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Abstract—Room Impulse Responses (RIRs) are typically mea-
sured using a set of microphones and a loudspeaker. When RIRs
spanning a large volume are needed, many microphone measure-
ments must be used to spatially sample the sound field. In order
to reduce the number of microphone measurements, RIRs can
be spatially interpolated. In the present study, RIR interpolation
is formulated as an inverse problem. This inverse problem relies
on a particular acoustic model capable of representing the mea-
surements. Two different acoustic models are compared: the plane
wave decomposition model and a novel time-domain model, which
consists of a collection of equivalent sources creating spherical
waves. These acoustic models can both approximate any rever-
berant sound field created by a far-field sound source. In order
to produce an accurate RIR interpolation, sparsity regularization
is employed when solving the inverse problem. In particular, by
combining different acoustic models with different sparsity pro-
moting regularizations, spatial sparsity, spatio-spectral sparsity,
and spatio-temporal sparsity are compared. The inverse problem
is solved using a matrix-free large-scale optimization algorithm.
Simulations show that the best RIR interpolation is obtained when
combining the novel time-domain acoustic model with the spatio-
temporal sparsity regularization, outperforming the results of the
plane wave decomposition model even when far fewer microphone
measurements are available.

Index Terms—Inverse problems, large scale optimization, mi-
crophone array, room impulse response, sparse sensing.
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I. INTRODUCTION

ROOM Impulse Responses (RIRs) play a fundamental role
in room acoustics. They not only provide useful parame-

ters that describe sound fields qualitatively, such as reverberation
time or clarity, but also their knowledge is fundamental in
many applications such as channel equalization and sound field
reproduction. A RIR between two points in a room is typically
measured by generating a deterministic signal, e.g., a sine
sweep, using a loudspeaker at one point and recording the sound
pressure with a microphone at the other point [1], [2]. Measuring
RIRs over a large volume can be a tedious and time-consuming
task unless many microphones or a moving microphone [3] are
available. Typically, one has to repeat the measurement multiple
times for all the source and microphone positions of interest. In
order to avoid this, an alternative lies in the spatial interpolation
of the measured RIRs to obtain estimates of the RIRs at posi-
tions where no microphone measurements are available. In [4]
the space-time spectrum of the plenacoustic function is studied.
In practice, the plenacoustic function represents the collection
of all the RIRs associated with a room as a function of space
and time. It is shown that the plenacoustic function space-time
spectrum is band limited, implying that the Nyquist sampling
theorem can be applied. This spatio-temporal interpolation
however still requires many microphone measurements. For
example, if a 3-dimensional uniform microphone array is used,
the RIRs between the microphones can be interpolated if the
microphone measurements are spaced by the distance

X <
c

2Fu
, (1)

where Fu is the cut-off frequency in Hz of the sound source
generating the sound field. Here c represents the speed of sound
for which in this paper 343 m/s is used.

In general, it is necessary to seek a milder criterion than that
given by the Nyquist sampling theorem. Compressed Sensing
(CS) represents such an alternative [5]: this framework consists
of solving optimization problems where the lack of information
due to a limited number of available measurements is compen-
sated for by exploiting prior knowledge. In particular, in CS this
prior knowledge consists of the fact that the sought solution is
sparse. In this context, CS represents a particular case of an
inverse problem. As a matter of fact, inverse problems also seek
for variables that are not directly measurable [6]. Inverse prob-
lems rely on describing the physical phenomenon under study
using a model that is partially unknown. These problems are in
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general ill-posed, which implies that meaningful solutions can
only be obtained when the inverse problem is regularized us-
ing a specific prior knowledge. As in CS, inverse problems are
posed as optimization problems and the CS framework in fact
represents an inverse problem posed with a sparsity promoting
regularization.

RIR interpolation has been posed in a wide variety of fash-
ions: different acoustic models have been used, each one having
its own specific parameters to estimate, and different algorithms
have been used to solve the underlying optimization problems.
For example, in [7]–[9] RIR interpolation is achieved by solving
a classical inverse problem where the acoustic impedances of
the walls are the parameters to be estimated. It is assumed that
the geometry of the room is known and the wave equation is dis-
cretized using wave-based numerical methods such as the Finite
Difference Time-Domain (FDTD) method [8], [9] or the Bound-
ary Element Method (BEM) [7]. The acoustic impedance of the
walls is reconstructed by solving a non-convex optimization
problem. Once the acoustic properties of the walls are deter-
mined, the RIRs can be generated at every position of the room
using the underlying wave-based numerical method. Neverthe-
less, these wave-based numerical methods suffer from numerical
errors and are only accurate at low frequencies [10]. Moreover,
they require a precise knowledge of the room geometry and lead
to non-convex optimization problems.

Other approaches that do not require the knowledge of the
room geometry have been proposed. For example many ap-
proaches rely on a spatial parametrization of the sound field,
obtained as well from physical models, i.e., from the spherical
harmonic solutions of the wave equation [11]–[14]. The main
idea is to extrapolate a finite set of parameters out of the mea-
sured RIRs such that the parametrization allows the sound field
to be predicted at positions where no microphone measurement
was made. Such a parametrization is strongly linked to another
widely used acoustic model, the Plane Wave Decomposition
Method (PWDM). In [15] it is shown that, as in the case of
spherical harmonics, an acoustic sound field can be correctly
approximated using a finite number of plane waves indepen-
dently of the boundaries. Based on this theoretical result, many
authors have chosen the PWDM as their acoustic model. For
example, in [16] the room modes are identified using common
acoustical poles techniques and then reconstructed using the
PWDM using a fixed number of plane waves. Still in [16], alter-
natively a limited number of damped plane waves is chosen out
of a large dictionary of damped plane waves using a greedy op-
timization algorithm. A similar technique is used in [17], where
for each frequency an optimization problem is solved in order
to find a sparse set of plane waves from a large dictionary that
can interpolate the RIRs needed for multi-zone sound field re-
production. A different acoustic model is used in [18] where
a wide-band RIR interpolation of the early part of the RIRs is
performed. Here the sound field is modeled using the Image
Method (IM) [19]. This inverse problem can be seen as to a
localization problem: if the location of the image sources can be
found, the sound field can be reconstructed. Inverse problems
appear also in the acoustic holography field. Here yet another
acoustic model of importance is the Equivalent Source Method

(ESM), which consists of a collection of equivalent sources
generating spherical waves [20]–[22].

These techniques and acoustic models are very much related
to those used in sound field reproduction, for example Wave
Field Synthesis (WFS) [23], the Spatial Decomposition Method
(SDM) [24], and Pressure Matching (PM) [25], [26] where spar-
sity promoting regularizations have been used as well [27], [28].
While the aim of these methods is to reproduce a sound field,
RIR interpolation techniques seek to estimate the sound field
and require different treatments and formulations.

