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Multi-Speaker DOA Estimation Using Deep
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Abstract—Supervised learning-based methods for source local-
ization, being data driven, can be adapted to different acoustic con-
ditions via training and have been shown to be robust to adverse
acoustic environments. In this paper, a convolutional neural net-
work (CNN) based supervised learning method for estimating the
direction of arrival (DOA) of multiple speakers is proposed. Multi-
speaker DOA estimation is formulated as a multi-class multi-label
classification problem, where the assignment of each DOA label
to the input feature is treated as a separate binary classification
problem. The phase component of the short-time Fourier trans-
form (STFT) coefficients of the received microphone signals are
directly fed into the CNN, and the features for DOA estimation are
learnt during training. Utilizing the assumption of disjoint speaker
activity in the STFT domain, a novel method is proposed to train
the CNN with synthesized noise signals. Through experimental
evaluation with both simulated and measured acoustic impulse re-
sponses, the ability of the proposed DOA estimation approach to
adapt to unseen acoustic conditions and its robustness to unseen
noise type is demonstrated. Through additional empirical investi-
gation, it is also shown that with an array of M microphone our
proposed framework yields the best localization performance with
M-1 convolution layers. The ability of the proposed method to
accurately localize speakers in a dynamic acoustic scenario with
varying number of sources is also shown.

Index Terms—Source localization, multiple speakers, convolu-
tional neural networks.

I. INTRODUCTION

MANY applications such as hands-free communication,
teleconferencing, robot audition and distant speech

recognition require information on the location of sound sources
in the acoustic environment. Information regarding the source
location can be utilized for the task of enhancing the signal
coming from a specific location while suppressing the unde-
sired signal components. In some applications, the information
is used for camera steering whereas in applications like robot
audition the source location information is used for navigation
purposes. The relative direction of a sound source with respect
to a microphone array is generally given in terms of the direction
of arrival (DOA) of the sound wave originating from the source
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position. As this information is not available in most practical
scenarios, the DOA of the sound source needs to be estimated.
However, accurate DOA estimation is a challenging task in the
presence of noise and reverberation. The task becomes even
more difficult when the DOAs of multiple sound sources need
to be estimated.

In the literature related to DOA estimation, there exist two
kinds of estimation paradigms: broadband and narrowband
DOA estimation. In narrowband DOA estimation, the task of
DOA estimation is performed separately for each frequency
sub-band, whereas in broadband DOA estimation the task is
performed for the whole input spectrum. In this work, the focus
is on broadband DOA estimation of multiple simultaneously
active sources.

Over the years, several approaches have been developed
for the task of broadband DOA estimation. Some popular ap-
proaches are: i) subspace based approaches such as multiple sig-
nal classification (MUSIC) [1], [2], ii) time difference of arrival
(TDOA) based approaches that use the family of generalized
cross correlation (GCC) methods [3], iii) generalizations of the
cross-correlation methods to microphone arrays with more than
two channels such as steered response power (SRP), SRP with
phase transform (SRP-PHAT) [4], and multichannel cross cor-
relation coefficient (MCCC) [5], iv) adaptive multichannel time
delay estimation using blind system identification based meth-
ods [6], v) probabilistic model based methods such as maximum
likelihood method [7] and vi) methods based on histogram anal-
ysis of narrowband DOA estimates [8], [9]. The methods in
categories i-iii, are developed under the free-field propagation
model, which leads to severe degradation in their performance
in reverberant and noisy scenarios. The method presented in [6]
is designed for single-source localization specifically in rever-
berant scenarios, however, its extension to multi-source case is
not straightforward [5]. In recent years, different methods have
been proposed that aim to localize multiple simultaneously ac-
tive sources in adverse acoustic environments [10]–[12]. The
methods presented in [10] and [11] were developed particularly
for binaural and stereo channels, respectively. An extension of
these works to arbitrary microphone arrays require pair-wise
processing that would lead to a combinatorial growth in compu-
tational cost as the number of microphones increase. Similarly,
the method in [12] was formulated for a spherical microphone
array. A common aspect of these methods is the inclusion of
involved data pre- and post-processing techniques that require
manual adjustment of specific parameters to achieve good lo-
calization performance.

1932-4553 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on September 16,2022 at 20:04:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0846-207X
https://orcid.org/0000-0002-2613-8046
mailto:soumitro.chakrabarty@audiolabs-erlangen.de
mailto:soumitro.chakrabarty@audiolabs-erlangen.de
mailto:emanuel.habets@audiolabs-erlangen.de


CHAKRABARTY AND HABETS: MULTI-SPEAKER DOA ESTIMATION USING DEEP CONVOLUTIONAL NETWORKS 9

In comparison, supervised learning approaches, being data
driven, have the advantage that they can be adapted to different
acoustic conditions via training. Also, if training data from di-
verse acoustic conditions are available, then these approaches
can be made robust against noise and reverberation. Following
the recent success of deep learning based supervised learning
methods in various signal processing related tasks [13], [14],
different methods for DOA estimation have been proposed [15]–
[25]. A common aspect of the methods proposed in [16]–[20] is
that they all involve an explicit feature extraction step. In [17],
[19], GCC vectors, computed from the microphone signals, are
provided as input to the learning framework. In [18], [20], sim-
ilar to the computations involved in the MUSIC method for
localization, the eigenvalue decomposition of the spatial corre-
lation matrix is performed to get the eigenvectors correspond-
ing to the noise subspace, and is provided as input to a neural
network. In [16], a binaural setup is considered and binaural
cues at different frequency sub-bands are computed and given
as input. Such feature extraction steps generally lead to a high
computational cost. Additionally, when features computed from
the microphone signals are given as input the neural network
mainly just learns the functional mapping from the features to
the final DOA, which can possibly lead to a lack of robustness
against adverse acoustic conditions.

One of the main reasons for the success of deep learning
has been the encapsulation of the feature extraction step into
the learning framework. In [15], a convolutional neural net-
work (CNN) based approach for single-source localization was
proposed where the power spectrograms of all the microphone
signals for each time frame were concatenated to form the in-
put vector which was then provided as an input to a CNN. The
input feature extraction in the proposed work did not preserve
the phase information, and only utilized the power of the mi-
crophone signals for DOA estimation. In a similar work [21], a
special CNN architecture, known as ResNet, was used for single-
source localization with power spectrograms of the microphone
signals for multiple time frames as the input. By studying the
traditional signal processing based methods for DOA estima-
tion, it can be seen, especially for far-field scenarios, that most
methods exploit the phase difference information between the
microphone signals to perform localization. Based on this ob-
servation, in [22], the current authors proposed a CNN based
supervised learning method for broadband DOA estimation of
a single active speaker per short-time Fourier transform (STFT)
time frame. Rather than involving an explicit feature extraction
step, the phase component of STFT coefficients of the input
signal were directly provided as input to the neural network.
Another contribution of the work was to show the possibility
of training the system using synthesized noise signals, which
made the creation of training data much simpler compared to
using real world signals like speech.

