred as AZInet.

i) MUSIC: is a versatile high-resolution subspace method
that can detect multiple narrowband source DOAs and can be
applied to generic array setups. It is based on a subspace de-
composition of the spatial covariance matrix of the multichannel
spectrogram. For a broadband estimation of DOAs, we combine
narrowband spatial covariance matrices over three frames and
frequency bins from 50 to 8000 Hz. The steering vector infor-
mation required to produce the MUSIC pseudo-spectrum from
which the DOAs are extracted is adapted to the recording sys-
tem under use, meaning uniform circular array steering vectors
for CANSYN and CRESYN datasets, and real SH vectors for
all the other ambisonic datasets.

MUSIC requires a good estimate of the number of active
sound sources in order to estimate their DOAs. In this paper,
we use MUSIC with the number of active sources taken from
the reference of the dataset. Hence, the DOA estimation results
of MUSIC can be considered as the best possible for the given
dataset and serve as a benchmark for DOA estimation with and
without the knowledge of the number of active sources. For a
detailed description on MUSIC and other subspace methods,
the reader is referred to [65], while for application of MUSIC
to SH signals similar to this work, please refer to [66].

ii) DOAnet: Among the recently proposed DNN-based DOA
estimation methods listed in Table I, the only method that at-
tempts DOA estimation of multiple overlapping sources in 3D
space is the DOAnet [25]. Hence, DOAnet serves as a suitable
baseline to compare against the DOA estimation performance
of the proposed SELDnet. DOAnet is based on a similar CRNN
architecture, the input to which is a sequence of multichannel
phase and magnitude spectrum frames. It considers DOA esti-
mation as a multi-label classification task by directional sam-
pling with a resolution of 10◦ along azimuth and elevation and
estimating the likelihood of a sound source being active in each
of these points.

iii) AZInet: Among the DOA-only estimation methods listed
in Table I, apart from the DOAnet [25], methods [18] and [4] are
the only ones which attempt simultaneous DOA estimation of
overlapping sources. Since [4] is evaluated on a dataset collected
using microphones mounted on a humanoid robot, it is difficult
to replicate the setup. Hence in this paper, we use the AZInet
evaluated on a linear array in [18] as the baseline. The AZInet
is a CNN-based method that uses the phase component of the
spectrogram of each channel as input, and maps it to azimuth
angles in the range 0◦ to 180◦ at 5◦ resolution as a multi-label
classification task. AZInet uses only the phase spectrogram since
the dataset evaluated on employs omnidirectional microphones,
which for compact arrays and sources in the far-field, preserve
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directional information in inter-channel phase differences. Thus,
although the evaluation in [18] was carried out on a linear array,
the method is generic to any omnidirectional array under these
conditions. Further, in order to have a direct comparison, we
extend the output of AZInet to full-azimuth with 10◦ resolution
and reduce the output of SELDnet to generate only the azimuth,
i.e., we only estimate x and y coordinates of the DOA (SELDnet-
azi). To enable this full-azimuth estimation we use the circular
array with omnidirectional microphones datasets CANSYN and
CRESYN.

3) SELD Baseline (HIRnet): The joint SED and DOA esti-
mation performance of SELDnet is compared with the method
proposed by Hirvonen [20], hereafter referred to as HIRnet.
The HIRnet was proposed for a circular array of omnidirec-
tional microphones, hence we compare its performance only on
the CANSYN and CRESYN datasets. HIRnet is a CNN-based
network that uses the log-spectral power of each channel as the
input feature and maps it to eight angles in full azimuth for each
of the two classes (speech and music) as a multi-label classifi-
cation task. More details about HIRnet can be found in [20]. In
order to have a direct comparison with SELDnet-azi, we extend
HIRnet to estimate DOAs at a 10◦ resolution for each of the
sound event classes in our testing datasets.

