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Abstract—The performance of many microphone array pro-
cessing techniques deteriorates in the presence of reverberation.
To provide a widely applicable solution to this longstanding
problem, this paper generalizes existing dereverberation methods
using subband-domain multi-channel linear prediction filters so
that the resultant generalized algorithm can blindly shorten a
multiple-input multiple-output (MIMO) room impulse response
between a set of unknown number of sources and a microphone
array. Unlike existing dereverberation methods, the presented
algorithm is developed without assuming specific acoustic con-
ditions, and provides a firm theoretical underpinning for the
applicability of the subband-domain multi-channel linear predic-
tion methods. The generalization is achieved by using a new cost
function for estimating the prediction filter and an efficient opti-
mization algorithm. The proposed generalized algorithm makes
it easier to understand the common background underlying dif-
ferent dereverberation methods and future technical development.
Indeed, this paper also derives two alternative dereverberation
methods from the proposed algorithm, which are advantageous
in terms of computational complexity. Experimental results
are reported, showing that the proposed generalized algorithm
effectively achieves blind MIMO impulse response shortening
especially in a mid-to-high frequency range.

Index Terms—Blind equalization, dereverberation, linear pre-
diction MIMO.

1. INTRODUCTION

HE efficacy of many microphone array processing

T techniques, such as sound source localization and beam-
forming, is degraded in reverberant environments because they
rely on the assumption that there is little reverberation. Al-
though several methods have been proposed to circumvent this
problem [1], [2], they can be used only for specific applications.
To provide a widely applicable solution to this problem, this
paper presents an algorithm for shortening a multiple-input mul-
tiple-output (MIMO) room impulse response between a set of
unknown number of sources and the microphone array with
a blind processing approach, which we call blind MIMO im-
pulse response shortening. In other words, we aim at trans-
forming reverberant speech signals observed by a microphone
array into the same number of dereverberated signals without
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using knowledge of the room impulse response. The source lo-
calization and beamforming performance will be improved in
reverberant environments by preprocessing microphone signals
with blind MIMO impulse response shortening.

A. Related Work

Blind MIMO impulse response shortening is a dereverbera-
tion process that has the following four properties, which must
be satisfied when this technique is employed as a preprocessor
for other microphone array systems.

(c1) The process produces the same number of dere-
verberated signals as microphones. This property is
required since the performance of many microphone
array processing techniques increases with the number of
microphones.

(c2) The process does not require knowledge of the number
of sound sources. This property is required since it is often
difficult to estimate the correct number of sources with
blind processing.

(c3) The dereverberated signals are linear convolutive mix-
tures of the source signals using truncated versions of the
original room impulse responses while the dereverberated
signals are allowed to be superimposed by statistically in-
dependent noise. This property is required since almost all
microphone array techniques assume that input signals are
linear convolutive mixtures of source signals plus some ad-
ditive noise [3].

(c4) The process conserves the time differences of ar-
rival (TDOAs) at microphone positions. This property is
required since many source localization algorithms are
explicitly or implicitly based on TDOAs at microphone
positions [1].

Let us review existing dereverberation methods with the
above four properties in mind. The widely employed spectral
subtraction-based approach does not have property (c3) since
it corrupts the linear relationship between source and micro-
phone signals [4], [5]. On the other hand, blind deconvolution,
another conventional approach to dereverberation, fulfills
(c3) [6]. However, many blind deconvolution algorithms are
based on the assumption that source signals are produced by
independent and identically distributed processes while speech
signals are nonstationary and correlated in time, resulting in the
“overwhitening” of speech signals. Although there are several
methods for avoiding overwhitening, most of them produce
only one dereverberated signal, thus failing to satisfy (cl)

(71, [8].
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The Weighted Prediction Error (WPE) method [9] can be ex-
tended to perform blind MIMO impulse response shortening, al-
though it was originally proposed for single-source dereverber-
ation. This method uses subband-domain multi-channel linear
prediction filters, allowing us to conserve TDOAs at micro-
phone positions (condition (c4)) as well as the linear relation-
ship between sources and microphones (condition (c3)). In ad-
dition, it can yield as many dereverberated signals as micro-
phones by predicting each microphone signal separately (con-
dition (c1)). Since it does not require explicit knowledge of the
number of sources (condition (c2)), the WPE method satisfies
all the four properties. However, the cost function for estimating
the prediction filters was derived with the maximum likelihood
(ML) method, assuming that there is only one speaker in a room
and that there is no background noise. Although [10] reports
that the WPE method can perform dereverberation to a limited
extent even when there are multiple speakers, no mathematical
justification has ever been presented as to why the method works
under the multi-speaker situation.

Joint dereverberation and source separation methods such as
TRINICON [11] and the conditional separation and dereverber-
ation (CSD) method [10] are also relevant to blind MIMO im-
pulse response shortening. These methods aim at cancelling a
MIMO room impulse response rather than shortening it, and
therefore requirement (c4) is not necessarily satisfied. In ad-
dition, they need to know the correct number of sources, and
thus fail to satisfy (c2). Let us focus on the CSD method since
it is highly relevant to the algorithm presented in this paper.
This method uses dereverberation and source separation filters
connected in tandem, where the dereverberation filter takes the
form of subband-domain multi-channel linear prediction. Both
filters are estimated jointly by minimizing a predetermined cost
function. As with the WPE method, the cost function was de-
rived by using the ML method on the assumption that there is
no background noise and that we know the correct number of
sources. These assumptions mean that the CSD method does not
comply with (c2). Even if the correct source number is known,
the dereverberation filter converts reverberant signals into only
the same number of dereverberated signals as sources. There-
fore, the CSD method may be used to perform blind MIMO im-
pulse response shortening only when we have the same number
of microphones as sources, otherwise it does not satisfy (c1).