Following that, in [23], the previously proposed framework
was extended to estimate multiple speaker DOAs. There, a novel
method was developed to generate the training data using syn-
thesized noise signals for multi-speaker localization. One of the
main challenges of using noise signals for the multi-speaker
case is that, for overlapping signals, the phase of the STFT

coefficients get combined non-linearly, and depend on the mag-
nitude of the individual signals. This makes the learning pro-
cedure for the CNN difficult. To overcome this problem, the
property of W-disjoint orthogonality [26], which holds approx-
imately for speech signals, was utilized. In terms of evalua-
tion, only preliminary results with simulated data for a single
acoustic setup was shown in [23]. Recently, two other CNN
based methods for multi-source localization have been pro-
posed [24], [25]. In contrast to [23], the method proposed in
[24] involves the extraction of microphone pair-wise GCC vec-
tors which, as mentioned earlier, can lead to a combinatorial
increase in input feature dimensions as the number of micro-
phones in the array increases. In [25], a convolutional recurrent
neural network (CRNN) based localization method is proposed
that takes the magnitude and phase spectrograms of the mi-
crophone signals as input to first learn to estimate the MUSIC
pseudo-spectrum followed by learning the mapping from the
spatial pseudo-spectrum to the DOAs. The input feature in this
work corresponds to 2 s audio, making it difficult to apply this
method in an online framework.

In this paper, we extend the initial work on DOA estima-
tion of multiple speakers presented in [23]. The formulation
of the task of multi-speaker DOA estimation as a multi-label
multi-class classification problem is presented, where first the
probabilities of the active source DOAs are estimated at the
frame-level. This makes the proposed system flexible in terms
of the trade-off between localization accuracy vs adaptability
in dynamic acoustic scenarios as the complete post-processing
technique for the obtained frame-level probabilities can be de-
termined based on the application. In this work, the frame-level
probabilities are averaged over multiple time frames depending
on the chosen block length over which the final DOA estimates
are to be obtained. From these averaged probabilities, assuming
the number of speakers, L, within that block is known, the DOAs
corresponding to the classes with the L highest probabilities are
chosen as the final DOA estimates. To build robustness to ad-
verse acoustic conditions, multi-condition training in the form
of training data from diverse acoustic scenarios is performed. A
detailed description of the previously proposed method for gen-
erating training data using synthesized noise signals along with
pseudo code for a better understanding of the entire training data
generation procedure is also presented.

With respect to the proposed CNN architecture, we first posit
that due to the small filters chosen to learn the phase correlations
between neighboring microphones, M − 1 convolution layers
are required to learn from the phase correlation between all the
microphone pairs, where M is the number of microphones in
the array. Through experimental evaluation, the requirement of
M − 1 layers is shown in terms of both localization perfor-
mance as well as number of trainable parameters. This mainly
demonstrates a relation between the number of microphones
in the array and the number of convolution layers required to
achieve the best performance, and gives a structured approach
to how a network parameter can be modified due to change in
the number of microphones. The influence of distance between
the sources and the microphone array is also investigated ex-
perimentally. Through further experiments with simulated and

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on September 16,2022 at 20:04:37 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 13, NO. 1, MARCH 2019

measured room impulse responses (RIRs), the robustness of the
proposed method to unseen acoustic conditions and noise types
is investigated. Additionally, we also show that even when the
CNN is trained to estimate the probabilities of maximum two
DOA classes per STFT time frame, at a block level the proposed
method can be used to localize more than two speakers also. The
practical applicability of the proposed method is further demon-
strated by experiments with real recorded speech produced by
human speakers.

The remainder of this paper is organized as follows. In
Section II, the formulation of the problem as a multi-class
multi-label classification is described. In Section III, we review
the input feature representation used in our framework. The
task of obtaining the final DOA estimates in our proposed
system is described in Section IV. Section V presents a detailed
description of the proposed method for generating training data
using synthesized noise signals. Experimental evaluation of
the proposed method is presented in Section VI. Section VII
concludes the paper.

II. PROBLEM FORMULATION

We want to utilize a CNN based supervised learning frame-
work for estimating the DOAs of multiple simultaneously active
sources by learning the mapping from the recorded microphone
signals to the DOA of the active speech sources using a large
set of labeled data. The DOA estimation in this work is per-
formed for signal blocks that consist of multiple time frames
of the STFT representation of the observed signals. The block
length can be chosen depending on the application scenario. For
example, for dynamic sound scenes it might be preferable to
choose shorter block lengths compared to a scenario when it is
known that the sources would be static.

The problem of multi-source DOA estimation is formulated
as an I-class multi-label classification problem. As the first step,
the whole DOA range is discretized to form a set of possible
DOA values, Θ = {θ1 , . . . , θI }. A class vector of length I is
then formed where each class corresponds to a possible DOA
value in the set Θ. In this work, we assume an independent
source DOA model, i.e., the spatial location of the sources are
independent of each other. Due to this assumption, multi-label
classification can be tackled using the binary relevance method
[27], where the assignment of each DOA class label to the
input is treated as a separate binary classification problem. As
stated earlier, the aim is to obtain the DOA estimates of multiple
speakers for a signal block, however, the input to the system is
a feature representation for each STFT time frame separately.

As shown in Fig. 1, a supervised learning framework consists
of a training and a test phase. In the training phase, the CNN
is trained with a training data set that consists of pairs of fixed
dimension feature vectors for each STFT time frame and the
corresponding true DOA class labels. In the test phase, given
the input feature representation corresponding to a single STFT
time frame, the first task is to estimate the posterior probability
of each DOA class. Following this, depending on the chosen
block length, the frame-level probabilities are averaged over all
the time frames in the block. Finally, considering L sources, the

Fig. 1. Block diagram of the proposed system.

DOA estimates are given by selecting the L DOA classes with
the highest probabilities.

In this work, we consider the number of sources L to be
known. As an alternative, the number of active sources can be
estimated based on the number of clear peaks in the averaged
probabilities for a signal block. Also, the recorded signal from
a reference microphone can also be used for speaker count
estimation using the method proposed in [28]. Investigating the
best strategy for this problem would be part of future work.