In many of these contexts, inverse problems lead to large
scale optimization problems hence requiring specific optimiza-
tion algorithms. For example, in [18] and [16], the optimization
problems are solved using greedy algorithms, specifically with a
modified version of Matching Pursuit (MP). An alternative way
of solving large scale problems relies on first-order optimiza-
tion algorithms, where matrix inversions are avoided. The most
well-known first-order optimization algorithm is the gradient
descent algorithm, which exhibits a low convergence rate and
is not well suited for non-smooth cost functions that typically
appear with sparsity promoting regularizations. Recent interest
in large scale optimization problems has led to the development
of accelerated first-order optimization algorithms which enjoy
faster convergence and can deal with non-smooth cost functions.
A successful family of first-order algorithms is referred to as
Forward-Backward Splitting (FBS) also known as the proximal
gradient method [29]. These algorithms have recently been sub-
stantially accelerated using quasi-Newton methods [30], [31].
An important aspect of large scale problems is the memory
requirement which can easily become prohibitive. Matrix-free
optimization avoids the storage of large matrices through the
usage of the adjoint operators [32], [33].

In this paper a novel method for RIR interpolation is proposed.
A time-domain acoustic model called Time-domain Equivalent
Source Method (TESM) is described, which is a modified time-
domain version of the ESM. This acoustic model is used to
approximate the sound field in a source-free volume. The main
differences with respect to ESM are that the source signal can
be included in the model to improve RIR interpolation and that
the formulation is in the time-domain, which allows spatio-
temporal sparsity regularization to be applied. Due to the large
number of equivalent sources the optimization problem becomes
large-scale and the computational aspect becomes relevant. In
particular matrix-free optimization is used in order to reduce
the memory requirement and the algorithm proposed in [31] is
used to speed up the convergence. The spatio-temporal spar-
sity regularization is compared with other regularizations: it is
shown that when using the PWDM in the inverse problem, it
is possible to impose either spatial sparsity or spatio-spectral
sparsity, with the former being a better choice. Still, numerical
simulations show that the choice of promoting spatio-temporal
sparsity with TESM always outperforms the RIR interpolation
obtained with PWDM and leads to a significant decrease in the
number of microphone measurements required. In this study
RIR interpolation is limited to the far-field case.

The paper is organized as follows: in Sections II and III
the PWDM and the novel TESM are presented respectively. In
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Section IV, these acoustic models are used in the inverse prob-
lems that rely on different regularizations involving a sparse rep-
resentation: spatial sparsity, spatio-spectral sparsity and spatio-
temporal sparsity. In Section V the optimization algorithm
used to solve these inverse problems is briefly described. In
Section VI the efficient computation of the derivatives needed
to solve the optimization problems is given. Here an interpre-
tation of the adjoint operators of the acoustic models needed
in this computation is also given. In Section VII the simulation
results are presented: firstly in VII-A the tuning of the level
of the regularization is described, secondly in Section VII-B
the RIR interpolation performances are compared for different
acoustic models and regularizations. In Section VII-C the solu-
tions of the inverse problems are visualized. In Section VIII
experimental results are presented. Finally, conclusion in
Section IX are given.

II. PLANE WAVE DECOMPOSITION METHOD

In this section, the Plane Wave Decomposition Method
(PWDM) is briefly reviewed. Plane waves are defined as

φ̂f ,l(x) = eikT
f , l x (2)

and they are solutions of the homogeneous Helmholtz equation,
that is

∇2 p̂f (x) + k2
f p̂f (x) = 0 on R3 , (3)

which assumes a time-harmonic behavior of the acoustic field,
i.e., p(x, t) = Re(p̂f (x)eiωf t) for ωf = 2πfFs/Nf . Here f is
the frequency index, p̂f (x) : R3 → C is the complex sound
pressure at a particular frequency f and ∇2 is the Laplacian
operator over the spatial variables x. The wave number kf is
defined as kf = ωf /c and kf ,l = kf nl ∈ R3 is the wave vector,
with nl a unit vector that defines the direction of the lth plane
wave. (3) can be written for f = 0, . . . , Nf − 1 discrete fre-
quencies. In the following φ̂f ,l,m will indicate φ̂f ,l(x)|x=xm

where xm ∈ R3 is a point in space.
A sound field in a source-free spatial domain Ω ⊂ R3 can

be well represented by a finite weighted sum of plane waves
coming from Nw different directions [12]:

p̂f (x)|x=xm
≈

Nw −1∑

l=0

φ̂f ,l,m ŵf,l for xm ∈ Ω, (4)

where the weight ŵf ,l is a complex scalar that weights the
(f, l)-th plane wave. Under the assumptions that Ω is source-
free, that the source generating the sound field and that the
reflecting surfaces are in the far field, this acoustic model,
known as the PWDM, gives a good approximation of any sound
field [12], [15]. If these conditions are met, this approxima-
tion holds independently of the boundary conditions, the room
geometry and the sound source type that generates the field out-
side Ω. Suppose that the weights ŵf ,l are available, if one wants
to predict the sound pressure at Nm discrete positions xm ∈ Ω
for m = 0, . . . , Nm − 1, (4) can be generalized for discrete spa-
tial points by

P̂ = Dpw (Ŵ), (5)

where P̂ is a matrix containing the complex sound pressure for
different positions and frequencies:

P̂ =

⎛

⎜⎝
p̂0,0 · · · p̂0,Nm −1

...
. . .

...
p̂Nf −1,0 · · · p̂Nf −1,Nm −1

⎞

⎟⎠ ∈ CNf ×Nm , (6)

where the notation p̂f ,m = p̂f (x)|x=xm
was used. In particular,

each column of P̂ can be thought of as a Nf -point Discrete
Fourier Transform (DFT) of a discrete-time signal. Similarly,
the matrix Ŵ ∈ CNf ×Nw contains the weights ŵf ,l , where the
l-th column has the weights of the l-th plane wave for the differ-
ent frequencies. Notice that the weights and the sound pressures
can be transformed into temporal signals using an inverse DFT.
The linear operator Dpw : CNf ×Nw → CNf ×Nm maps these
weights ŵf ,l to the complex sound pressures p̂f ,m using (4)
and actually represents a dictionary of Nw plane waves with
Nf frequencies. This linear operator is separable for each row
of P̂ and Ŵ since every frequency is independent. Moreover,
each column of these matrices is Hermitian symmetric, and this
redundancy can be exploited during evaluation to reduce the
computational cost. When the weights ŵf ,l are given, (5) repre-
sents the forward problem. Nevertheless, typically the weights
are unknown and an inverse problem must be solved to estimate
them.

III. TIME-DOMAIN EQUIVALENT SOURCE METHOD

Following the same logic of the previous section, a similar
time-domain approximation of the sound field is proposed. The
time-domain Green’s function is defined as

φl(x, t) =
1

4πdl
δ

(
t − dl

c

)
, (7)

where δ is the Dirac delta function and dl = ‖xl − x‖2 is the
distance between x and xl . In the following φl,m (t) will indicate
φl(x, t)|x=xm

. The time-domain Green’s function is a particular
solution of the non-homogeneous wave equation [34]