B. Contribution of This Paper

We can see from the above review that, although promising,
the existing methods using subband-domain multi-channel
linear prediction have limitations when viewed as blind MIMO
impulse response shortening methods. The root of these limi-
tations lies in the fact that the cost functions are derived with
the ML method using certain assumptions about the number of
sources and the presence/absence of background noise.

To extend the applicability of the subband-domain
multi-channel linear prediction approach, we present a novel
cost function for estimating the prediction filters without as-
suming specific acoustic conditions. The proposed cost function
is developed to account for the following three observations.
First, non-reverberant speech signals are almost uncorrelated
in time in the subband domain. Secondly, we do not need to
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make output signals spatially uncorrelated because our goal is
to shorten MIMO room impulse responses and not to separate
source signals. Thirdly, exploiting the nonstationarity of speech
signals plays a critical role in achieving dereverberation [12].
With these things in mind, the proposed cost function measures
the degree of temporal correlation in non-stationary output
signals (i.e., the correlation between output signal values at
different points in time), ignoring spatial correlation (i.e., the
correlation between different output channels). In addition, we
propose an efficient algorithm for minimizing the proposed
cost function. Interestingly, this algorithm includes the WPE
and CSD methods as special cases, thus revealing the common
mathematical background underlying these existing methods.
For this reason, we call the proposed algorithm the Generalized
WPE (GWPE) algorithm.

The remainder of this paper is organized as follows. Section II
defines the problem addressed in this work and briefly reviews
the WPE method. Section III proposes the cost function for
prediction filter estimation and formulates the optimization
problem to be solved. Section IV describes the proposed effi-
cient optimization algorithm. This method requires a sequence
of spatial correlation matrices of dereverberated signals, and
Section V discusses several approaches for estimating this
sequence. Section VI reports our experimental results, and
Section VII concludes this paper.

II. BLIND MIMO IMPULSE RESPONSE SHORTENING

We begin by formulating blind MIMO impulse response
shortening. For notational simplicity, in the following, we use
superscript * to denote the conjugate transpose of a complex
vector or matrix, the transpose of a real vector or matrix, and the
conjugate of a complex number without making any distinction
between them.

A. Problem Formulation

A general acoustic system in a room is described as follows.
Let M and N be the numbers of speakers and microphones,
respectively. Also, let s™[k] (1 < m < M), v"[k], and
y"[k] (1 < n < N) denote the speech signal of the mth
speaker, the noise at the nth microphone, and the speech
signal observed by the nth microphone, respectively, where
k is a fullband-domain time index. We assume that the noise
is statistically independent of the clean speech signals. The
microphone signals are generated according to the following
equation:

J—1

ylk] = > H*[s]s[k — r] + vlk], (1)
k=0

v[k] = K], ..., vN[k]]*, and {H[k]}o<n<s—1 is a MIMO
room impulse response of order J between the speakers and
microphones. H|[x] is an M-by-N matrix defined as

ht1[k] RN k]
Hlx] = : : ) 2
hl,]\/l[ﬁ] hN,Z\fI [I{]
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where {h™"[k]}o<w<s—1 is the room impulse response from
the mth speaker to the nth microphone. The signals and the
room impulse response can take any real values.

To reduce the filter order, we employ a subband signal pro-
cessing scheme by rewriting the acoustic system (1) as

J—1

=2 it

where y,(¢), si(t), vi(t), and H;(7) are the complex-valued
subband-domain counterparts of microphone signal vector y[k],
clean speech signal vector s[k], noise vector v[k], and MIMO
room impulse response H [], respectively, while .J; corresponds
to room impulse response order .J. Subscript [ denotes a subband
index and ¢ is a subband-domain time index. Note that, in (3),
the noise vector v;(¢) includes both the background noise and
the effect of speech energy leakage over adjacent subbands.

We define blind MIMO impulse response shortening as
finding a MIMO linear filter for each subband [ that virtually
truncates {H;(7)}o<r<Js,—1 up to A taps, where A is an
arbitrary integer. When we employ the multi-channel linear
prediction approach, our goal can be specifically described as
follows.

Definition 1: Let us define N-dimensional vector g,(t) =
[G75 (1), ..., 9N (1)) and zy(t) = [}*(t), ..., aN*(t)] asa
linear prediction of y,(¢) and the correspondlng prediction error
vector, respectively, i.e.,

)si(t — 1) + (1), 3)

A+K —1
Z Gy (T)y,(t — ) “)
(1) —yl(t) —g(t), S

where {G|(T)}a<r<a+Kk,—1 is the N-by-N (i.e., MIMO) pre-
diction filter and K is the prediction order. The problem ad-
dressed in this paper is to adjust G; = {Gi(T)}a<r<atK,—1,
given 1" samples of the subband microphone signals (y;(t))te7,
where 7 = {t}1<¢<7r, so that z;(¢) can be represented as

ZHz

where the noise in each output channel is independent of the
clean speech signal vector s;(t). O

The existence of a desired prediction filter, shortening the
MIMO room impulse response up to A taps, is easily confirmed
based on the theory of multi-channel linear prediction. Specifi-
cally, under a few conditions, there exists G, value that produces
x;(t) satisfying the following relationship:

7)81(t — 7) + noise, 6)

A
Z T)si(t — 1) + 9(1), @)
where 9,(t) is given by

A+K;—1

’l~11( —’Ul Z Gl

Yo (t —7) )
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and thus statistically independent of the clean speech signal
vector s;(t) [13].