III. INPUT REPRESENTATION

In this work, the aim is to learn the relevant features for the
task of DOA estimation via training rather than have an explicit
feature extraction step to compute the input to be given to the
system. Therefore we use the phase map [22], [23] as the input
feature representation in this work. For the sake of completeness,
we give a brief description of this representation.

As described earlier, the input to the DNN framework is a
feature representation corresponding to each STFT time frame.
Let us consider that the received microphone signals are trans-
formed to the STFT domain using an Nf point discrete Fourier
transform (DFT). In the STFT domain, the observed signals at
each time-frequency (TF) instance are represented by complex
numbers. Therefore, the observed signal can be expressed as

Ym (n, k) = Am (n, k)ejφm (n,k) , (1)

where Am (n, k) represents the magnitude component and
φm (n, k) denotes the phase component of the STFT coefficient
of the received signal at the m-th microphone for the n-th time
frame and k-th frequency bin. In this work, we directly provide
the phase component of the STFT coefficients of the received
signals as input to our system. Note that this phase term consists
of the phase of the source along with the effect of the propa-
gation path. The idea is to make the system learn the relevant
feature for DOA estimation from the phase component through
training.

Since the aim is to compute the probabilities of the DOA
classes at each time frame, the input feature for the n-th time
frame is formed by arranging φm (n, k) for each time-frequency
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Fig. 2. Proposed architecture.

bin (n, k) and each microphone m into a matrix of size M × K,
where K = Nf /2 + 1 is the total number of frequency bins,
upto the Nyquist frequency, at each time frame and M is the
total number of microphones in the array. We refer to this feature
representation as the phase map. For example, if we consider
a microphone array with M = 4 microphones and Nf = 256,
then the input feature matrix is of size 4 × 129.

Given the input representations, the next task is to estimate
the probabilities of the I DOA classes for each time frame.
For this, we propose a CNN based supervised learning method,
which is described in the following section.

IV. DOA ESTIMATION WITH CNNS

CNNs are a variant of the standard fully-connected neural net-
work, where the architecture typically consists of one or more
convolution layers followed by fully-connected networks lead-
ing ot the output [29]. In this work, the main motivation behind
using CNNs is to learn the discriminative features for DOA
estimation from the phase map input by applying small local
filters to learn the phase correlations at the different frequency
sub-bands.

Given the phase map as the input, the CNN generates the
posterior probability for each of the DOA classes. Let us denote
the phase map for the n-th time frame as Φn . Then the poste-
rior probability generated by the CNN at the output is given by
p(θi |Φn ), where θi is a binary random variable that determines
source activity from the DOA corresponding to the i-th class.
In Fig. 2, the CNN architecture used in this work is shown. In
the convolution layers, small filters of size 2 × 1 are applied to
learn the phase correlations between neighboring microphones
at each frequency sub-band separately. This is in contrast to
[22], where square filters of size 2 × 2 were used to learn the
features from the neighboring frequency bins also. However,
in the case of multiple speakers neighboring frequency bins
might contain dominant activity from different speakers, there-
fore in this work we use 2 × 1 filters. These learned features for
each sub-band are then aggregated by the fully connected layers
for the classification task. The proposed architecture consists
of at most M − 1 convolution layers, where M is the num-
ber of microphones, since after M − 1 layers performing 2D
convolutions is no longer possible as the feature maps become
vectors. While taking memory and computational constraints

into account, we also performed validation experiments in dif-
ferent acoustic scenarios to determine the filter size as well
as the number of feature maps per layer. Increasing the filter
size along the frequency dimension was found to lack robust-
ness in acoustic conditions different from the training setup.
Increasing the size along the microphone dimension, beginning
from the first layer, led to degradation in performance across all
conditions. Increasing the number of feature maps significantly
increased the computation and memory cost, but did not exhibit
any significant performance improvement.

In terms of the design choice related to the number of convo-
lution layers, we posit that by using small filters of size 2 × 1,
with each subsequent convolution layer after the first one, for
each sub-band, the phase correlation information from different
microphone pairs are aggregated due to the growing receptive
field of the filters, and to learn from the correlation between
all microphone pairs, M − 1 convolution layers would be re-
quired to incorporate this information into the learned features.
In Section VI-B4, we experimentally demonstrate that indeed
M − 1 convolution layers are required to obtain the best DOA
estimation performance for a given microphone array and also
show the efficiency of this design choice in terms of number of
free parameters.

As stated earlier, we utilize the binary relevance method [27]
to tackle the multi-label classification problem, therefore the
output layer of the CNN consists of I sigmoid units, each cor-
responding to a DOA class. During training, the optimization
of the network weights are done in terms of each output neuron
separately, using binary cross-entropy as the loss function.

Here, the task of multi-source DOA estimation is performed
for a signal block consisting of N time frames. The block-level
posterior probability is obtained by averaging N frame-level
probabilities for each θi , given by

pn (θi) =
1
N

n+N −1∑

n

p(θi |Φn ). (2)

From these computed average probabilities, the L DOAs corre-
sponding to the L classes with the highest probabilities are se-
lected as the DOA estimates. In this work, we chose this simple
method to demonstrate the effectiveness of the proposed algo-
rithm. Using more advanced post-processing methods, such as
automatic peak detection [30], is beyond the scope of this paper.
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V. TRAINING DATA GENERATION

In this section, we describe the training data generation
method employed in this work. Please recall that though the
task of DOA estimation is performed for a block of multiple
time frames, in the proposed system the probabilities of the
DOA classes are estimated at each time frame. Therefore, using
speech as training signals can be problematic since we would
require an extremely accurate voice activity detection method
to avoid including silent time frames in the training data, which
can adversely affect the training. To avoid this problem, in [22],
we proposed to use synthesized noise signals to generate the
training data for the single speaker scenario. The problem of
assigning accurate ground truth DOA labels at the STFT time
frame level becomes even more difficult when the aim is to lo-
calize simultaneously active speakers. However, for such a case,
using overlapping noise signals for training is also not suitable,
since at each TF bin, the phase component of the observed mi-
crophone signals’ STFT coefficient is a non-linear combination
of the phase of the individual directional sources. This combi-
nation is dependent on the magnitude of the individual sources
at each TF bin. Therefore, if overlapping noise signals are used,
the CNN needs to learn from different non-linear combinations
of the phases of the individual sources which would make the
learning process difficult for the CNN.

To effectively use synthesized noise signals to generate the
training data for more than one source per time frame, and taking
into account that the aim is to localize speech sources, we utilize
the assumption two simultaneously active speech sources do not
overlap in the TF domain. This is known as W-disjoint orthogo-
nality which has been shown to hold approximately for speech
signals with an appropriate choice of the time and frequency
resolutions [26]. In the following, we explain the procedure
for generating the training data for a scenario with two active
speakers.