∇2p(x, t) − 1
c2

∂2p(x, t)
∂t2

= δ(x − xl , t) on R3×1 , (8)

with null initial conditions and unbounded domain. The wave
equation is the time domain counterpart of Helmholtz (3).
The sound pressure p(x, t)|x=xm

evaluated at a given point
in space xm is equivalent to a RIR between xl and xm , and
δ(x − xl , t) describes a point source positioned at xl that emits
a pulse at time t = 0. (7) represents what is referred here as
an equivalent source, i.e., a sound source that emits a spheri-
cal wave. In an unbounded or anechoic domain, an equivalent
source positioned at xl generates a spherical wave which arrives
at a position xm after traveling the distance dl,m = ‖xl − xm‖2 .
Similarly to Section II, where the index l indicates the l-th plane
wave φ̂f ,l,m with direction nl , here this index refers to the l-th
spherical wave φl,m generated at xl also arriving to the mi-
crophone at a position xm from an l-th specific direction. In
addition, here a microphone positioned at xm would capture
a pulse delayed by dl,m /c seconds and attenuated by a factor
of 1/(4πdl,m ) due to the spherical spreading of energy. The
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equivalent source can be discretized over time at a sampling fre-
quency Fs using a fractional delay filter with Impulse Response
(IR) hl,m :

φl,m (n) =
1

4πdl,m
hl,m (n), (9)

where now n is the discrete time index. Here, the fractional
delay filters are evaluated using Thiran all pass filters, which
consist of Infinite Impulse Response (IIR) filters [35]. Spherical
waves can be thought of as a generalization of plane waves [12],
i.e., when dl,m is large, spherical waves can effectively rep-
resent plane waves. Therefore also a finite sum of equivalent
sources in the far field can approximate well any sound field
in a source-free volume Ω, under the same assumptions as in
the previous section. As a consequence, the acoustic model
presented in this section can be seen as a generalization of
the PWDM. The following expression shows this time-domain
acoustic model which is referred to as the Time-domain Equiv-
alent Source Method (TESM):

p(x, n)|x=xm
≈

Nw −1∑

l=0

δ(n) ∗ φl,m (n) ∗ wl(n), (10)

for xm ∈ Ω. Here wl(n) is signal of dimension Nt that weights
the equivalent sources through linear convolution (represented
here with the symbol ∗). This signal will be referred as the
weight signal. If the anechoic source signal that generates the
sound field is known, this signal, s(n), can be included in
the TESM to increase the quality of the RIR interpolation:

p(x, n)|x=xm
≈

Nw −1∑

l=0

s(n) ∗ φl,m (n) ∗ wl(n), (11)

for xm ∈ Ω. The signal s(n) could correspond to the IR of
a loudspeaker measured in an anechoic chamber. When this
approximation is used it will be referred to as Sourceaware
Time-domain Equivalent Source Method (sTESM). The abbre-
viation (s)TESM will be used to indicate TESM and sTESM
simultaneously.

Similar to (5) in Section II, (10) and (11) can be generalized
for Nm discrete positions xm ∈ Ω:

P = D(s)t(W) (12)

where P ∈ RNt ×Nm is a matrix in which the m-th column is the
sound pressure signal p(x, n)|x=xm

and W ∈ RNt ×Nw is a ma-
trix in which the l-th column is the weight signal wl(n). There-
fore the linear operator D(s)t : RNt ×Nw → RNt ×Nm maps the
weight signals to the sound pressures and represents a dic-
tionary of equivalent sources. This can be computed simply
by using (9) with (10) or (11) for l = 0, . . . , Nw − 1 and
for m = 0, . . . , Nm − 1.

Another common approach to evaluate the linear operator
D(s)t and also the Dpw presented in Section II is to create a
linear system of equations by vectorizing P and W:

p = Dw, (13)

where p = vec(P) and w = vec(W) with vec() indicating the
column-major vectorization operator. This has the advantage

Fig. 1. A cross-section of a room viewed from above. A sound source placed
near the front left corner creates a reverberant sound field that is captured by
a spherical microphone array (light green dots). The sound pressure is then
matched using a set of equivalent sources φl,m (dark green dots). This makes
it possible to perform RIR interpolation over the shaded volume Ω surrounded
by the microphones. The distance d0 ,m between the first microphone and the
equivalent sources is shown with dotted lines.

that if the linear operator has to be evaluated several times,
as when solving optimization problems, the fractional delays
appearing in (9) or the plane waves appearing in (2) can be
computed only once and stored in the matrix D. Nevertheless,
looking at the dimensions of D, NtNm × NtNw , it is clear that
storing such a matrix can easily become intractable. As an exam-
ple, for TESM, consider a time window of 0.1 seconds sampled
with Fs = 8 kHz (Nt = 800). If Nw = 400 and Nm = 12, D is
a 96 · 102 × 32 · 104 matrix which for a 64 floating point for-
mat would result in a memory requirement of approximately
24.6 GB. In such cases, it will be necessary to sacrifice com-
putational power for memory by directly evaluating the linear
operators when needed. This strategy will lead to matrix-free
optimization.

IV. THE INVERSE PROBLEM

Fig. 1 shows the measurement set-up needed for the RIR in-
terpolation. A far field sound source, represented in the figure in
the front left corner of the room, generates a reverberant sound
field. A spherical microphone array of Nm microphones (light
green dots) is placed in the middle of the room and used to mea-
sure the RIRs at these positions. Notice that the framework de-
scribed this far does not assume any particular geometry for the
position of the microphone measurements: it is only assumed
that the relative distances between the microphone measure-
ments are known. The choice of a spherical microphone array
is arbitrary. The aim is to interpolate these RIRs inside the vol-
ume Ω. In this volume, it is assumed that the models presented
in Sections II and III can well approximate the sound field.
What is sought by the inverse problem is to extrapolate out of
the microphone measurements the optimal weight signals that
lead to the best sound field approximation possible. This inverse
problem can be formulated as an optimization problem:

W� = argmin
W

f(W) =
1
2
‖D(W) − P̃‖2

F , (14)

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on September 16,2022 at 20:03:10 UTC from IEEE Xplore.  Restrictions apply. 



ANTONELLO et al.: RIR INTERPOLATION USING A SPARSE SPATIO-TEMPORAL REPRESENTATION OF THE SOUND FIELD 1933

where ‖ · ‖F is the Frobenius norm defined as

‖A‖F = ‖vec(A)‖2 . (15)

Notice that here the linear operator D(·) has no subscript, which
implicitly means that any of the acoustic models presented in
the previous sections can be used. The columns of the ma-
trix P̃ contain the microphone measurements, i.e., the Nt -long
measured RIR signals. The aim of this optimization problem
is to minimize the un-regularized cost function f(W), which
consists of the distance between the measured RIRs and the
sound pressure of the acoustic model. However, problem (14)
is heavily ill-posed: if many spherical (plane) waves are used
to construct D(·), multiple solutions for W can minimize the
cost function effectively. This will in general lead to over-fitting:
the measured RIRs will coincide with the sound pressure of the
acoustic model but only at the microphone positions, leading
to a poor RIR interpolation. To avoid this, it is necessary to
regularize problem (14). A common regularization method is
Tikhonov regularization which consists of modifying the cost
function by adding a regularization term:

W�
T = argmin

W
f(W) +

λ

2
‖W‖2

F . (16)

Here the parameter λ controls the level of the regularization
and in practice balances the prior knowledge induced by the
regularization with the information provided by the microphone
measurements that appears in f(·). For the case of Tikhonov
regularization, this prior knowledge represents the expectation
that the components of W are small. As simulations will show
later, this regularization does not produce good results as it does
not include any spatial information.