C. Evaluation Metrics

The proposed SELDnet is evaluated using individual metrics
for SED and DOA estimation. For SED, we use the standard
polyphonic SED metrics, error rate (ER) and F-score calculated
in segments of one second with no overlap as proposed in [67],
[68]. The segment-wise results are obtained from the frame-level
predictions of the classifier by considering the sound events to
be active in the entire segment if it is active in any of the frames
within the segment. Similarly, we obtain labels for one-second
segments of reference from its frame-wise annotation, and cal-
culate the segment-wise ER and F-scores. Mathematically, the
F-score is calculated as follows:

F =
2 · ∑K

k=1 TP (k)

2 · ∑K
k=1 TP (k) +

∑K
k=1 FP (k) +

∑K
k=1 FN(k)

,

(1)

where the number of true positives TP (k) is the total number
of sound event classes that were active in both reference and
predictions for the kth one-second segment. The number of
false positives in a segment FP (k) is the number of sound event
classes that were active in the prediction but were inactive in the
reference. Similarly, FN(k) is the number of false negatives,
i.e. the number of sound event classes inactive in the predictions
but active in the reference.

The ER metric is calculated as

ER =
∑K

k=1 S(k) +
∑K

k=1 D(k) +
∑K

k=1 I(k)
∑K

k=1 N(k)
, (2)

where, for each one-second segment k, N(k) is the total number
of active sound event classes in the reference. Substitution S(k)
is the number of times an event was detected but given the wrong
level, this is obtained by merging the false negatives and false
positives without individually correlating which false positive

substitutes which false negative. The remaining false positives
and false negatives, if any, are counted as insertions I(k) and
deletions D(k) respectively. These statistics are mathematically
defined as follows:

S(k) = min (FN(k), FP (k)), (3)

D(k) = max (0, FN(k) − FP (k)), (4)

I(k) = max (0, FP (k) − FN(k)). (5)

An SED method is jointly evaluated using the F-score and
ER metric, and an ideal method will have an F-score of one
(reported as percentages in Table) and ER of zero. More details
regarding the F-score and ER metric can be read in [67], [68].

The predicted DOA estimates (xE , yE , zE ) are evaluated
with respect to the reference (xG , yG , zG ) used to synthesize
the dataset, utilizing the central angle σ ∈ [0, 180]. The σ is the
angle formed by (xE , yE , zE ) and (xG , yG , zG ) at the origin in
degrees, and is given by

σ = 2 · arcsin

(√
Δx2 + Δy2 + Δz2

2

)

· 180
π

, (6)

where, Δx = xG − xE , Δy = yG − yE , and Δz = zG − zE .
The DOA error for the entire dataset is then calculated as

DOAerror =
1
D

·
D∑

d=1

σ
((

xd
G , yd

G , zd
G

)
,
(
xd

E , yd
E , zd

E

))
(7)

where D is the total number of DOA estimates across the entire
dataset, and σ((xd

G , yd
G , zd

G ), (xd
E , yd

E , zd
E )) is the angle between

d-th estimated and reference DOAs.
Additionally, in order to account for time frames where the

number of estimated and reference DOAs are unequal, we report
the frame recall, calculated as TP/(TP + FN) in percentage,
where true positives TP is the total number of time frames in
which the number of DOAs predicted is equal to reference, and
false negatives FN is the total number of frames where the
predicted and reference DOA are unequal.

The DOA estimation method is jointly evaluated using the
DOA error and the frame recall, and an ideal method has a
frame recall of one (reported as percentages in Table) and DOA
error of zero.

During the training of SELDnet, we perform early stopping
based on the combined SELD score calculated as

SELD score = (SED score + DOAscore)/2, (8)

where

SED score = (ER + (1 − F ))/2, (9)

DOAscore = (DOAerror/180 + (1 − frame recall)) /2,
(10)

and an ideal SELD method will have an SELD score of zero. In
the proposed method, the localization performance is dependent
on the detection performance. This relation is represented by
the frame recall metric of DOA estimation. As a consequence,
the SELD score which is comprised of frame recall metric in
addition to the SED metrics can be seen to weigh the SED
performance more than DOA.
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D. Experiments

The SELDnet is evaluated in different dimensions to under-
stand its potential and drawbacks. The experiments carried out
with different datasets in this regard are explained below.