As a first step, we generate the training signals for a single-
source case by convolving the room impulse responses (RIRs)
corresponding to two different directions, for a specific acoustic
condition considered for training, with two synthesized white
noise signals. Then, for a specific source-array setup, the STFT
representation of these two multi-channel signals, correspond-
ing to two different DOAs, are concatenated along the time
frame axis. Following this, for each frequency sub-band sepa-
rately, the time-frequency bins for all microphones are random-
ized to get a single multi-channel training signal. The phase map
input is extracted from this signal by selecting the M × K ma-
trix for each time frame. The randomization process is included
here such that at each time frame of the resulting training signal,
the individual frequency sub-bands correspond to the individual
activity of one of the sources. Since the activity at each sub-
band is randomized, the phase map input for each frame would
now include the activity from two directional sources, however,
at different frequency sub-bands. This mimics the W-disjoint
orthogonality property mentioned earlier. This also avoids the
problem of learning from different non-linear combination of
the phases of the individual signals which occurs if completely
overlapping signals are used.

Fig. 3. Illustration of the method used for generating the training data.

There are two important things to note regarding the random-
ization process. First, it is essential that the randomization of the
TF bins is done separately for each frequency sub-band, such
that the TF bins remain in the same frequency sub-band. This
is essential since phase correlations are frequency dependent.
Secondly, it is essential that for each frequency sub-band, the
TF bins for all the microphones are randomized together, such
that phase relations between the microphones for the individual
TF bins are preserved.

An illustration of this procedure is shown in Fig. 3. The figure
on the left illustrates the concatenated TF representation of two
directional signals, originating from two different directions, θ1
and θ2 . Following the randomization procedure, it can be seen
that at each time frame there are approximately equal number of
TF bins with activity corresponding to each of the two DOAs,
assuming the length of the concatenated signals was the same.
The phase map is extracted from this signal at each time frame.
Thus, at each frequency sub-band of the phase map input to the
CNN, the phase of the STFT coefficients for all microphones
correspond to one of the sources, θ1 or θ2 . This makes the
assumption of disjoint activity of signals implicit within the
training data generation. From this phase map, the CNN can
learn the relevant features for localizing multiple speakers at
each time frame from the individual TF bins that contain the
phase relations across the microphones for each source DOA
separately. By repeating the above mentioned procedure for
all possible angular combinations and acoustic conditions, we
obtain the complete training dataset. The entire training data
generation procedure for the two speaker case is presented in the
form of two-part pseudo code in Pseudo code Part 1 and 2. In the
first part, Pseudo code Part 1, the procedure for generating the
simulated RIRs for training is described, where different rooms
with different array positions in each room along with different
source-array distances are selected, and the RIRs for each an-
gular position at the specified distance is simulated for all the
microphones. The different acoustic conditions considered for
the multi-condition training of the CNN is given in Table. I. In
this work, we select R = 5 rooms, P = 7 array positions in each
room and D = 2 different source-array distances for each array
position. The different rooms as well as positions inside each
room are considered to develop robustness in various acoustic
conditions. Given the RIRs for all the different acoustic condi-
tions, Pseudo code Part 2 describes the procedure for obtaining
the training data using synthesized noise signals for all different
acoustic scenarios and angular combinations.
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TABLE I
CONFIGURATION FOR TRAINING DATA GENERATION. ALL ROOMS ARE 2.7 m HIGH

Pseudo code Part 1: Generate RIRs.
Require: Array with M microphones

1: Discretize DOA space for I discrete DOA values
2: Select R rooms with randomly assigned RT60 ∈ [0.2, 0.8]
3: for each r ∈ R do
4: Randomly select P array positions
5: Select D source-array distance values
6: for each p ∈ P do
7: for each d ∈ D do
8: Simulate RIRs for I DOAs and M mics

using [34]
9: Save: I × M RIRs

10: end for
11: end for
12: end for
13: Save: NA RIR files �NA = R × P × D

In total, the training data consisted of NT ≈ 12.4 million
time frames. The CNN was trained using the Adam gradient-
based optimizer [31], with mini-batches of 512 time frames
and a learning rate of 0.001. During training, at the end of
the convolution layers and after each fully connected layer, a
dropout procedure [32] with a rate of 0.5 was used to avoid over
fitting. All the implementations were done in Keras [33].

Please note that in this work, the CNN is trained to estimate
the probabilities of DOA classes of only two speakers given
the phase map input for each STFT time frame. By following
the same procedure as described above the method can be ex-
tended for estimating the DOA class probabilities of more than
two speakers per time frame. In Section VI-C1, it is shown that
despite such a training procedure the proposed method can es-
timate the DOAs of more than two speakers for a signal block
with multiple time frames.

VI. EXPERIMENTAL EVALUATION

In this section, different experiments with simulated and
measured RIRs as well as real recorded data are presented to
objectively evaluate the performance of the proposed system.
For all the experimental evaluations except the one presented
in Section VI-B4, we consider a uniform linear array (ULA)
with M = 4 microphones with inter-microphone distance of
8 cm, and the input signals are transformed to the STFT do-
main using a DFT length of Nf = 512, with 50% overlap,
resulting in K = 257. The sampling frequency of the signals
is Fs = 16 kHz. To form the classes, we discretize the whole

Pseudo code Part 2: Generate Phase Maps.
Require: NA RIR files with I × M RIRs each

1: for each na ∈ NA do
2: for each i ∈ I do
3: for j ∈ I and j �= i do
4: si, sj = 2 s long white Gaussian noise signals
5: xi = si convolved with M RIRs for DOA θi

6: xj = sj convolved with M RIRs for DOA θj

7: xi = xi + vi

8: xj = xj + vj �vi ,vj : Uncorrelated noise
9: Xi = STFT(xi)

10: Xj = STFT(xj )
11: Zi,j = Concatenate Xi and Xj along time

axis and randomize TF bins as
described in Section V

12: Wi,j = Phase(Zi,j ) �Size(Wi,j ) = M ×
K × Ni,j

13: for each n ∈ Ni,j do
14: Φn = M × K matrix for each time frame n

from Wi,j

15: tn = I × 1 vector with i and j-th element as
1, rest 0

16: end for
17: end for
18: end for
19: end for
20: Concatenate all the computed phase maps Φn into a

tensor Φ of size M × K × NT

21: Concatenate all target vectors tn into a matrix T of size
I × NT �NT : Total time frames in training dataset

Training data: {Φ|T}

DOA range of a ULA with a 5◦ resolution to get I = 37 DOA
classes, for both training and testing. All the presented objec-
tive evaluations are for the two speakers scenario. However, in
Section VI-C1, we also demonstrate the ability of the proposed
method to deal with scenarios with varying number of speakers.