If it is expected that the matrix W is sparse instead, i.e.,
that the majority of the components of W are zero, a sparsity
promoting regularization can be used, e.g., the l1-norm regular-
ization:

W�
1 = argmin

W
f(W) + λ‖vec(W)‖1 . (17)

Problem (17) is also known as the Least Absolute Shrinkage and
Selection Operator (LASSO) and has been widely used in CS. As
opposed to Tikhonov regularization, the l1-norm regularization,
when it is used with the (s)TESM, promotes spatio-temporal
sparsity. This becomes clear by looking at the structure of W,
which in the case of (s)TESM contains the time-domain weight
signals that control equivalent sources placed at different po-
sitions. Spatio-temporal sparsity can be justified physically: in
a reverberant sound field generated by an impulsive source,
sound waves arrive from specific directions at specific times.
On the other hand, when the l1-norm regularization is used with
the PWDM, spatio-spectral sparsity is promoted. Once more
this becomes clear by looking at the structure of Ŵ, although a
physical interpretation becomes more difficult. As simulations
will show, the l1-norm regularization does indeed produce good
results for the (s)TESM and moderate results for the PWDM.

Another possible regularization is the sum of l2-norms regu-
larization:

W�
Σ l2

= argmin
W

f(W) + λ

Nw −1∑

l=0

‖W:,l‖2 . (18)

where W:,r indicates the rth column of W. This regulariza-
tion is aimed to have only few columns of W to have non-zero
coefficients. In the PWDM and (s)TESM case this regulariza-
tion imposes solely spatial sparsity, and it is a special case of
group sparsity. When the l1-norm regularization is used with
the PWDM, the optimization problem becomes fully separable.
Since all frequencies are independent in the linear operator of
the PWDM and the same is true for the l1-norm regularization
it is possible to cast individual optimization problems per fre-
quency. This property is no longer valid for sum of l2-norms
regularization, which implies that the optimization problem
is not separable anymore. Despite this disadvantage, simulations
will show that the sum of l2-norms regularization outperforms
the l1-norm one when applied to PWDM. Clearly, when a wide
band sound source generates the sound field, imposing sparsity
in the frequency domain is not a good choice and therefore
spatial sparsity provides better results.

Finally, an important aspect is the choice of the equivalent
source positions in (s)TESM. In a reverberant environment,
sound waves can arrive from every direction but the dictio-
naries must be of finite dimension. As Fig. 1 shows, for the
2-dimensional case the equivalent sources can be placed uni-
formly on a circle (dark green dots). Nevertheless, in 3-
dimensions the uniform sampling of the surface of a sphere is not
unique and for instance sampling uniformly the azimuthal and
the polar angles leads to a concentration of equivalent sources
near the poles. In order to avoid this, Fibonacci lattices, which
provide nearly uniform sampling of the surface of a sphere, are
used [36], [37]. The azimuthal and polar angles obtained with
this lattice can be used also for the candidate directions of the
plane waves in the PWDM.

V. OPTIMIZATION ALGORITHM

In this section firstly the FBS algorithm is described. Sec-
ondly, the quasi-Newton accelerated FBS is briefly presented.
Further details about these methods can be found in [29]–[31].

The FBS generalizes the well-known gradient descent algo-
rithm to a class of non-smooth cost functions. The FBS can
be used to solve optimization problems with the following
structure:

W� = argmin
W

f(W) + g(W), (19)

where f(·) is convex and smooth, such as the un-regularized
cost function (14), and g(·) can be non-smooth, such as the l1-
norm in (17). Clearly, all of the optimization problems presented
in Section IV have cost functions which can be split in such a
fashion.

Starting from an initial guess W0 , one can iterate the expres-
sion

Wk+1 = Tγ (Wk ) = proxγg

(
Wk − γ∇f(Wk )

)
, (20)
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to obtain a solution. Here ∇f(·) is the Jacobian operator of
f(·), Tγ (·) is the forward-backward operator and proxγg (·) is
the proximal mapping of the function g(·), defined as:

proxγg (W) = argmin
U

1
2γ

‖U − W‖2
F + g(U). (21)

The argument inside the parenthesis of proxγg (·) in (20) corre-
sponds to the gradient descent iteration for the un-regularized
cost function f(·). Therefore a simple interpretation of (20)
is the following: a new iterate is obtained using the gradient
descent for f(·) (forward step)

Wk+1
gd = Wk − γ∇f(Wk ), (22)

and then a second optimization problem, cf. (21), is solved to
project the iterate Wk+1

gd into a modified solution close to the
minimum of g(·) (backward step). The scalar γ is the step-size
which must be sufficiently small to ensure convergence. One
of the main advantages of the FBS algorithm is that often the
proximal mapping can be computed very cheaply. For example,
when g(·) = λ‖ · ‖1 the proximal mapping (21) has an analytical
solution and reduces to a soft-thresholding of the elements of
Wk+1

gd [29]. Table I summarizes the proximal mappings for
the different regularizations used in this paper which all have
analytical solutions and are cheap to compute. As stated earlier,
a solution to (19) can be obtained by iterating (20) leading to a
simple algorithm with a convergence speed comparable to the
gradient descent algorithm.

In [31] a novel algorithm that dramatically accelerates
the FBS algorithm has been proposed. The idea is to modify
the FBS with the following iterations:

Wk+1 = Tγ (Wk ) + τSk , (23)

where Sk is a corrective direction and τ is a step-size. It can be
proven that the optimality condition for W� to be the optimal
solution of (19) is given as [31]

Rγ (W�) = W� − Tγ (W�) = 0, (24)

where Rγ (·) represents the fixed-point residual. At each iter-
ation, the corrective direction Sk is computed using curvature
information of the fixed-point residual obtained through quasi-
Newton Limited memory BFGS (L-BFGS) updates to acceler-
ate convergence. The step-sizes γ and τ are chosen adaptively
with two separate line-search procedures to ensure global con-
vergence. These line-search procedures only rely on the very
same predictions of the FBS which, together with the L-BFGS
updates, have minimal memory requirement. Further details on
the algorithm are left out here for brevity and the interested
reader can find more information in [31]. An implementation of
the algorithm is also available online [38], [39].

VI. COMPUTATION OF THE JACOBIAN

The Jacobian ∇f(·) appears in the FBS iterations (20), and
consequently also in the accelerated version (23). Moreover the
un-regularized cost function f(·) must also be computed as it is
needed in the line-search procedures. The efficient computation
of f(·) and ∇f(·) is therefore crucial since these are required
in every iteration of the optimization algorithm.

Regarding the computation of f(·), by inspecting its definition

f(W) =
1
2
‖D(W) − P̃︸ ︷︷ ︸

R

‖2
F , (25)

it can be noticed that the most computationally expensive op-
eration lies in the evaluation of D(W). Here the residual R
is the difference between the measured sound pressure and the
sound pressure provided by the acoustic model of choice. It was
already mentioned at the end of Section III how avoiding the
storage of D(·) into a matrix D and using a recursive compu-
tation instead can be beneficial for a large scale optimization
problem, as it minimizes the memory requirements.

The same strategy will be used in the computation of the
Jacobian ∇f(·). The Jacobian can be written as:

∇f(W) = Da(D(W) − P̃) ⇒ J = Da(R), (26)

where Da(·) : UNm Nt ×Nw Nt → UNw Nt ×Nm Nt is the adjoint
operator [33] of D(·), J : UNw Nt ×Nm Nt is the Jacobian matrix
and U is either R or C. If the linear operator D(·) consisted of a
matrix multiplication the adjoint operator would have been the
conjugate-transpose operator of that matrix. It can be noticed
that the adjoint operator is applied to the residual R which is
readily available after the computation of f(·).