1) SELDnet Architecture and Model Parameter Tuning: A
wide variety of architectures with different combinations of
CNN, RNN and FC layers are explored on the ANSYN O2
subset with frame length M = 1024 (23.2ms). Additionally,
for each architecture, we tune the model parameters such as the
number of CNN, RNN, and FC layers (0 to 4) and nodes (in the
set of [16, 32, 64, 128, 256, 512]). The input sequence length is
tuned in the set of [32, 64, 128, 256, 512], the DOA and SED
branch output loss weights in the set of [1, 5, 50, 500], the regu-
larization (dropout in the set of [0, 0.1, 0.2, 0.3, 0.4, 0.5], L1 and
L2 in the set of [0, 10−1 , 10−2 , 10−3 , 10−4 , 10−5 , 10−6 , 10−7 ])
and the CNN max-pooling in the set of [2, 4, 6, 8, 16] for each
layer. The best set of parameters are the ones which give the low-
est SELD score on the three cross-validation splits of the dataset.
After finding the best network architecture and configuration,
we tune the input audio feature parameter M by varying it in the
set of [512, 1024, 2048]. Simultaneously the sequence length is
also changed with respect to M such that the input audio length
is kept constant (1.49 s obtained from the first round of tuning).
We perform fine-tuning of model parameters for different M
and sequence length values, this time only the number of CNN,
RNN and FC nodes are tuned in a small range (neighboring
nodes in the set of [16, 32, 64, 128, 256, 512]) to identify the
optimum parameters. Similar fine-tuning is repeated for other
datasets.

2) Selecting SELDnet Output Format: The output format for
polyphonic SED in the literature has become standardized to es-
timating the temporal activity of each sound class using frame-
wise binary numbers [31]–[34]. On the other hand, the output
formats for DOA estimation are still being experimented with
as seen in Table I. Among the DOA estimation methods using
regression mode, there are two possible output formats, predict-
ing azimuth and elevation, and predicting x, y, z coordinates of
the DOA on the unit sphere. In order to identify the best output
format among these two, we evaluate the SELDnet for both.
During this evaluation, only the output weight parameter of the
model is fine-tuned in the set of [1, 5, 50, 500]. Additionally,
for a regression-based model, the default output i.e. the DOA
target when the event is not active should be chosen carefully.
In this study, we chose the default DOA output to be 180◦ in
azimuth and 60◦ in elevation (the datasets do not contain sound
events for these DOA values), and x = 0, y = 0 and z = 0 for
default Cartesian outputs. The chosen default Cartesian coordi-
nates are equidistant from all the possible DOA values. On the
other hand, there are no such equidistant azimuth and elevation
values. Hence we chose the default values (180◦, 60◦) to be in a
similar range as the true DOA values.

3) Continuous DOA Estimation and Performance on Unseen
DOA Values: Theoretically, the advantage of using a regression-
based DOA estimator over a classification-based one is that the
network is not limited to a set of DOA angles, but it can operate
as a high-resolution continuous DOA estimator. To study this,

we train the SELDnet on ANSYN subsets whose sound events
are placed on an angular grid of 10◦ resolution along azimuth
and elevation, and test the model on a dataset where the angular
grid is shifted by 5◦ along azimuth and elevation while keeping
the temporal location unchanged. This shift makes the DOA
values of the testing split unseen, and correctly predicting the
DOAs will prove that the regression model can estimate the
DOAs in a continuous space. Additionally, it also proves the
robustness of the SELDnet to predict unseen DOA values.

4) Performance on Mismatched Reverberant Dataset: Para-
metric DOA estimation methods are known to be sensitive to
reverberation [48]. In this regard, we first evaluate the perfor-
mance of SELDnet on the simulated (RESYN), and real-life
(REAL, REALBIG, and REALBIGAMB) reverberant datasets
and further compare the results with the parametric baseline
MUSIC.