B. Weighted Prediction Error Method and its Limitations

The question is how to estimate such a desired prediction
filter. We review the multi-channel linear prediction and WPE
methods, which partly solve this problem, and point out their
limitations in order to make our motivation clear.

The basic multi-channel linear prediction method solves the
problem when s, (%) is stationary and uncorrelated over time and
v;(t) = 0. Under these conditions, the desired prediction filter
can be estimated by minimizing the sum of the squared predic-
tion errors. In other words, the cost function employed by the
multi-channel linear prediction method is given by

=2 |w

teT

A+K;—1 2

-2 el

where ||-||? represents the vector norm. Thanks to the decimation
performed in the course of the subband decomposition, it may
be reasonable to assume that s;(t) is temporally uncorrelated.
However, minimization of the sum of the squared prediction
errors does not yield a good G, (7) estimate since speech signals
are nonstationary and do not meet the stationarity assumption.

To account for the nonstationarity, the WPE method makes
two assumptions. The first assumption is that, for each m, the
mth clean speech signal sj"(t) is sampled from a complex
normal distribution with mean O and time-varying variance
AT (t), which corresponds to the expected value of |s}" O
The second assumption is that there is one speaker (i.e., M = 1)
and no background noise in a room. The second assumption
causes (7) to degenerate to the following equation:

Z h} 1*

which indicates that the prediction error for each microphone,
x7(t), is the convolution of s} (t) and the initial A-tap part of
hy 1( ). Therefore, a dereverberated signal can be obtained by
calculating only one of the M-channel prediction errors. For
example, we may use the first-channel prediction errors as

Fpr(G) T)y,(t — 1) 9

sit—7), 1<n<N, (10)

A+K;—1

s =yt)— > g (Dyt-r),

T=A

(11

where g} () is the first column of G, (7). Hence, we only need
to estimate G; = {g;(7) instead of the whole
MIMO filter G;.

By using the ML method with these assumptions, the cost
function of the WPE method is obtained as

}ASTSAHQA

A+K;—-1

Y (t) — EA g (Ny(t—7)

AL()

Fywre (G) = Z ‘
teT
(12)

Fywpg is different from Fpg in that each prediction error is
weighted by the reciprocal of the time-varying clean speech
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signal power A/ (¢). This weighting operation equalizes the de-
gree to which each prediction error contributes to the cost func-
tion and has been shown to play a critical role in dereverberation
[14]. In practice, each A}(t) value is estimated along with G}
by iterating two optimization processes: one optimizes G} for
a fixed {\}(t)},., estimate; the other optimizes { A} (¢)},
for a fixed G} estimate. Finally, the whole prediction filter G; is
constructed as

90 (T)]

where g?(7),...,g1 () are obtained by repeating the same
procedure for channels 2, ..., M separately.

As such, the WPE method lacks a theoretical background
when it is applied to blind MIMO impulse response shortening
under noisy and/or multi-speaker situations since the cost func-
tion Fywpg assumes a single speaker and the absence of noise.
This motivates development of a new cost function for esti-
mating the desired prediction filter without assuming specific
acoustic conditions.

Before proceeding, let us make a preliminary assumption that
will form the basis of the subsequent derivation. We assume
that a speech signal is generated by a random process. So, let
(Y(t))ter denote a sequence of random variables and let us as-
sume that (y;(t)):e7 is its realization. Then, (z;(t)):c7 may be
considered to be a realization of the random variable sequence

(Xi(t))seT given by

Gi(1) = [gi(7),- .. (13)

A+K;—1

Xi(t)= > Gi(r)Yi(t-n). (14)
T=A

We allow (X;(t))ter and (Y;(¢))ie7 to be nonstationary to
account for the nonstationarity of speech signals.

III. NEw COST FUNCTION FOR PREDICTION
FILTER ESTIMATION

The goal in this section is to find a cost function

F(G) = C(Xui(1),...,Xu(T)), (15)
where C(-) measures the degree to which a realization of
(Xi(t))te is reverberant. Once such a cost function is given,
we will obtain an estimate of G, = {Gi(T)}a<r<atr,—1 DY
minimizing the cost function.

We derive such a cost function by leveraging the temporal
correlation characteristics of speech signals. A clean speech
signal has autocorrelation coefficients of nearly zero for time
lags greater than tens of milliseconds while a reverberant
signal has large autocorrelation coefficients for those large
time lags. Accordingly, we can reasonably assume that a set of
dereverberated speech signals, which may be still corrupted by
additive noise, has zero temporal correlation coefficients except
for the zeroth lag in each subband regardless of the number of
sources (as long as we choose an appropriate subband width
and decimation factor). On the other hand, these dereverberated
speech signals may be correlated in space because blind im-
pulse response shortening is not intended to separate individual
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speech signals. On the basis of these observations, we conjec-
ture that a prediction filter that shortens MIMO room impulse
responses can be obtained by making the output random vector
sequence (X;(t)):er as temporally uncorrelated as possible
without enforcing spatial uncorrelatedness. In other words, we

minimize the correlation between X;(1),...,X;(T) without
uncorrelating the vector components X} (t),..., X" (t) for
each ¢.