For the (s)TESM the linear operator D(s)t(·) is computed by
recursively convolving the weight signals wl(n) with (s(n)) ∗
φl,m (n) as shown in (10) and (11). Since the adjoint operator of
convolution is the cross correlation [40], the lth column of the
Jacobian matrix J can be computed as:

jl(n) =
Nm −1∑

m=0

(s(n) ∗ φl,m (n)) 
 rm (n) (27)

where 
 indicates the cross correlation operator and rm (n) is
the residual signal of the m-th microphone measurement, i.e.,
the m-th column of R. This operation can be repeated iteratively
to compute J as in the case of the evaluation of D(s)t(·).

Analyzing (27) from a different perspective, the adjoint op-
erator can be thought of as a new swapped forward problem
with Nm equivalent sources positioned at xm having as weight
signals the time reversed residual rm (−n). This sound field
is then captured by Nw microphone measurements positioned
at xl . (27) is in fact equivalent to:

jl(−n) =
Nm −1∑

m=0

(s(n) ∗ φl,m (n)) ∗ rm (−n) (28)

which in practice is used in the computation since it requires the
very same fractional delay filters as the ones used in D(s)t(·).

Similarly, for the PWDM the adjoint operator can be obtained
using the following equation:

ĵf ,m =
Nm −1∑

m=0

r̂f ,l φ̂
∗
f ,l,m , (29)

where ĵf ,m is the (f,m)-th element of the complex Jacobian
matrix Ĵ, r̂f ,l is the (f, l)-th element of the residual R̂ and with ∗

denoting the complex conjugate operation.
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TABLE I
TABLE SHOWING THE DIFFERENT REGULARIZATIONS USED IN THIS PAPER AND THEIR EQUIVALENT PROXIMAL MAPPINGS

l1 -norm
∑

l2 -norms Tikhonov

g(W) λ‖vec(W)‖1 λ
∑N w −1

l=0 ‖W :, l‖2
λ
2 ‖W‖2

F

proxγ g (W) sign(W) max(0, |W | − γλ) max(0, 1 − γλ/‖W :, l‖2 )W :, l for l = 0 . . . Nw − 1 1
γ λ+1 W

λmax ‖vec(Da (P))‖∞
∣∣∣∣[‖Da (P):,0‖2 , . . . , ‖Da (P):,N w −1‖2

]T ∣∣∣∣
∞ ‖Da (P)‖2

2

The last row shows the maximum value of λ used for the different regularizations.

VII. SIMULATION RESULTS

In this section the RIR interpolation performance is an-
alyzed using the different acoustic models described in
Sections II and III and the different regularizations presented
in Section IV. The microphone signals used in the inverse
problem are generated using the Randomized Image Method
(RIM), a modified version of the IM that avoids the pres-
ence of sweeping-echos in the simulated RIRs [41]. As Fig. 1
shows, the reverberant acoustic environment consists of a box-
shaped room with dimensions [Lx, Ly , Lz ] = [6, 3.5, 4] m. A
sampling frequency of Fs = 8 kHz is used with a time window
of 70 ms (Nt = Nf = 560).

Frequency dependent impedances are used for the walls: this
is achieved by using IIR filters for the image sources which are
then self-convolved for the higher order image sources. These
filters are obtained from measured absorption coefficients found
in [42] using the same procedure described in [43], i.e., opti-
mizing the coefficients of the IIR filters via a damped Gauss-
Newton method. The fractional delays of the RIM are modeled
using Finite Impulse Response (FIR) filters as in [44]. Software
is available at [45]. Only one material is used to model all of
the room acoustic impedances. The resulting sound field has a
spatially averaged reverberation time of T30 = 0.065 s.

An omnidirectional sound source is placed at xs =
[0.75, 0.43, 2] m producing a source signal s(n), an impulse
filtered using a bandpass 4th order Butterworth filter from
20 Hz to 3.2 kHz. Microphones are placed on a spherical ar-
ray of radius 0.35 m with center in the middle of the room
at xc = [Lx, Ly , Lz ]/2. The microphone positions form a Fi-
bonacci lattice. All the microphone signals are corrupted with
additive white noise with a SNR = 15 dB. When comparing
performances with different regularizations and acoustic mod-
els the same noise is added. Such a high SNR is motivated by the
fact that it is assumed that most of the noise is reduced in post-
processing by averaging the RIR microphone measurements.
The RIRs are interpolated in the volume (0.18 m3) enclosed
by the spherical microphone array. Nevertheless, since it is not
possible to compute the true RIR at every position inside the
volume, their quality is evaluated on an interpolation volume,
that is a cuboid volume of dimensions [0.43, 0.43, 0.63] m which
is spatially uniformly sampled (Nin = 300). and placed inside
the spherical microphone array.

For the (s)TESM Nw = 700 equivalent sources are posi-
tioned in a Fibonacci lattice of radius 1.75 m centered at xc .
Similarly, for the PWDM, Nw = 700 directions are used
and these are equivalent to those used in the (s)TESM. The

number of plane wave directions and equivalent sources was
obtained empirically. Simulations were performed also for
different configurations of source position, room dimensions
and reverberation time, which led to similar results as the
ones presented in the following subsections and are therefore
omitted here for brevity. Notice that all of the simulations
presented here are reproducible [46].

A. Choice of Regularization Parameter λ

As described in Section IV, the parameter λ controls the level
of the regularization. The regularization can be viewed as impos-
ing a particular prior knowledge on W. This prior knowledge
is not always available and often one wants to extrapolate it out
of the available microphone measurements. This requires find-
ing the best λ which controls the balance between how much
a model fits the available microphone measurements and how
important the prior knowledge is. The optimal balance will si-
multaneously avoid over-fitting (λ → 0) and predictions based
on pure inference (large λ), which both produce poor results.

In this paper, λ is tuned using K-fold Cross Validation
(KCV) [47] in which scheme the available measurements are
split into K folds, namely K different groups of equal size. Here
these folds consist of K scrambled groups of measured RIRs.
For a given λ, the acoustic model is trained using only K − 1
folds by solving the inverse problem using a particular reg-
ularization. The fold left outside is used to test the training
performance and to produce the cross validation error:

εcv =
1

Ncv

Nc v∑

m=1

‖P:,m − P̃:,m‖2
2/‖P:,m‖2

2 , (30)

i.e., the average of the Normalized Mean Squared Error (NMSE)
of the Ncv RIRs belonging to the fold not used in the training.
Here P is reconstructed from the optimal solution W� by means
of either (5) or (12). This procedure is repeated K times, each
time leaving out a different fold to produce a new cross vali-
dation error. The K cross validation errors are further averaged
to produce ε̄cv , the averaged cross validation error. A set of
values for λ is tested using this procedure and the λ that gives
the minimum averaged cross validation error is then chosen. Fi-
nally, the model is trained using all of the available microphone
measurements with the chosen λ.