DNN based methods are known to fail when the training and
testing splits come from different domains. For example, the per-
formance of a DNN trained on anechoic dataset would be poor
on a reverberant testing dataset. This performance can only be
improved by training the DNN on a similar reverberant dataset
as the testing dataset. On the other hand, it is impractical to train
such a DNN for every existing room-dimension, its surface ma-
terial distribution, and the reverberation times associated with it.
In this regard, it would be ideal if the proposed method is robust
to a moderate mismatch in reverberant conditions so that a single
model can be used for a range of comparable room configura-
tions. Motivated by this, we study the sensitivity of SELDnet on
moderately mismatched reverberant data. Specifically, we train
the SELDnet with RESYN room 1 dataset and test it on RESYN
room 2 and 3 datasets that are mismatched in terms of volume
and reverberation times as described in Section III-A2.

5) Performance on the Size of the Dataset: We study the per-
formance of SELDnet on two datasets, REAL, and REALBIG
that are similar in content, but different in size.

6) Performance with Ambiance at Different SNR: The per-
formance of SELDnet with respect to different SNRs (0, 10 and
20 dB) of the sound event is studied on the REALBIGAMB
dataset.

7) Generic to Array Structure: SELDnet is a generic method
that learns to localize and recognize sound events from any ar-
ray structure. This additionally implies that the SELDnet will
continue to work in the desired manner if the configuration of
the array such as individual microphone response, microphone
spacing and the number of microphones remains the same be-
tween the training and testing set. If the array configuration
changes between the training and testing set, then the SELDnet
will have to be retrained for the new array configuration.

In order to prove that the SELDnet is applicable to any array
configuration and not just dependent on the Ambisonics format,
SELDnet is evaluated on a circular array. In comparison to
the Ambisonic format, the chosen circular array has a different
number of microphones, each placed on a single plane, and with
an omnidirectional response. Further, we compare the SELDnet
performance with dataset compatible baselines such as SEDnet,
MSEDnet, HIRnet, and AZInet. Since the HIRnet and AZInet
baselines methods are proposed for estimating azimuth only, we
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Fig. 3. SELD score for ANSYN O2 dataset for different CNN, RNN and
CRNN architecture configurations.

Fig. 4. SELD score for ANSYN datasets for different combinations of FFT
length and input sequence length in frames.

compare the results with the SELDnet-azi version. Additionally,
we also report the performance of using SELDnet with DOA
estimation in x, y, z axis on CANSYN and CRESYN datasets.

In general, for all our experiments the only difference be-
tween the training and testing splits is the mutually exclusive
set of sound examples. Apart from experiment III-D3 the train-
ing and testing splits contains the same set of spatial locations
i.e., azimuth and elevation angles at 10◦ resolution amounting
to 468 spatial locations (= 36 azimuth angles * 13 elevation
angles). But the distance of the sound event at each of this 468
spatial locations is an added variable. For example, in the ane-
choic case, a sound event can be placed anywhere between 1-10
m at 0.5 m resolution. This variable amounts to 8892 spatial lo-
cations (= 468 * 19 distance positions) that are being coarsely
grouped to 468 locations. This complexity is stretched further in
experiment III-D3 where the testing split sound event examples
and their spatial locations both are different from the training
split.

IV. RESULTS AND DISCUSSION

1) SELDnet Architecture and Model Parameter Tuning: The
SELD scores obtained with hyper-parameter tuning of different
CNN, RNN, and CRNN configurations as explained in Sec-
tion III-D1 are visualized with respect to the number of model
parameters in Fig. 3. CNN in this figure refers to a SELDnet
architecture which had no RNN layers but just CNN and FC
layers. Similarly, RNN refers to SELDnet without CNN layers,
while CRNN refers to SELDnet with CNN, RNN and FC layers.
This experiment was carried out on ANSYN O2 dataset. The
CRNN architecture was seen to perform the best followed by
the RNN architecture.

The optimum model parameters across the ANSYN subsets
after hyper-parameter tuning the CRNN architecture was found
to have three layers of CNN with 64 nodes each (P in Fig. 1(a)),

Fig. 5. SELD score for ANSYN datasets with respect to different weights for
DOA output.