A. Correlation Measure for Multivariate Random Variables

To give shape to the idea sketched above, we need a mea-
sure of the correlation between multivariate random variables
Xi(1),...,Xy(T). We propose a new correlation measure,
which is called the Hadamard-Fischer (HF) mutual correla-
tion! and applicable to multivariate random variables while
correlation measures used for source separation (e.g., [16])
assume univariate variables.

Definition 2: Let Uy,..., Uy be complex-valued multi-
variate random vectors and U be the vector wherein these
random vectors are stacked as U = [U7,...,U%]". The HF

mutual correlation between these random vectors is given by

N
1 .
Cup(Uy,...,Uy) = N(Zlog (det E (U, U?))
n=1

—log (det E(UU™))), (16)
where operator det calculates a matrix determinant while E(-)
denotes an expectation operator.

The following theorem holds with respect to the HF mutual
correlation. (This theorem can be readily proven by using the
Hadamard-Fischer inequality [17], [18] and that is why we
call Cyp(Uy,...,Uy) the HF mutual correlation. See the
Appendix for the proof.)

Theorem 1: The HF mutual correlation is nonnegative and
zero if and only if all of Uy, . .., U iy are mutually uncorrelated.
In other words, we have

Cur(Uy,...,UN) >0, (17)
where the equality holds if and only if £ (U,,,U",) = O, where
O denotes a zero matrix, for all combinations of 7 and n values
satisfying1 < m # n < N.

1) Note: The equality condition allows the elements of vector
U, to be mutually correlated. O

The above theorem suggests that Cup(X;(1),..., X (T))
measures the degree of temporal correlation of (X;(¢))ier-
Hence, we will use the HF mutual correlation in (15). It is
worthwhile noting that the HF mutual correlation is equiva-
lent to mutual information if all of Uy, ...,Uy are normally
distributed. The fact that the HF mutual correlation does not
require the normality condition is of theoretical importance
because a speech signal has a super-Gaussian distribution [19].

IThe HF mutual correlation is identical to the correlation measure used for
source separation in [15]. However, the cited paper states that the non-negativity
of the cost function can be derived from Oppenheim’s inequality and provides no
proof. Thus, for completeness, we define the HF mutual correlation and shows
its appropriateness as a measure of correlation.
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B. Optimization Problem Statement

Now, let us turn our attention back to the blind
MIMO impulse response shortening problem. Here, we
present an optimization problem for prediction filter
G = {Gi(7)}a<r<atr,—1-

Using the HF mutual correlation in (15), our goal is defined
as to minimize the following cost function with respect to G;:

F(Gi) =Cur(Xu(1),..., Xy (1))
= 77 3 log (det B (X,(1)Xi (1))
teT

— log (det E (X, X7)). (1)
where X is the vector wherein X;(t)’s are stacked as
X; = [X[(T),...,X;(1)]". This cost function takes its min-
imum when random vector sequence (X(t)):e7 is temporally
uncorrelated. As described in the note on Theorem 1, the
elements of X;(¢) may be (spatially) correlated with each other
at the minimum point.
This cost function reduces to

F(G) = |T|Zlog (det E(X:() X[ (). (19)

teT

This can be confirmed as follows. X; is given by X; =
G'Y;, where Y; = [Y;(T),....,Y;(1)]" and G; is a
convolution matrix consisting of the impulse response
{I,0,...,0,-G|(A),...,—G(A+ K; —1)}. Since the
determmant of a block trlangular matrix is given by the product
of the determinants of the diagonal submatrices, we have

det BE(X;X}) =|det G;|* det E (Y, Y7)

=det E(Y,Y7)

= constant. (20)
Equations (18) and (20) combine to lead to (19).

Unfortunately, the minimization of the cost function given by

(19) has no analytical solution. To estimate the prediction filter
G, according to (19), we may replace each F (X;(t) X} (t)) by
a temporally local average of z;(¢)z}(t) and find the G; that
makes the first order derivative of F(G;) zero. However, due
to the logarithmic function in (19), we cannot find such a G,
analytically. Since the prediction filter order is usually large, it
is impractical to use numerical optimization algorithms such as
gradient-based algorithms. Therefore, we need to go one step
further to invent a feasible optimization algorithm.

IV. OPTIMIZATION ALGORITHM

We employ the auxiliary function approach [20] to derive
the proposed algorithm, i.e., the GWPE algorithm, to minimize
F(G;). The auxiliary function approach enables us to split the
optimization problem into two subproblems: one optimizes a
prediction filter and the other optimizes a set of newly intro-
duced auxiliary variables. The key to success is that the predic-
tion filter optimization is performed analytically, and thus the
computational complexity is low enough to be used in practical
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scenarios. Section I'V-A summarizes the auxiliary function ap-
proach. Sections IV-B-IV-D elaborate on the derivation of the
proposed algorithm.

A. Auxiliary Function Approach

The basic concept of the auxiliary function approach is to
iteratively minimize the upper bound of the cost function, which
is easier to minimize than the original cost function. The upper
bound is called an auxiliary function and is defined as follows.