The speech signals used for evaluation are taken from the
LIBRI speech corpus. With random selected speech utterances,
five different two speaker mixtures, each of length 2 s, were used.
For a specific source-array setup in a room, each two speaker
mixture is considered for each possible angular combination.
This was done to avoid influence of signal variation on the dif-
ference in performance for different acoustic conditions. Also,
since the angular space is discretized with a 5◦ resolution, and
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for a proper objective evaluation (described in Section VI-A),
for the experiments with simulated RIRs in Section VI-B, it was
ensured that the angular distance between the two speakers in
the different mixtures is at least 10◦ during test.

Since the speech utterances can have different lengths of si-
lence at the beginning, the central 0.8 s segment of the mix-
tures was selected for evaluation. Considering an STFT window
length of 32 ms with 50% overlap, this resulted in a signal block
of N = 50 time frames over which the frame-level probabilities
are averaged for the final DOA estimation, as shown in (2).

A. Baselines and Objective Measures

The performance of the proposed method is compared to two
commonly used signal processing based methods: Steered Re-
sponse Power with PHase Transform (SRP-PHAT) [35], and
broadband MUltiple SIgnal Classification (MUSIC) [2]. For the
broadband MUSIC method, to keep the comparison similar with
the other methods, the MUSIC pseudo-spectrum is computed
at each frequency sub-band for each STFT time frame, with an
angular resolution of 5◦ over the whole DOA space, and then it
is averaged over all the frequency sub-bands to get the broad-
band pseudo-spectrum. This is then averaged over all the time
frames considered in a signal block and similar to the proposed
method, the L DOAs with the highest values are selected as the
final DOA estimates. Similar post-processing is also performed
for the computed SRP-PHAT pseudo-likelihoods at each time
frame to get the final DOA estimates for a signal block. Please
note that the expectation operator in the computation of the
correlation matrix for MUSIC as well as the expectation oper-
ator for computing the cross-correlations in SRP-PHAT were
approximated via recursive temporal averaging with a time con-
stant of 64 ms for both cases.

For the objective evaluation, two different measures were
used: Mean Absolute Error (MAE) and localization accuracy
(Acc.). The mean absolute error computed between the true and
estimated DOAs for each evaluated acoustic condition is given
by

MAE(◦) =
1

LC

C∑

c=1

L∑

l=1

|θc
l − θ̂c

l |, (3)

where L is the number of simultaneously active speakers and
C is the total number of speech mixture segments considered
for evaluation for a specific acoustic condition. The true and
estimated DOAs for the l-th speaker in the c-th mixture are de-
noted by θc

l and θ̂c
l , respectively. The speaker-DOA association

is based on the ascending absolute value of the true DOA of the
source, i.e., the speaker with the smallest DOA value is the first
speaker and so on. Similarly, the lowest estimated DOA value
is considered to correspond to the first speaker.

The localization accuracy is given by

Acc.(%) =
Ĉacc.

C
× 100, (4)

where Ĉacc. denotes the number of speech mixtures for which
the localization of the speakers is accurate. In our evaluation,
the localization of speakers for a speech segment is considered

TABLE II
CONFIGURATION FOR GENERATING TEST DATA. ALL ROOMS ARE 3 m HIGH

accurate if the distance between the estimated and the true DOA
for all the speakers is less than or equal to 5◦.

B. Experiments With Simulated RIRs

In this section, first, the performance of the proposed method
is evaluated for acoustic conditions different from those consid-
ered during training, in the presence of varying levels of spatially
uncorrelated white noise in Section VI-B1. Then, we evaluate
the performance in the presence of varying levels of diffuse bab-
ble noise, a noise type which was unseen during training, along
with a constant level of spatially white noise in Section VI-B2.
In Section VI-B4, we study the influence of the number of con-
volution layers on the performance of the proposed method and
empirically demonstrate the optimal choice for the number of
convolution layers for the proposed method.

1) Generalization to Unseen Acoustic Conditions: To eval-
uate the performance of the methods for unseen acoustic condi-
tions, we consider two rooms with different reverberation times
as shown in Table II. In each room, the ULA is placed at four
different positions and for each of these array positions, the two
speakers from each of the five considered mixtures are placed
at different angular positions at the same specified source-array
distance. For each array position, the total number of mixtures
considered for evaluation is C = 630 ∗ 5 = 3150, where 630
corresponds to the number of possible angular combinations
with the constraint of 10◦ angular separation between the two
speakers for each of the five mixtures.

The performance of the three methods under test is evaluated
for three different levels of spatially white noise, with input
SNRs 10, 20 and 30 dB, for both the rooms and the results in
terms of the two considered objective measures are presented in
Table III. The shown results for each input SNR was averaged
over the four different array positions considered in each room.

From the results, it can be seen that the proposed method is
able to provide accurate localization performance in acoustic
environments that were not part of the training data. For input
SNR of 30 dB, it manages to localize both sources accurately
in 98% of the speech mixtures and shows a very low MAE. As
the noise level increases, the performance worsens, however, it
always provides a much better localization accuracy and much
lower error compared to both MUSIC and SRP-PHAT.

Considering same noise level, performance of the proposed
method in both rooms is relatively similar compared to the sig-
nal processing based methods which have a considerably better
performance in the less reverberant room (Room 1). One of the
main reasons for this difference is the assumption of free-field
sound propagation in the formulation of the signal process-
ing based methods which leads to considerable deterioration in
their performance in more reverberant conditions. The proposed
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TABLE III
RESULTS FOR TWO DIFFERENT ROOMS WITH VARYING LEVELS OF SPATIALLY WHITE NOISE COMPUTED OVER 3150 SPEECH SEGMENTS OF 0.8 s FOR EACH

ARRAY POSITION. FOR EACH SNR, THE RESULT IS AVERAGED OVER THE FOUR DIFFERENT ARRAY POSITIONS IN THE ROOM

TABLE IV
RESULTS FOR TWO DIFFERENT ROOMS WITH VARYING LEVELS OF BABBLE NOISE COMPUTED OVER 3150 SPEECH SEGMENTS OF 0.8 s FOR EACH ARRAY

POSITION. FOR EACH SNR, THE RESULT IS AVERAGED OVER THE FOUR DIFFERENT ARRAY POSITIONS IN THE ROOM

supervised learning based method is trained in a diverse set of
acoustic conditions, leading to a much better robustness to ad-
verse acoustic environments.