Fig. 6. SELD score for ANSYN datasets with respect to DOA output formats.

followed by two layers of GRU with 128 nodes each (Q in
Fig. 1(a)), and one FC layer with 128 nodes (R in Fig. 1(a)).
The max-pooling over frequency after each of the three CNN
layers (MPi in Fig. 1(a)) was (8, 8, 2). This configuration had
about 513,000 parameters.

Further, the SELDnet was seen to perform best with no reg-
ularization (dropout, or L1 or L2 regularization of weights). A
frame length of M = 512 and sequence length of 256 frames
was seen to give the best results across ANSYN subsets (Fig. 4).
Furthermore, on tuning the sequence length with frame length
fixed (M = 512), the best scores were obtained using 512
frames (2.97 s). Sequences longer than this could not be studied
due to hardware restrictions. For the output weights, DOA out-
put weighted 50 times more than SED output was seen to give
the best results across subsets (Fig. 5).

On fine-tuning the SELDnet parameters obtained with AN-
SYN dataset for RESYN subsets, the only parameter that helped
improve the performance was using a sequence length of 256
instead of 512, leaving the total number of network parame-
ters unchanged at 513,000. Similar configuration gave the best
results for CANSYN and CRESYN datasets.

Model parameters identical to ANSYN dataset were observed
to perform the best on the REAL subsets. The same parameters
were also used for the study of REALBIG and REALBIGAMB
subsets.

2) Selecting SELDnet Output Format: In the output data for-
mats study, it was observed that using the Cartesian x, y, z for-
mat in place of azimuth/elevation angle was truly helping the
network learn better across datasets as seen in Fig. 6. This sug-
gests that the discontinuity at the angle wrap-around boundary
actually reduces the performance of DOA estimation and hence
the SELD score.

3) Continuous DOA Estimation and Performance on Unseen
DOA Values: The input and outputs of SELDnet trained on
ANSYN O1 and O2 subsets for a respective 1000 frame test
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Fig. 7. SELDnet input and outputs visualized for ANSYN O1 and O2 datasets. The horizontal-axis of all sub-plots for a given dataset represents the same time
frames, the vertical-axis for spectrogram sub-plot represents the frequency bins, vertical-axis for SED reference and prediction sub-plots represents the unique
sound event class identifier, and for the DOA reference and prediction sub-plots, it represents the distance from the origin along the respective axes. The bold lines
visualize both the reference labels and predictions of DOA and SED for ANSYN O1 and O2 datasets, while the × markers in Fig. 7(a) visualize the results for
testing split with unseen DOA values (shifted by 5◦ along azimuth and elevation).

sequence are visualized in Fig. 7. The Figure represents each
sound event class and its associated DOA outputs with a unique
color. In the case of ANSYN O1, we see that the network predic-
tions of SED and DOA are almost perfect. In the case of unseen
DOA values (× markers), the network predictions continue to
be accurate. This shows that the regression mode output format
helps the network learn continuous DOA values, and further that
the network is robust to unseen DOA values. In case of ANSYN
O2, the SED predictions are accurate, while the DOA estimates,
in general, are seen to vary around the respective mean reference
value. In this work, the DOA and SED labels for a single sound
event instance are considered to be constant for the entire dura-
tion even though the instance has inherent magnitude variations
and silences within. From Fig. 7(b) it seems that these vari-
ations and silences are leading to fluctuating DOA estimates,
while the SED predictions are unaffected. In general, we see
that the proposed method successfully recognizes, localizes in
time and space, and tracks multiple overlapping sound events
simultaneously.