Definition 3: f(z,y) is an auxiliary function for f(z) if

f(x) = min f(z,y) for all z. (21

y

By using the auxiliary function, we can obtain an optimiza-
tion algorithm as follows. Suppose that we want to iteratively
minimize f(z) with respect to «, starting from the initial guess
. Let f(z,y) be an auxiliary function for f(z). With the aux-
iliary function approach, we iteratively perform a set of up-
date procedures consisting of § = argmin, f(#,y) and & =
argmin,, f(z,). Based on the definition of the auxiliary func-
tion, this update rule never increases the true cost function value.
Therefore, if the cost function is lower-bounded, the sequence
of the updated estimates converges although global optimality
is not guaranteed. One advantage of this approach is that we can
construct a simple algorithm that requires no control parameters
such as a learning rate if we can find an appropriate auxiliary
function.

B. Algorithm Overview

Now, we derive the proposed GWPE algorithm for obtaining
the prediction filter G; that minimizes F/(G;), given by (19). We
find an auxiliary function for F'(G;) by exploiting the following
lemma. (The proof is given in the Appendix.)

Lemma 2: Let U be an N-dimensional multivariate random
vector. Then, for all positive definite Hermitian matrices A, we
have the following inequality:

log |det E(UU*)| < E(U*A™'U)

— N +log(detA) (22)

with equality if and only if A is the covariance matrix of U as
A=FEUU"). O
Based on this lemma, we can deduce the following auxiliary
function for F'(G;).
Theorem 3: F(Gy, £;) defined as follows is an auxiliary func-
tion for F(g,):

17| Z(

teT

F(G, L) = (1)1 X0 (1))

_N + log(det Ay (t))), (23)

where A;(t) is a positive definite Hermitian matrix and £; =
{A(t)}er- O

By using this auxiliary function, we can sketch the proposed
optimization algorithm as shown in Table I. We found empiri-
cally that starting with G;(7) = O for all 7 values worked very
well in most cases. The algorithms for performing steps 2 and 3
in the table are described in subsequent subsections.
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TABLE 1
SKETCH OF PROPOSED OPTIMIZATION ALGORITHM.

1) Initialize 91

2) Compute £; = argming, F(G, L.

3) Compute §; = argming, F(G, L)).

4) Return to step 2 unless convergence is reached.

C. L; Update

Invoking Lemma 2, we see that the minimization of auxiliary
function F'(G;, £;) with respect to £; for a fixed G, estimate is
achieved by

At = B (XX (1)), 24)
where (X(t)):e7 is the convolution of the prediction error filter
estimate and the input (Y(¢))ier as

A+K;—1

Xi(t) = Z Gi(r

In the following, we call A (t) a spatial correlation marix to
highlight the fact that F2 (j( (DX ; (t)) consists of the (zeroth-
lag) auto-and cross-correlations between the dereverberated sig-
nals, which characterize the coupling of (spatially distributed)
output channels.
In practice, we have to estimate the spatial correlation matrix
sequence (E ()A(l(t))A(;k (t)))
teT

(#1(t))ter, given by

Yit—7). (25

on the basis of its realization,

A+K;—1

- X ¢

We will discuss several approaches for doing this in Section V.

() = )y (t — 7). (26)

D. G, Update

The formula for minimizing F (Gi, L) while fixing £; at L
can be easily derived because (23) is quadratic with respect to
G;. Here, we describe only the resultant formula since it is de-
rived in a similar way to the CSD method [10].

Let g; be a vector in which the columns of all prediction ma-
trices {G(T)}a<r<a+4K,—1 are stacked as

A T
gl (D)
9 = : ; (27)
g(A+K, —1)
_gl (A —|— K; — 1)

where g} (7) represents the mth column of G;(7) as shown in
(13). Then, representing the elementwise complex conjugation
of matrix A by A, the optimal prediction filter that minimizes
(23) is obtained by

9,=R;'r, (28)
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TABLE II
DETAILS OF THE PROPOSED OPTIMIZATION ALGORITHM.

1) (Initialization) Initialize 91 as, for instance, é[(‘r) = O for all T values
with A<T<A+K;-1.
2) (Dereverberation) Compute
A+K-1
@)=y~ Y, Gi@ut-1) VieT.
T=A

3) (Spatial correlation matrix estimation) Estimate
Aty = EXi(0X] @) VteT

by using (@i("))re7-
4) (Computation of weighted sample correlation matrixfvector) Compute

Ri=) 0it—- DA G- D)
€T

#1= 3 it = DA yi(o).

teT

5) (Prediction filter update) Compute
9= R'a
The updated prediction matrices are obtained by rearranging the E

entries.
6) (Convergence check) Return to step2 unless convergence is reached.

where matrix R; and vector r; are given by

Ri=Y B(W{- A0 (E-2) 9
teT
n= 3 B(TE- DA Vi), (30)
teT
respectively. Here, W;(¢) is a matrix comprising
Yl(t), e ,Yl(t - Kl + 1) as
()= (Y (t),....Y,(t— K +1)] (31)
where
Y.(t) (0]
Yi(t) = g (32)
0] Y(t)
N

In practice, we need to estimate R; and r; by using the real-
ization (y;(t))ter of (Yi(t))ter. We use the sample averages
to estimate Rl and r; as follows:

Z¢z (t— DAY (t - A) (33)
teT
=) it — A)A() y(t), (34)
teT

where ,(t) is a realization of W¥;(¢) and is computed by re-
placingY (), ..., Y (t— K;+1) by their respective realizations
y(t),..., yl(t — K;+ 1) in (31). It may be useful to note that
(28) reduces to the covariance method for the standard linear
prediction when M = N = 1 and A;(¢) = 1 for all ¢. In light
of this, we call R, and #; a weighted sample correlation matrix
and a weighted sample correlation vector, respectively.