Overall, it can be seen that the proposed method has a
superior performance, in terms of both MAE and localization
accuracy, compared to the traditional signal processing based
methods for all the different levels of spatially white noise in
both rooms. Among the two signal processing based methods,
MUSIC performs much better since the averaged broadband
MUSIC pseudo-spectrum contains clearer peaks compared to
SRP-PHAT which tends to exhibit a flatter distribution over the
DOAs.

2) Generalization to Unseen Noise Type: In the previous
experiment, the performance of the proposed method was eval-
uated for different levels of spatially white noise, which is a
noise type seen by the network during training. In this section,
we consider the presence of diffuse babble noise in the acous-
tic environment, which has different spatial as well as spectral
characteristics compared to white noise, and is a noise type with
which the CNN was not trained. A 40 s long sample of multi-
channel diffuse babble noise was generated using the acoustic
noise field generator [36], assuming an isotropic spherically dif-
fuse noise field. The generated babble noise was divided into
20 segments of 2 s each and randomly chosen segments were
added to each mixture.

The performance of the methods was evaluated for three dif-
ferent input SNRs of babble noise:−5 dB, 0 dB and 5 dB. Along
with diffuse babble noise, spatially white noise with an input
SNR of 40 dB was also added and results for the two different
rooms are shown in Table IV. Similar to previous experiment,
results for each input SNR of babble noise was averaged over
the four different array positions considered in each room.

Though the proposed method is not trained with diffuse bab-
ble noise, it can be seen from the results that even at the lowest
input SNR of −5 dB, the proposed method is able to perform

accurate localization of the two speakers in both rooms for ap-
proximately 90% of the speech mixtures. Since we consider an
isotropic spherically diffuse noise field, the spatial coherence of
the babble noise is frequency dependent whereas white noise
is incoherent for all frequencies. Despite this difference, since
the proposed method is trained to localize directional sources
and due to multi-condition training, as long as the noise source
is not directional the proposed method can provide very good
performance.

If the results from Table III are compared to Table IV, it can
be seen that the deterioration in performance of the proposed
method, in terms of the objective measures, as the noise levels
increase is more prominent when white noise is considered
compared to diffuse babble noise. The main reason for this
difference is the spectral characteristics of the two different
types of noises. On the one hand, spatially white noise is present
across the spectrum, therefore the input features at all frequency
sub-bands are equally affected. On the other hand, babble noise
is mostly dominant at low frequencies, therefore since each
filter kernel in the convolution layers of the CNN learns from
the complete input feature space, the filters are able to extract
the relevant features for localization from the high SNR regions
of the input to compensate for the lack of information in the low
SNR regions.

Overall, the proposed method provides a much better lo-
calization accuracy and lower error than the signal process-
ing based methods, with the difference in performance be-
ing especially significant at low input SNRs of diffuse babble
noise.

3) Influence of Source-Array Distance: The CNN used for
the earlier evaluations was trained for each room and array
position for two specific source-array distances of 1 m and 2 m.
To investigate the influence of source-array distance, in this
part, the localization performance of the proposed method is
evaluated for varying source-array distances.

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on September 16,2022 at 20:04:37 UTC from IEEE Xplore.  Restrictions apply. 



16 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 13, NO. 1, MARCH 2019

For this experiment, we simulated a room with dimensions
10 × 11 × 3 m3 and a reverberation time of 0.38 s. The test data
was generated for three different array positions. For each of
these array positions, the sound sources were placed at distances
varying from 0.4 m to 3 m. It should be noted that both the
speakers were placed at the same distance for each setup. A
single two speaker mixture was used and spatially white noise
was added resulting in input SNR of 20 dB.

The results for this experiment, in terms of both MAE and
localization accuracy, is shown in Fig. 5. Each point in the plot
corresponds to a specific source-array distance. For each of these
points, the measures were averaged over all possible angular
combinations for the two speakers at each of the different array
positions in the room.

From the result plots, it can be seen that when the sources
are very close to the microphone array the error in localization
is higher, since the CNN was trained considering a far-field
scenario, however, for very small source-array distances, the
sources are essentially in the near-field of the array. The mini-
mum error as well as maximum accuracy in localization can be
observed for the two specific distances of 1 m and 2 m, which
were part of the training setup. Additionally, for distances close
to these training distances, the errors are also relatively lower.
When the sources are between the two training distances, the
errors are slightly higher, however, if we observe the absolute
value of the MAE as well as the accuracy, the degradation in per-
formance is not significant. Similarly for distances larger than 2
m, it can be seen that the localization performance deteriorates
slightly.

Overall, observing the absolute value of the objective mea-
sures, it can be seen that though the network is trained with two
specific source-array distances, there is small deterioration in
performance for other distances, except when the sources are
very close to the microphone array.

4) Influence of Number of Convolution Layers: In the pre-
vious experiments, we considered a ULA with M = 4 micro-
phones and the CNN architecture used was the same architecture
that was proposed in [22], [23] which consisted of three convo-
lution layers followed by two fully connected layers. In this sec-
tion we empirically demonstrate that given the choice of small
filters of size 2 × 1 for all the convolution layers, with the aim
to learn the relevant features for localization from the phase cor-
relations at neighboring microphones, a CNN architecture with
three convolution layers is not always the best performing ar-
chitecture. Here we show that the number of convolution layers
need to be M − 1 to obtain the best localization performance.

For this experiment we consider a ULA with 8 microphones
with an inter-microphone distance of 2 cm. From this array, we
select two sub-arrays, one with 6 microphones and the other
with 4 microphones that are formed by selecting the respective
number of middle microphones from the main eight element
array, as shown in Fig. 4, to get a ULA with M = 6 and another
ULA with M = 4, respectively. All the arrays have the same
inter-microphone distance and array center.

Using the same training data configuration from previous ex-
periments (Table I), multiple CNNs with number of convolution
layers varying from 2 to M − 1 are trained for each of the ar-
rays. The number of convolution layers is restricted to M − 1

Fig. 4. Array setup for experiment presented in Section VI-B4.

since further 2D convolution layers are not possible as the mi-
crophone dimension of the phase map input is reduced to 1 after
the M − 1-th layer. For the eight microphone array, 6 CNNs
are trained, whereas for the six microphones and the four mi-
crophone array, 4 and 2 CNNs are trained, respectively. All the
networks were trained with the same amount of data. To ana-
lyze the performance of the 12 different trained networks, test
data corresponding to the Room 1 configuration in Table II is
generated for each of the arrays. Spatially white noise is added
for an input SNR of 30 dB.