Table IV presents the evaluation metric scores for the SELD-
net and the baseline methods with ANSYN and RESYN
datasets. In the SED metrics for the ANSYN datasets, the SELD-
net performed better than the best baseline MSEDnet for O1
subset while MSEDnet performed slightly better for O2 and O3
subsets. With regard to DOA metrics, the SELDnet is signifi-
cantly better than the baseline DOAnet in terms of frame recall.
This improvement in frame recall is a direct result of using SED
output as a confidence measure for estimating DOA, thereby ex-
tending state-of-the-art SED performance to SELD. Although
the frame recall of DOAnet is poor, its DOA error for O1 and
O2 subsets is observed to be lower than SELDnet. The DOA
error of the parametric baseline MUSIC with the knowledge of
the number of sources is seen to be the best among the evaluated
methods for O2 and O3 subsets.

4) Performance on Mismatched Reverberant Dataset: From
Table IV results on RESYN room 1 subsets, we see that the per-
formance of parametric method MUSIC is poor in comparison

to SELDnet in reverberant conditions. The SELDnet is seen to
perform significantly better than the baseline DOAnet in terms
of frame recall, although the DOAnet has lower DOA error for
O1 and O2 subsets. The SED metrics of SELDnet are compara-
ble if not better than the best baseline performance of MSEDnet.
Further, on training the SELDnet on room 1 dataset and testing
on moderately mismatched reverberant room 2 and 3 datasets
the SED and DOA metric trends remain similar to the results
of room 1 testing split. That is, the SELDnet has higher frame
recall, the DOAnet has better DOA error, the MUSIC performs
poorly, and the SED metrics of SELDnet are comparable to
MSEDnet. These results prove that the SELDnet is robust to
reverberation in comparison to baseline methods and performs
seamlessly on moderately mismatched room configurations.

Fig. 8 visualizes the confusion matrices for the estimated
number of sound event classes per frame by SELDnet. For ex-
ample in Fig. 8(c) the SELDnet correctly estimated the number
of sources to be two in 76% (true positive percentage) of the
frames which had two sources in the reference. In context, the
frame recall value used as a metric to evaluate DOA estimation
represents this confusion matrix in one number. From the con-
fusion matrices, we observe that the percentage of true positives
drops with higher number of sources, and this drop is even more
significant in the reverberant scenario. But, in comparison to
the frame recall metric of the baseline DOAnet in Table IV,
the SELDnet frame recall is significantly better for higher num-
ber of overlapping sound events, especially in the reverberant
conditions.

5) Performance on the Size of the Dataset: The overall per-
formance of SELDnet on REAL dataset (Table V) reduced
in comparison to ANSYN and RESYN datasets. The baseline
MSEDnet is seen to perform better than SELDnet in terms of
SED metrics. Similar performance drop on real-life datasets has
also been reported on SED datasets in other studies [37]. With
regard to DOA metrics, the frame recall of SELDnet continues
to be significantly better than DOAnet, while the DOA error of
DOAnet is lower than SELDnet. The performance of MUSIC is
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TABLE IV
SED AND DOA ESTIMATION METRICS FOR ANSYN AND RESYN DATASETS. THE RESULTS FOR THE RESYN ROOM 2 AND 3 TESTING SPLITS WERE OBTAINED

FROM CLASSIFIERS TRAINED ON RESYN ROOM 1 TRAINING SET. BEST SCORES FOR SUBSETS IN BOLD

Fig. 8. Confusion matrix for the number of sound event classes estimated
to be active per frame by the SELDnet for ANSYN and RESYN datasets. The
horizontal axis represents the SELDnet estimate, and the vertical axis represents
the reference.

seen to be poor in comparison to both DOAnet and SELDnet.
With the larger REALBIG dataset the SELDnet performance
was seen to improve. A similar study was done with larger AN-
SYN and RESYN datasets, where the results were comparable
with that of smaller datasets. This shows that the datasets with
real-life IR are more complicated than synthetic IR datasets, and
having larger real-life datasets helps the network learn better.