The KVC starts with an over-regularized inverse problem,
with λ = λmax, and continues by logarithmically decreasing λ.
Here λmax is chosen as the maximum value for which the solution
of the inverse problem is null. Table I, reports the values of λmax
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Fig. 2. Simulated averaged cross validation error curve (top plots) and interpolation error curve (bottom tops) as a function of λ (normalized by λmax) for different
types of acoustic models and regularizations using Nm = 12 microphones.

for each regularization [29], [48]. Notice that, for Tikhonov
regularization, the solution is not null for λ < ∞, however the
λmax given in the table gives still an over-regularized solution.

In a simulated environment, it is actually possible to check
if the KVC indeed returns the best λ since the interpolation er-
ror εin can be computed, i.e., the average of the NMSE between
the true RIRs and the interpolated RIRs, which in many real
scenarios would not be available. Specifically, the interpolation
error is computed using the same formula (30) on the interpola-
tion volume. Fig. 2 shows the averaged cross validation error and
the interpolation error for Nm = 12 microphones as a function
of λ for different types of regularization and acoustic models.
Here and in the following a K = 4 KVC is used. In general the
minima of the errors coincide and when they do not they are
either very close to each other or they belong to flat regions of
the error curves. This condition was verified for all the results
presented here and in the following, the only exception being
when Nm = 4 microphones are used. For this reason, these re-
sults are not shown. In conclusion, the results show that KVC is
a good strategy for tuning λ if sufficient microphone measure-
ments are available.

B. Comparison Between Acoustic Models

In Fig. 3 the interpolation error is shown as a function of
the number of microphone measurements used in the spherical
array, while in Fig. 4 the worst-case interpolated RIR and its
equivalent DFT are shown. Here worst-case indicates the posi-
tion with maximum error in the interpolation volume. Looking
at Fig. 3, it is clear that Tikhonov regularization gives almost
equivalent performances with either PWDM or (s)TESM. This
is expected, as discussed in Section IV, since Tikhonov regular-
ization simply avoids large energy of the weight signals without
imposing any spatial information. Here only the low frequencies
are correctly interpolated as Fig. 4(a) shows. An improvement
is achieved with the PWDM and l1-norm regularization where
spatio-spectral sparsity is promoted. In Fig. 4, it can be seen
that the direct component becomes more pronounced but many
artifacts are present. Clearly, as Fig. 3 shows, promoting spar-
sity in the frequency domain when the sound field is generated
by a wide band signal is not a good choice. When only spatial
sparsity is promoted, using the sum of l2-norms regularization,

Fig. 3. Simulated interpolation error for different types of acoustic models
and regularizations as a function of the number of microphones.

better results are achieved. With this type of regularization all
the acoustic models show similar performance: the TESM and
the sTESM are practically equivalent while the interpolation er-
rors of the PWDM are on average 0.45 dB higher with respect
to the (s)TESM. Finally, all the results discussed so far are out-
performed using the (s)TESM and promoting spatio-temporal
sparsity with the l1-norm regularization. In Fig. 3, it can be seen
that the same interpolation error obtained with Nm = 32 micro-
phones and spatio-spectral sparsity (PWDM with l1-norm) can
be achieved with only Nm = 8 microphones using the TESM
and spatio-temporal sparsity. A similar comparison can be made
between the PWDM with spatial sparsity that reaches −9.3 dB
interpolation error with Nm = 32 microphones and the sTESM
that reaches −9.2 dB using only Nm = 8 microphones. When
comparing the TESM with respect to the sTESM instead, it can
be noticed that the sTESM significantly outperforms the TESM,
particularly when the number of microphone measurements is
smaller as Fig. 3 shows. Comparing Fig. 4(d) with Fig. 4(e) it
can be noticed that the sTESM provides a more accurate repre-
sentation of the high frequencies. This is due to the fact that the
equivalent sources of the sTESM are already shaped with the
spectrum of s(n).

Finally, looking at Fig. 4 it is interesting to compare the
RIR interpolation accuracy for the early reflections and late
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Fig. 4. Simulated worst-case RIR interpolation for different types of acoustic models and regularizations using Nm = 12 microphones. Black thick line shows
the original RIR while the green thin line shows the interpolated RIR.

TABLE II
SIMULATED WORST-CASE NMSES OF THE INTERPOLATED RIRS SHOWN IN FIG. 4

PWDM, Tik. PWDM, l1 -norm PWDM
∑

l2 -norms TESM, l1 -norm sTESM, l1 -norm

NMSE (dB) −0.58 −0.93 −4.42 −6.14 −9.37
NMSE (dB) Early Reflections −0.52 −1 −4.5 −6.37 −9.8
NMSE (dB) Late Reverberation −2.57 1 −1.88 −1.71 −3.39

The NMSEs are also shown for the early reflections of the RIRs (up to 30 ms) and the late reverberation (starting from 30 ms).

reverberation. Table II summarizes the worst-case NMSEs be-
tween the interpolated and the original RIRs appearing in Fig. 4.
Here, in the last two rows, the NMSEs of the early reflections and
late reverberation are computed separately. In general early re-
flections are interpolated more accurately than late reverberation
for all the different types of regularizations and acoustic models
except for the case of the PWDM with Tikhonov regularization,
where the opposite happens. It can be seen that despite the higher
reflection density in the late part of the RIRs, the sTESM with
spatio-temporal sparsity still achieves the best results. Neverthe-
less it is difficult to conclude which regularization may achieve
the best accuracy for the late reverberation. The early reflections
constitute the most energetic part of the RIRs and therefore the
un-regularized cost function f(·) is unbalanced towards them.
Using a weighted norm in f(·) would balance the fitting and
different regularizations could be used for different parts of the
RIRs as well, with the disadvantage of complicating the regular-
ization tuning procedure. A thorough analysis of these matters
goes beyond the scope of this paper and is left for future work.

C. Analysis of Weight Signals

The weight signals are not only useful to perform the RIR
interpolation but can also be used to provide a novel spatio-
temporal visualization of the reverberant sound field, similar to
the one proposed in [49]. It is important to outline that com-
pared to the visualizations of [49], here a wider volume is
represented instead i.e., the volume where the RIR interpola-
tion is performed. Fig. 5 shows such a visualization, where for
each regularization and acoustic model the weight signals are

plotted simultaneously using spherical coordinates: the radius
indicates the absolute value 20 log10 |wl(n)| of the l-th weight
signal (in dB) with its corresponding specific direction identi-
fied by the azimuthal and polar angle. Time is represented with
color, with lines becoming darker and thinner as time proceeds.
This enables one to view the direction of arrival of a specific
reflection at a specific time. Moreover the signals are normal-
ized by the maximum absolute value of W� . In all the figures
a single line, the thickest and with lighter color, reaches 0 dB
in the direction associated to the sound source, indicating that
all the methods are capable of reconstructing the line-of-sight
component correctly. In the left hand figures, these lines point
to θ ≈ 90◦ indicating that the sound source has the same height
as the center of the microphone array. In the right hand figures
instead, these lines point to ϕ ≈ 220◦ showing that the sound
source is located in the front left corner of the room as shown in
Fig. 1. Clearly, Tikhonov regularization manages to predict only
the line-of-sight component as Fig. 5(a) shows: reflections keep
arriving from all directions as time proceeds. This is not the case
for the other results shown here, where the direction of arrival of
higher order reflections can be clearly distinguished. In the left
hand figures, where the weight signals are plotted as a function
of the polar angle θ, it is possible to clearly identify the strongest
reflections coming from the ceiling (θ ≈ 45◦), walls (θ ≈ 90◦)
and floor (θ ≈ 150◦). On the other hand, the right hand figures
give a top view of the reflections. By combining each pair of
figures and looking at the radius and color of the lines, one
can understand the direction and time of arrival of a specific
reflection. Notice that there is a similar trend as observed in
the analysis of the performance of the RIR interpolations, with
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Fig. 5. Visualization of the weight signals for different types of acoustic
models and regularizations using Nm = 12 microphones. The radius in dB
indicates the absolute value of the weight signal for a given direction. Di-
rections are shown using spherical coordinates. Color indicates time: as time
proceeds darker colors and smaller linewidth are used to plot the weight sig-
nals. Animated versions of these figures can be found at the following links:
ftp://ftp.esat.kuleuven.be/stadius/nantonel/Videos/RIR_Intp/ and [46].