In summary, the proposed GWPE algorithm can be de-
scribed as shown in Table II. It should be kept in mind that,
in order to implement the GWPE method, we need to define
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a way of estlmatlng the spatial correlation matrix sequence
(E(X ()X ()))teq— on the basis of the available data
(#1(1))teT-

V. SPATIAL CORRELATION MATRIX ESTIMATION

Finally, we address the problem of estimating spa-
tial correlation matrlces A straightforward method using
M) = BX(0X] (1) ~ YT i(r)#; (r)/(28 + 1),
where 6 is a small positive integer, makes the computation
of weighted sample correlation matrices/vectors (step 4 in
Table II) very time consuming. Thus, we propose four alter-
native methods that use structured approximations, two of
which clarify the relationship between the WPE, CSD, and our
proposed GWPE methods.

A. Diagonal Matrix Method

The first method assumes each spatial correlation matrix to
be diagonal as follows:

M(t) = B (X)X (1)) ~ diag ' (D)y<puen s 39)
where A\"(t) is the power of X/*(t), ie. A(t) =
E(|X;™(t)]?). Such a A7*(t) value may be estimated as
):lm(t) = |&(t)|*. The diagonal matrix method is a rather
crude approximation because it ignores the spatial coupling
between the output channels. However, as far as we have tested,
this method does have some dereverberation efficacy in most
cases.

The advantage of the diagonal matrix method is its rel-
atively low computational complexity. Indeed, under the
diagonal matrix assumption, R, becomes a block diag-
onal matrix (after permuting some columns), and therefore
Gl = {gi(}acecarki-15 -, G = {g]' () }acecarii—1
can be updated separately.

Interestingly, the GWPE algorithm using the diagonal ma-
trix approximation is equivalent to performing the WPE method
separately for all channels. This can be confirmed as follows.

A4, -1

First, we rewrite (23) as
Z Gl Y[ t— T))

(o
)Y t—7))), (36)

A A+K =1
XAl(t)_l (

F(G, L)) =

2, G

and we denote this function as Fgwpr(G). Substituting (35)
into (36) and replacing each expectation by the corresponding
realization, we obtain

Fowpr(G) = 37)

|T| Z Fwer (G7")

where Fywypg (G/™) is given by (12). Therefore, the WPE method
can be derived as a special case of the GWPE algorithm. This
observation shows that the WPE method can be reasonably ap-
plied to blind MIMO impulse response shortening, and that we
can modify it to take account of the spatial coupling between
the output channels.
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B. Scaled Identity Matrix Method

The second method further simplifies the diagonal matrix
method, assuming that the powers of different output channels
are equal at each time instant ¢. Hence, we have the following
approximation:

Aty = B (Xu) X (1) = M(n)T. (38)
Ai(t) is a “spatially averaged output power”, which
changes with tlme t and may be estimated as A(t) =
Zfi Ll )|? /N . This approximation is reasonable when a
microphone array is so small that the powers of different output
channels tend to change in synchronization.

The advantage of the scaled identity matrix method over the
diagonal matrix method lies in the fact that the weighted sample
correlation matrix ﬁl and vector 7; can be computed more effi-
ciently because the multiplication of matrix A;(¢)~! in (33) and
(34) reduces to a scalar multiplication. The computation saving
offered by this approach becomes significant as the number of
microphones increases.

C. Scaled Full-Correlation Matrix Method

The third method uses a full-correlation matrix in place of the
identity matrix used in the scaled identity matrix method. To be
more precise, we use the following approximation:

At)=E (Xl(t)f(}*(t)) ~ (D). (39)
®,; is a time-invariant full-correlation matrix that describes the
temporally averaged coupling characteristics between output
channels.

Unlike the first two methods, the scaled full-correlation ma-
trix method takes account of the spatial correlation between dif-
ferent output channels. At the same time, this method still en-
ables us to compute R, and #; as efficiently as the scaled identity
matrix approach. Note however that when A;(¢) has non-zero
non-diagonal elements, all the elements of G; must be updated
jointly according to step 5 in Table II. This increases the com-
putational complexity especially when both the number of mi-
crophones and the prediction order are large.

®; and {\i(t)}rer may be estimated by iterating a set of
estimation procedures consisting of

A 1 1
O =— Y —a(t)x) 40
: ITI;[AI(t)zl( i () @0
and
. 1 .
M) = 3 (18, a0 (41

Our implementation sets the iteration number at two.