The results for this experiment, in terms of both MAE and
localization accuracy, is shown in Fig. 6. In the figures, the center
of the circle markers correspond to the value of the objective
measure and the area of the markers denote the number of
trainable/free parameters for that specific network.

The first trend that can be noticed from the figures is that for
each of the arrays, as the number of convolution layers is de-
creased from M − 1 the performance of the networks degrades
in terms of both MAE and localization accuracy. This shows that
with small filters of size 2 × 1, to aggregate the phase correla-
tion features from all the microphone pairs in an array, M − 1
convolution layers are required. When lesser number of convo-
lution layers are used, as the same filter size is used in each of
these layers, phase correlation information from all microphone
pairs are not incorporated into the learned features leading to
deterioration in performance.

It can also be seen from the figures that the best localization
performances of the three arrays is different and it is better for
the array with higher number of microphones. This difference in
performance comes from the different apertures of the consid-
ered arrays, and similar to signal processing based localization
methods, here also we observe better performance for a ULA
with a larger aperture. A similar observation can be made by
comparing the localization results from Section VI-B1, where
the ULA consists of only four microphones, however, the inter-
microphone distance is 8 cm compared to 2 cm used in this
experiment leading to an array with a larger aperture.

In Fig. 6, we also observe that as the number of convolution
layers is decreased the number of trainable/free parameters in-
creases, as depicted by the area of the markers for each network.
From Fig. 2, it can be seen that when M − 1 convolution layers
are used, the size of each feature map at the end of the convo-
lution layers is always 1 × K. As the number of convolution
layers is decreased the size of each feature map at the end of the
convolution layers actually becomes larger leading to a larger
number of trainable/free parameters for the complete network.
This further demonstrates the need of M − 1 convolution layers,
as very large number of free parameters can lead to problems
of over fitting, if the amount of available training data is not
sufficient.
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Fig. 5. Results for the experiment showing the performance of the proposed method for increasing source-array distances presented in Section VI-B3.

Fig. 6. Results for the experiment on the influence of convolution layers on the proposed method presented in Section VI-B4.

Since the requirement of M − 1 convolution layers is mainly
related to the aggregation of information in the feature space by
the slowly growing receptive field of the small filters used in
our framework, techniques for a more aggressive expansion of
the receptive field of the filters can also be employed. This is
however beyond the scope of this paper and is a topic for future
research.

C. Experiments With Measured RIRs

For the experiments with measured RIRs, we used the Mul-
tichannel Impulse Response Database from Bar-Ilan University
[37]. The database consists of RIRs measured at Bar-Ilan
University’s acoustics lab, of size 6 × 6 × 2.4 m3 , for three
different reverberation times of RT60 = 0.160, 0.360, and 0.610
s. The recordings were done for several source positions placed
on a spatial grid of semi-circular shape covering the whole
angular range for a linear array, i.e., [0◦, 180◦], in steps of 15◦ at
distances of 1 m and 2 m from the center of the microphone array.

The recordings were done with a linear microphone array
with three different microphone spacings. For our experiment,
we chose the [8, 8, 8, 8, 8, 8, 8] cm setup [37], which consists of
eight microphones where the distance between the microphones

is 8 cm. We selected a sub-array of the four middle microphones
out of the total eight microphones used in the original setup, to
have a ULA with M = 4 elements with an inter-microphone
distance of 8 cm, which corresponds to the array setup used
in experiments with simulated RIRs. Therefore, the CNN
trained with simulated data used for the earlier evaluations in
Section VI-B1 and VI-B2 was also used for these experiments.
We used the same five mixtures from earlier, with the total num-
ber of mixtures for evaluation being C = 76 ∗ 5 = 380, where
76 is the number of all possible angular combinations with
discretization of the complete DOA space of a ULA with 15◦

resolution.
The results for all the different reverberation times and source-

array distances are shown in Table V. For this experiment, spa-
tially white noise was added to each mixture resulting in an
input SNR of 30 dB.

Even when trained with simulated data only, the results show
that the proposed method is able to provide good localization
performance in real conditions, even when the sources are placed
far from the array in reverberant conditions. The performance
of all the compared methods is better when the sources are
close to the array, however, the difference in performance, for
different distances, for the signal processing based methods is
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TABLE V
RESULTS WITH MEASURED RIRs

considerable since the effect of reverberation is more significant
when the sources are further away from the array.

Overall, the proposed method provides significantly better
performance compared to both MUSIC and SRP-PHAT, and
the difference is more prominent as the acoustic environment
becomes more reverberant.

1) Dynamic Acoustic Scenario: In all the previous experi-
ments, we considered the two speaker scenario for the evaluation
of the performance of the proposed method. In this experiment
we show that even though the CNN is trained to estimate the
frame-level probabilities of a maximum of two sources, with
the proposed method it is possible to estimate the DOA of more
than two sources for a short segment. Simultaneously, it is also
shown that since the input to the CNN is the phase map for a
single STFT time frame, the proposed method is also able to
handle dynamic acoustic scenarios where the number of speak-
ers changes over time.

For this experiment, we consider the reverberation time of
0.36 s and source-array distance of 2 m from the measured RIR
database used in the previous experiment. A 6 s speech mixture
segment is created where for the first 1 s only one source from
60◦ is active. For the next 2 s, an additional source is active from
105◦. A third source from 135◦ is active for the next 2 s along
with the first two sources. For the final 1 s duration, only the third
source is active. The source activities for each segment and the
corresponding ground truth DOAs of the sources are shown in
the bottom figure of Fig. 7(a). Spatially white noise and diffuse
babble noise are added to the speech mixture resulting in input
SNRs of 40 dB and 5 dB, respectively.

The estimated frame-level probabilities for the proposed
method and broadband MUSIC are depicted in the top and mid-
dle figures of Fig. 7(a), respectively. Since from the previous
experiments, it was found that MUSIC is the better perform-
ing method out of the two considered signal processing based
techniques, the results for SRP-PHAT are not presented. It can
be seen that the estimated frame-level probabilities for the pro-
posed method is much more concentrated towards the actual
source DOAs compared to MUSIC.

In Fig. 7(b), the frame level probabilities are averaged over
the time frames in each segment and then normalized to a max-
imum value of 1. This specific normalization is done for the
purpose of visualization only. From these figures, it can be seen
that the proposed method exhibits much clearer peaks at the true
source DOAs compared to MUSIC which lead to the superior
performance of the proposed method in previously presented
evaluations even with the simple post-processing method con-
sidered in this work for obtaining the final DOA estimates. It

can also be seen that in the segment S3, where three sources are
simultaneously active, though the network is trained to estimate
frame level probabilities of two speakers, clear peaks are visible
at all the three true source DOAs. Also, when only one source
is active (S1 and S4), the highest peaks correspond to the true
DOA.