spatial and spatio-temporal sparsity giving clearer spatial infor-
mation. For the PWDM, the weight signals obtained with spatio-
spectral sparsity, Fig. 5(b), never decay completely to zero as
time proceeds, while this is not the case for Fig. 5(c) where
spatial sparsity minimizes the number of directions. Here one
can clearly distinguish between different directions of arrival
of higher order reflections, particularly the first order reflections
coming from the walls, ceiling and floor. The same can be stated
for the weight signals of (s)TESM with sTESM having much
sparser signals with respect to TESM, as expected. Although
many more directions of arrival are present in the (s)TESM
solutions when compared to the PWDM solution with spatial
sparsity, this does not necessarily mean that the PWDM solution
is sparser. In fact, in the latter case, having many directions of ar-
rival goes against the regularization which encourages grouping
different reflections with similar directions of arrival and bun-
dles them into a single one. This is obviously not beneficial for
either the RIR interpolation or for the spatio-temporal visualiza-
tion. Finally, the level of sparsity of the weight signals obtained
with sTESM is maximal when compared with the other results.
In the example shown in Fig. 5, for Nm = 12, the sTESM ma-
trix W� has only 0.4% of its components non-zero, while TESM
has 1.4%. The PWDM with spatial sparsity has 29.14% both
in the frequency and time domain: despite the appearance of
Fig. 5(c) the active weight signals decay over time to low levels
but are always non-zero. On the other hand, PWDM with spatio-
spectral sparsity has a dense matrix in the time-domain, while
its frequency domain counterpart has 27% of its components
non-zero.

VIII. EXPERIMENTAL RESULTS

In this section experimental results are presented. The RIR in-
terpolation is performed using measured RIRs from the single-
and multichannel audio recordings database (SMARD) [50].
The RIRs were measured in a box-shaped listening room with
dimensions [Lx, Ly , Lz ] = [7.3, 8.1, 2.9] m and a reverberation
time of T30 = 0.097 s. The database provides RIRs measured
for different configurations of loudspeakers and microphone ar-
rays. In this experimental study, configuration 1002 was used:
here a Brüel & Kjær OmniSource 4295 loudspeaker unit po-
sitioned at xs = [2.0, 6.5, 1.4] m and an orthogonal micro-
phone array were used. The orthogonal microphone array con-
sists of 3 uniform linear microphone arrays which share their
origins at xm = [4.4, 3.1, 1.5] m and are placed orthogo-
nally to each other. Each uniform linear microphone array has
7 microphones spaced 5 cm apart. Here, only the Nm = 15
microphones belonging to the endings of the orthogonal mi-
crophone array’s branches are used for the training, while the
remaining Nin = 6 microphones closer to the origin are used to
compute the interpolation error εin and to tune λ, thus avoiding
the need of using a KVC scheme. The Nw = 700 equivalent
sources are positioned in a Fibonacci lattice of radius 2.87 m
centered at xm . All of the RIRs are down-sampled to a sam-
pling frequency of Fs = 8 kHz. Note that all of the experiments
presented here are reproducible using the code found in [46]
and the RIR database available online at [50].
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Fig. 6. Experimental (w.c. and b.c.) results of RIR interpolation for different types of acoustic models and regularizations using Nm = 15 measured RIRs. Black
thick line shows the original RIR while the green thin line shows the interpolated RIR. NMSE: (a) −5.5 dB (b) −9.43 dB (c) −7.11 dB (d) −11 dB.

TABLE III
EXPERIMENTAL INTERPOLATION ERROR FOR DIFFERENT TYPES OF ACOUSTIC

MODELS AND REGULARIZATIONS USING 15 MEASURED RIRS

PWDM, l1 -norm PWDM
∑

l2 -norms TESM, l1 -norm

εin (dB) −5.47 −7.22 −8.51

Table III shows the interpolation errors obtained using differ-
ent types of acoustic models and regularizations. Note that the
sTESM cannot be applied since the IR of the loudspeaker is not
available. As in the simulation results, the TESM combined with
spatio-temporal sparsity achieves the best performance. Look-
ing at Fig. 3, it can be observed that these values are quite close
to the ones obtained in the simulation results using Nm = 16
microphones. Notably, for the two cases where the PWDM was
used, the experimental results are slightly better than the sim-
ulation results despite the fact that these were obtained using
one microphone less. This is probably due to higher SNR of
the experimental RIRs compared to the ones used in the simu-
lations. Finally, Fig. 6 compares the interpolated RIRs with the
original ones for the worst-case and best-case results: similarly
to Fig. 4, where only the worst-case results are shown, early
reflections and low frequencies are reconstructed with higher
accuracy with respect to the late reverberation and high fre-
quencies respectively.

IX. CONCLUSION

In this paper the problem of spatially interpolating measured
RIRs is posed as an inverse problem. Two different acoustic
models that are able to approximate any sound field in a source-
free volume generated by a far field source are presented and
compared: the PWDM which is a widely known frequency do-
main model and (s)TESM, a novel time-domain method that
can also incorporate the knowledge of the source signal gener-
ating the sound field. It is shown that various sparsity promoting
regularizations can be used to cope with the ill-posed nature
of the inverse problem. Spatio-spectrally and spatially sparse
solutions can be obtained with the PWDM and with the l1-norm
and sum of l2-norms regularization respectively, while a spatio-

temporally sparse solution can be encouraged using (s)TESM
with l1-norm regularization.

These inverse problems turn out to be large scale optimization
problems and so great care must be taken in finding a computa-
tionally tractable algorithm. For this reason, the acoustic mod-
els are described as linear operators that can be computed with
minimal memory storage. Their adjoint operators, that share the
same property, are used in the computation of the derivatives
needed in the optimization algorithm and their physical inter-
pretation is also given. This makes it possible to use matrix-free
optimization. The optimization problems are solved using an
accelerated version of the FBS.

Numerical simulations are then presented where RIRs gen-
erated with a modified version of the IM are interpolated using
the described algorithms. The KVC method is used to select the
regularization parameter and it is shown that this strategy works
correctly if enough microphone measurements are used. The
different approaches to perform RIR interpolation are then com-
pared. The comparison shows that the novel spatio-temporally
sparse representation outperforms the others particularly when
the source signal is available. This provides a good RIR in-
terpolation even when only few microphone measurements are
available. Finally, the different approaches are applied using ac-
tual measured RIRs reaching similar results to the one obtained
using simulated data.