D. Independent Component Analysis Method

The fourth approach takes account of the spatial correlation
between different output channels by using independent com-
ponent analysis (ICA). Specifically, we assume that X 1(t) can
be approximated as

X (1) =~ AU (1), (42)
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where A; is a time-invariant matrix and U (¢) is arandom vector
whose elements are statistically independent of each other. A;
is estimated by applying ICA to the data (z;(¢))tc7. Then, we
have

A(t) = B (Xu(H)X[ (1) ~ A ding (A" (1) < x AT
(43)

where A" (t) is the power of the mth element of U,(¢), which
may be estimated as \J*(t) = |uy"(t)|?, where u}"(t) is the
mth element of A; 'z;(t). Note that if we assume that all
Af(t),...,AN(t) are equal, this method degenerates to the
scaled full-correlation matrix method.

The GWPE algorithm with ICA-based spatial correlation
estimation is essentially equivalent to the dereverberation
subsystem of the CSD method when the numbers of sources
and microphones are equal. The difference between the two
algorithms lies only in that, for each m, the power spectrum
{A7*(t)},c > where F is a set of all subband indices, is modeled
with an all-pole model in the CSD method while the GWPE
algorithm does not use such constraints. This observation shows
that the CSD method is a special case of the GWPE algorithm,
and that applying it to blind MIMO impulse response short-
ening is theoretically sound. Furthermore, if we wish to do so,
it is possible to modify the spatial correlation matrix estimator
to take account of the background noise.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate that the proposed GWPE
algorithm achieves MIMO impulse response shortening in
noisy reverberant environments. We conducted two sets of
experiments. In the first set, we closely examined the impulse
response shortening effect by comparing sound decay curves
and room impulse responses obtained before and after applying
the GWPE algorithm. In addition, we estimated the degree
of improvement in the direct-to-reverberation ratio (DRR) for
quantitative evaluation. The second set of experiments was
undertaken to see how sound source localization accuracy and
noise reduction beamformer performance changed when we
preprocessed microphone signals with the GWPE algorithm.
The goal was to demonstrate that the proposed algorithm can
make microphone array systems robust against reverberation.
(In addition to these experiments, we confirmed that the GWPE
algorithm improves the performance of meeting speech recog-
nition as detailed in [21].)

We recorded reverberant speech and acoustic noise separately
and mixed them on a computer to simulate noisy reverberant
speech in order to make the experiments as realistic as pos-
sible while keeping the experimental conditions controllable.
The precise recording conditions are as follows. We recorded
eight-channel speech signals in a varechoic chamber. The
chamber was 4.45 m wide and 3.35 m long with a 2.5 m high
ceiling. We employed two reverberation times (70 ): 0.39 s and
0.65 s. An eight-element equidistant linear microphone array
with 3 cm intervals was placed against the wall. A loudspeaker
was placed in front of the microphone array at a distance of
2 m. For each Ty, we played clean speech recordings through
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the loudspeaker and captured them with the microphone array
to obtain reverberant speech signals. We also played white
Gaussian noise through another loudspeaker and recorded the
sound with the same microphone array. The noise loudspeaker
was placed 2 m to the left of the microphone array at an angle
of 60 degrees. The recorded speech and noise were mixed at
SNRs of 10 and 15 dB. Thus, we obtained four sets of noisy
reverberant speech signals that differed in terms of T or SNR.

We used utterances from the TIDIGITS test set [22], resam-
pled at 8 kHz, as the clean speech signals. TIDIGITS consists
of connected digit strings. Although TIDIGITS contains very
short utterances consisting of a single digit, the GWPE method
requires microphone signals of a certain length to reliably esti-
mate prediction filters. Hence, we concatenated a few utterances
of the same speaker so that the duration of each audio file be-
came approximately 5 s. Thus, a total of 1213 audio files were
obtained and used for each of the four environmental conditions
(i.e., Tso and SNR combinations).

Subband decomposition was performed with an oversam-
pled uniform discrete Fourier transform filterbank using a fast
Fourier transform [23], where a prototype lowpass filter of order
256 was designed with the classical window-based method. The
number of subbands and the decimation factor were set at 128
and 64, respectively. The prediction order K; for each subband
was determined according to the subband center frequency.
Specifically, we used the following K; values: K; = 18 for
fi < 800, K; = 15 for 800 < f; < 1500, and K; = 12 for
fi > 1500, where f; is the center frequency in Hz of the [th
frequency band to take advantage of the fact that reverberation
diminishes faster in higher frequency bands. The A value was
set at 2. These parameter values were commonly used for all
the four environmental conditions.

A. Direct Performance Evaluation

In the first set of experiments, we evaluated the impulse re-
sponse shortening effect of the GWPE algorithm. To do this,
we first looked at the results for a T of 0.39 s and an input
SNR of 15 dB. We used the scaled identity matrix approxima-
tion method as the spatial correlation matrix estimator.

Fig. 1 shows how the sound decay curve of the room impulse
response between the loudspeaker and the first microphone was
changed by the GWPE algorithm. The dashed and solid lines are
the sound decay curves obtained before and after applying the
GWPE algorithm, respectively. These curves were calculated as
follows. First, we estimated the impulse response between the
speaker and the first microphone positions for each of the 1213
files with a Tgo of 0.39 s and an SNR of 15 dB based on the
clean speech signal and the corresponding noiseless reverberant
signal (i.e., the reverberant signal before being mixed with the
noise). The impulse response estimation method used in this
step is described in the next paragraph. Then, the sound decay
curve for each estimated impulse response was calculated by
using Schroeder’s method [24]. Finally, the 1213 sound decay
curves were averaged to obtain the dashed line in Fig. 1. Prior
to the averaging computation, the delays in each of the 1213
sound decay curves were normalized. The solid line in Fig. 1
was also obtained based on the clean speech signals and the
dereverberated signals of the first microphone.
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Fig. 1. Sound decay curves with and without impulse response shortening
(IRS).