D. Experiments With Real Recordings

To further analyze the practical applicability of the proposed
approach, we conducted experiments with real speech record-
ings. The recordings were done in a seminar room at Fraun-
hofer IIS, of size 9.8 × 5 × 2.9 m3 with a reverberation time of
RT60 ≈ 0.43 s. The room consists of multiple tables and chairs
along with a white-board at the front and a projector mounted
on the ceiling.

For the recordings, we used a ULA with M = 4 AKG car-
dioid microphones and an inter-microphone distance of 8 cm,
similar to the array considered in Sections VI-B and VI-C. The
array was mounted on a stand at a height of 1.45 m from the
floor. The CNN trained with simulated data used for the earlier
evaluations in Section VI-B1, VI-B2 and VI-C was also used for
these experiments. Please note that the CNN was trained assum-
ing omni-directional microphones. Also, no phase or position
calibration was performed prior to recording.

We considered two recording setups with different speaker
combinations at different spatial positions. The recording setups
and the corresponding results are described in the following.

1) Recording Setup 1: In the first setup we consider a female
and a male speaker positioned at 115◦ and 70◦, respectively. The
female speaker was at a distance 2.5 m from the array center
whereas the male speaker was at a distance of 2.2 m. This
recording was 27 s long, where the female speaker first spoke
in Spanish for about 6 s followed by short period of silence. It
was then followed by the male speaker speaking in English for
few seconds followed by another short period of silence. In the
final segment, both speakers spoke in their respective languages
at the same time for about 6 s. The speakers read excerpts from
their mobile phones, therefore were not always facing the array
and head movements were unavoidable.

The complete recording was transformed to the STFT domain
using the same parameters as earlier and the phase map for
each STFT time frame was given as input to the CNN. The
localization result for this recording setup with the proposed
method is shown in Fig. 8(a). In the upper figure, from the
top, the estimated frame-level probabilities using the proposed
method, estimated probabilities using MUSIC, the ground truth

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on September 16,2022 at 20:04:37 UTC from IEEE Xplore.  Restrictions apply. 



CHAKRABARTY AND HABETS: MULTI-SPEAKER DOA ESTIMATION USING DEEP CONVOLUTIONAL NETWORKS 19

Fig. 7. Results for experiment presented in Section VI-C1 with measured RIR and a four microphone ULA. The reverberation time of the room is 0.36 s with
the source placed 2 m away from the array center. Spatially uncorrelated noise and diffuse babble noise were added to the mixture signal with input SNRs of 40 dB
and 5 dB, respectively.

and the spectrogram of the recording are shown. In the bottom
figure, the averaged probabilities for the three distinct speech
activity segments are shown. For the averaging, N = 50 time
frames from the different segments were selected.

From the results, it can be seen that even though the CNN
was trained with simulated data, it is able to accurately localize
simultaneously active human speakers in a real scenario.
Also, the mismatch between the microphones considered for
training and those used for the recording does not hamper the
localization ability of the proposed method. From the figures
showing averaged probabilities for each DOA class, it can be
seen that in the single speaker segments the highest peaks for
the proposed method correspond to the true DOA of the speaker.
In the segment with simultaneous activity of the speakers also,
the two highest peaks for the proposed method correspond
to the true speaker DOAs. The averaged probabilities for
MUSIC exhibit clear peaks around the true DOAs for the single
speaker case. However, for the segment with simultaneous
activity of the speakers, the peak for one of the speakers is
not clear.

The silence periods in the recordings were introduced to
demonstrate the behavior of the proposed method when there is
no speech activity. From the estimated frame-level probabilities
for these segments, it can be seen that the proposed method does
not assign a high probability to any specific DOA class, rather
all the DOA classes get assigned low probabilities leading to
an almost uniform distribution across all the DOA classes. In
contrast, MUSIC tends to assign high likelihoods in the silence
periods to all directions. This makes the proposed approach
more suitable than MUSIC for practical purposes as these si-
lence or no speech activity periods can be explicitly detected
via simple thresholding.

2) Recording Setup 2: In this setup, we considered a more
challenging scenario with two male speakers positioned at 115◦

and 100◦, at distances of 2.5 m and 2 m, respectively. The female
speaker from the previous setup was substituted by a German
speaking male speaker at the same position while the English
speaking male speaker was moved closer to the other speaker.
This recording was 25 s long with the speech activity pattern
similar to the previous setup.
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Fig. 8. Results for the experiments with real recordings. For each setup, the estimated frame-level probabilities using the proposed method (top) and MUSIC
(second from the top) are shown, followed by the ground truth and the spectrogram of the recording. The averaged probabilities for the three speech activity
segments are shown in the bottom figure. Blue lines correspond to the proposed method while the Red lines correspond to MUSIC.

The results for this setup are shown in Fig. 8(b). From the esti-
mated frame-level probabilities, it can be seen that the proposed
method is able to accurately localize simultaneously active hu-
man speakers positioned 15◦ apart in a real scenario. From the
averaged probabilities for the corresponding segment, it can be
seen that the even for this challenging scenario, the two highest
peaks correspond to the true speaker DOAs. In contrast, it can
be seen that in this challenging setup, it becomes difficult for
MUSIC to localize the two speakers in the segment with simul-
taneous activity. A similar behavior to the previous setup can be
observed during the silence periods for both methods.

VII. CONCLUSION

A convolutional neural network based supervised learning
method for DOA estimation of multiple speakers was presented
that is trained using synthesized noise signals. Through ex-
perimental evaluation, it was shown that the proposed method
provides excellent localization performance in unseen acous-
tic environments as well as in the presence of unseen noise
types. It was also shown to exhibit a far superior performance
compared to the signal processing based localization methods,
SRP-PHAT and MUSIC, for the tested conditions. The ability
of the proposed method to deal with acoustic scenarios with
varying number of sources was shown. Using experiments with
real recordings, we demonstrated the practical applicability of
the proposed approach.

For the design choice of the number of convolution layers
in the proposed architecture, it was empirically shown that for
a microphone array with M microphones, M − 1 convolution
layers are required for the best localization performance. It was

also shown that such a choice leads to lesser number of trainable
parameters. The choice of M − 1 convolution layers is required
for the aggregation of the phase correlation information from
all microphone pairs in the extracted features, when using con-
tiguous convolution operations, as done in this work.
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