6) Performance with Ambiance at Different SNR: In pres-
ence of ambiance, SELDnet was seen to be robust for 10 and

20 dB SNR REALBIGAMB datasets (Table V). In comparison
to the SED metrics of REALBIG dataset with no ambiance, the
SELDnet performance on O1 subsets of 10 dB and 20 dB am-
biance is comparable, while a small drop in performance was
observed with the respective O2 and O3 subsets. Whereas, the
performance was seen to drop considerably for the 0 dB SNR
dataset. With respect to DOA error, the SELDnet performed bet-
ter than MUSIC but poorer than DOAnet across datasets, on the
other hand, SELDnet gave significantly higher frame recall than
DOAnet. From the insight of SELDnet performance on REAL
dataset (Section IV), the more complex the acoustic scene the
larger the dataset size required to learn better. Considering that
the SELDnet is jointly estimating the DOA along with SED
in a challenging acoustic scene with ambiance the SELDnet
performance can potentially improve with larger datasets.

7) Generic to Array Structure: The results on circular array
datasets are presented in Table VI. With respect to SED metrics,
the SELDnet-azi performance is seen to be better than the best
baseline MSEDnet for all subsets of CRESYN dataset, while
MSEDnet is seen to perform better for O2 and O3 subsets
of CANSYN dataset. Similarly, in the case of DOA metrics,
the SELDnet-azi has better frame recall than the best base-
line method AZInet across datasets (except for CANSYN O1).
Whereas, AZInet has lower DOA error than SELDnet-azi. Be-
tween SELDnet and SELDnet-azi, even though the frame recall
is in the same order the DOA error of SELDnet-azi are lower
than SELDnet. This shows that estimating DOA in 3D (x, y, z)
is challenging using a circular array. Overall, the SELDnet is
shown to perform consistently across different array structures
(Ambisonic and circular array), with good results in comparison
to baselines.

The usage of SED output as a confidence measure for es-
timating the number of DOAs in the proposed SELDnet is
shown to improve the frame recall significantly and consis-
tently across the evaluated datasets. On the other hand, the DOA
error obtained with SELDnet is consistently higher than the
classification based baseline DOA estimation methods [18],
[25]. We believe that this might be a result of the regression-
based DOA estimation approach in SELDnet not having com-
pletely learned the full mapping between input feature and
the continuous DOA space. The investigation of which is
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TABLE V
SED AND DOA ESTIMATION METRICS FOR REAL, REALBIG AND REALBIGAMB DATASETS. BEST SCORES FOR SUBSETS IN BOLD

TABLE VI
SED AND DOA ESTIMATION METRICS FOR CANSYN AND CRESYN

DATASETS. BEST SCORES FOR SUBSETS IN BOLD

planned for future work. In general, a classification only or
a classification-regression based SELD approach can be chosen
based on the required frame recall, DOA error, resolution of
DOA labels, training split size, and robustness to unseen DOA
values and reverberation.

V. CONCLUSION

In this paper, we proposed a convolutional recurrent neural
network (SELDnet) to simultaneously recognize, localize and
track sound events with respect to time. The localization is done
by estimating the direction of arrival (DOA) on a unit sphere
around the microphone using 3D Cartesian coordinates. We tie
each sound event output class in the SELDnet to three regres-
sors to estimate the respective Cartesian coordinates. We show
that using regression helps estimating DOA in a continuous
space, and also estimating unseen DOA values accurately. On
the other hand, estimating a single DOA for each sound event
class does not allow recognizing multiple instances of the same
class overlapping. We plan to tackle this problem in our future
work.

The usage of SED output as a confidence measure to estimate
DOA was seen to extend the state-of-the-art SED performance

to SELD resulting in a higher recall of DOAs. With respect
to the estimated DOA error, although the classification based
baseline methods had poor recall they had lower DOA error in
comparison to the proposed regression based DOA estimation.
The proposed SELDnet uses phase and magnitude spectrogram
as the input feature. The usage of such non-method-specific
feature makes the method generic and easily extendable to dif-
ferent array structures. We prove this by evaluating on datasets
of Ambisonic and circular array format. The proposed SELDnet
is shown to be robust to reverberation, low SNR scenarios and
unseen rooms with comparable room-sizes. Finally, the over-
all performance on dataset synthesized using real-life impulse
response (IR) was seen to drop in comparison to artificial IR
dataset, suggesting the need for larger real-life training datasets
and more powerful classifiers in future.
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