ACKNOWLEDGMENT

The authors would like to thank Lorenzo Stella, Andrea
Themelis and Panagiotis Patrinos for their suggestions and pre-
cious help in the algorithm design and coding. The scientific
responsibility is assumed by its authors.

REFERENCES

[1] G.-B. Stan, J.-J. Embrechts, and D. Archambeau, “Comparison of different
impulse response measurement techniques,” J. Audio Eng. Soc., vol. 50,
no. 4, pp. 249–262, 2002.

[2] A. T. Rosell, “Methods of measuring impulse responses in architectural
acoustics,” Master’s thesis, Tech. Univ. of Denmark, Kongens Lyngby,
Denmark, 2009.

[3] T. Ajdler, L. Sbaiz, and M. Vetterli, “Dynamic measurement of room
impulse responses using a moving microphone,” J. Acoust. Soc. Amer.,
vol. 122, no. 3, pp. 1636–1645, 2007.

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on September 16,2022 at 20:03:10 UTC from IEEE Xplore.  Restrictions apply. 



1940 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 10, OCTOBER 2017

[4] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic function and its
sampling,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3790 –3804,
Oct. 2006.

[5] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[6] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter
Estimation. Philadelphia, PA, USA: SIAM, 2005.

[7] G. P. Nava, Y. Yasuda, Y. Sato, and S. Sakamoto, “On the in situ estimation
of surface acoustic impedance in interiors of arbitrary shape by acoustical
inverse methods,” Acoust. Sci. Technol., vol. 30, no. 2, pp. 100–109, 2009.

[8] N. Antonello, T. van Waterschoot, M. Moonen, and P. A. Naylor, “Iden-
tification of surface acoustic impedances in a reverberant room using the
FDTD method,” in Proc. IEEE 14th Int. Workshop Acoust. Signal Enhanc.,
2014, pp. 114–118.

[9] N. Antonello, T. van Waterschoot, M. Moonen, and P. A. Naylor, “Evalua-
tion of a numerical method for identifying surface acoustic impedances in
a reverberant room,” in Proc. 10th Eur. Congr. Expo. Noise Control Eng.,
2015, pp. 1–6.

[10] K. Kowalczyk and M. van Walstijn, “Room acoustics simulation using
3-D compact explicit FDTD schemes,” IEEE Trans. Audio, Speech Lang.
Process., vol. 19, no. 1, pp. 34–46, Jan. 2011.

[11] T. Betlehem and T. D. Abhayapala, “Theory and design of sound field
reproduction in reverberant rooms,” J. Acoust. Soc. Amer., vol. 117, no. 4,
pp. 2100–2111, 2005.

[12] R. A. Kennedy, P. Sadeghi, T. D. Abhayapala, and H. M. Jones, “Intrinsic
limits of dimensionality and richness in random multipath fields,” IEEE
Trans. Signal Process., vol. 55, no. 6, pp. 2542–2556, Jun. 2007.

[13] P. Samarasinghe, T. Abhayapala, M. Poletti, and T. Betlehem, “An efficient
parameterization of the room transfer function,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 23, no. 12, pp. 2217–2227, Dec. 2015.

[14] B. Bu, T. D. Abhayapala, C.-C. Bao, and W. Zhang, “Parameterization
of the three-dimensional room transfer function in horizontal plane,” J.
Acoust. Soc. Amer., vol. 138, no. 3, pp. EL280–EL286, 2015.

[15] A. Moiola, R. Hiptmair, and I. Perugia, “Vekua theory for the Helmholtz
operator,” Zeitschrift für Angewandte Mathematik und Physik, vol. 62,
no. 5, pp. 779–807, 2011.

[16] R. Mignot, G. Chardon, and L. Daudet, “Low frequency interpolation of
room impulse responses using compressed sensing,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 22, no. 1, pp. 205–216, Jan. 2014.

[17] W. Jin and W. B. Kleijn, “Theory and design of multizone soundfield
reproduction using sparse methods,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 23, no. 12, pp. 2343–2355, Dec. 2015.

[18] R. Mignot, L. Daudet, and F. Ollivier, “Room reverberation reconstruction:
Interpolation of the early part using compressed sensing,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 21, no. 11, pp. 2301–2312, Nov. 2013.

[19] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics,” J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 943–950,
1979.

[20] A. Sarkissian, “Method of superposition applied to patch near-field acous-
tic holography,” J. Acoust. Soc. Amer., vol. 118, no. 2, pp. 671–678, 2005.

[21] E. Fernandez-Grande, “Sound field reconstruction using a spherical mi-
crophone array,” J. Acoust. Soc. Amer., vol. 139, no. 3, pp. 1168–1178,
2016.

[22] E. Fernandez-Grande and A. Xenaki, “Compressive sensing with a
spherical microphone array,” J. Acoust. Soc. Amer., vol. 139, no. 2,
pp. EL45–EL49, 2016.

[23] S. Spors, R. Rabenstein, and J. Ahrens, “The theory of wave field synthesis
revisited,” in Proc. 124th AES Conv., 2008, pp. 17–20.

[24] S. Tervo, J. Ptynen, A. Kuusinen, and T. Lokki, “Spatial decomposition
method for room impulse responses,” J. Audio Eng. Soc., vol. 61, no. 1/2,
pp. 17–28, 2013.

[25] P.-A. Gauthier, A. Berry, and W. Woszczyk, “Sound-field reproduction
in-room using optimal control techniques: Simulations in the frequency
domain,” J. Acoust. Soc. Amer., vol. 117, no. 2, pp. 662–678, 2005.

[26] M. Kolundzija, C. Faller, and M. Vetterli, “Reproducing sound fields using
MIMO acoustic channel inversion,” J. Audio Eng. Soc., vol. 59, no. 10,
pp. 721–734, 2011.

[27] G. N. Lilis, D. Angelosante, and G. B. Giannakis, “Sound field reproduc-
tion using the lasso,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18,
no. 8, pp. 1902–1912, Nov. 2010.

[28] N. Radmanesh and I. S. Burnett, “Generation of isolated wideband sound
fields using a combined two-stage LASSO-LS algorithm,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 21, no. 2, pp. 378–387, Feb. 2013.

[29] N. Parikh and S. P. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[30] L. Stella, A. Themelis, and P. Patrinos, “Forward-backward quasi-newton
methods for nonsmooth optimization problems,” Comput. Optim. Appl.,
vol. 67, no. 3, pp. 443–487, 2017.

[31] A. Themelis, L. Stella, and P. Patrinos, “Forward-backward envelope for
the sum of two nonconvex functions: Further properties and nonmonotone
line-search algorithms,” 2016. arXiv:1606.06256.

[32] S. Diamond and S. Boyd, “Matrix-free convex optimization modeling,”
Optim. Appl. Control and Data Sci., Springer, pp. 221–264, 2016.

[33] J. Folberth and S. Becker, “Efficient adjoint computation for wavelet
and convolution operators [lecture notes],” IEEE Signal Process. Mag.,
vol. 33, no. 6, pp. 135–147, Nov. 2016.

[34] M. Costabel, “Time-dependent problems with the boundary integral equa-
tion method, ” in Encyclopedia of Computational Mechanics. Hoboken,
NJ, USA: Wiley, 2004.
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