To estimate the impulse response between the speaker and
the first microphone for each file, we assumed that the noiseless
reverberant speech signal of the first microphone, which we de-
note by 7[k], could be represented as a linearly filtered version
of the clean speech signal, s[k], as r[k] ~ ZI L fRsk — k),
where k is the full-band time index and {f [m]}ogmg 7—1 is the
impulse response we want to obtain. The impulse response was
estimated b}l m1n1m1z1ng the sum of the squared errors between

r[k] and > _; f[x]s[k — k], where the impulse response order,
I, was set at 0.75 s. The blindly shortened impulse response
(i.e., the impulse response obtained after applying the GWPE
algorithm), required for drawing the solid line in Fig. 1, was es-
timated in the same way by using the noiseless components of
the dereverberated signals instead of the noiseless reverberant
signals. Here, the noiseless component of each dereverberated
signal was estimated by processing the corresponding noiseless
reverberant signal with the dereverberation filter estimated from
the corresponding noisy reverberant signal.

InFig. 1, we can see that the energy of the initial portion of the
reverberation was effectively reduced. Recalling that the initial
decay rate is a primary factor determining the perception of the
decay [25], this result indicates that the GWPE algorithm suc-
cessfully made the microphone signals less reverberant, as also
implied by the improved DRRs presented later. On the other
hand, in Fig. 1, we can also see an increase in the energy of
the late reverberation. Indeed, when we listened to the noiseless
components of the dereverberated signals (note that the dere-
verberated signals contained noise), we could hear both strong
direct sounds and late reverberation components. However, the
late reverberation components were hardly heard when we lis-
tened to the noisy versions of the dereverberated signals, i.e.,
they were masked by the noise. It should be noted that the de-
creased decay rate of the late reverberation is known to occur
with many linear filter-based dereverberation techniques and ef-
fective remedies have already been proposed [26], [27].

To confirm the impulse response shortening effect visually,
in Fig. 2, we plot the average impulse responses obtained be-
fore and after applying the GWPE algorithm. The right panels in
Fig. 2 are magnified views of the left panels. (Note that the sound
decay curves in Fig. 1 do not match these impulse responses
exactly. This is because the decay curves in Fig. 1 were calcu-
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lated by averaging the decay curves of the impulse responses
for individual files while the impulse responses in Fig. 2 were
obtained by averaging the impulse responses for individual files
and thus the impulse response fluctuation affecting the decay
curve shape was smoothed out in Fig. 2.) We can see that, in
the first 10-ms-long portion starting at the arrival of the direct
sound, the impulse response was almost unchanged. In the sub-
sequent 10-ms-long portion, the shape of the impulse response
was retained although the amplitude was attenuated. This re-
sult clearly demonstrates the impulse response shortening effect
provided by the GWPE algorithm. Fig. 3 shows the frequency
responses of the unprocessed and processed impulse responses.
Numerous spectral peaks and dips were removed, indicating the
successful cancellation of a large part of the reverberant distor-
tion. However, several sharp peaks, dips, and tilts can be ob-
served in the frequency response even after applying the GWPE
algorithm, partly because the initial portions of the room im-
pulse responses remain almost unchanged. Other techniques tai-
lored to distortion caused by short impulse responses may be
employed to compensate for the remaining distortion.

Finally, to evaluate the impulse response shortening perfor-
mance quantitatively, we compared the DRRs obtained before
and after applying the GWPE algorithm. The DRR is the ratio
of the direct sound power to the reverberation power and was
calculated as follows:

X D[k
> TRk

where the direct sound component, rD [k], and the reverberation
component, 7 [k], were calculated as r°[k] = 2070 f[x]s[k—
x| and r®[k] = Zi;lp f[x]s[k—k], respectively. The ® value in
these equations determines the boundary between the direct and
reverberation portions of the impulse response { f[k]}o<w<r—1
and was set at 30 ms. Here, unlike the above investigations, we
considered not only the impulse response for the first micro-
phone but also those for the remaining seven microphones.
Table III lists the DRRs for all the four environmental con-
ditions. Each of the DRRs in the table is the average over the
corresponding 1213 results. We can draw the following conclu-
sions from these results.
1) The GWPE algorithm consistently improved the DRRs for
all the microphones.

2) A higher SNR resulted in greater DRR improvement
although the improvement obtained when the SNR was
10 dB was still significant.

These results confirm that the GWPE algorithm can enhance
the direct sound component for all the microphones in an array
simultaneously, which implies the success of MIMO impulse
response shortening.

DRR = 10log;, (44)

B. Evaluation as a Microphone Array Preprocessor

In the second set of experiments, we evaluated the degree to
which the sound source localization accuracy and the beam-
former-based noise reduction performance were improved by
preprocessing microphone signals with the proposed GWPE al-
gorithm. Here, we tested both the scaled identity matrix ap-
proximation and scaled full-correlation matrix approximation
methods for spatial correlation matrix estimation.
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Fig. 2. Top left: Impulse response between first microphone and speaker position before impulse response shortening. Top right: Magnified view of the rectangular
area in the top left panel. Bottom left: Impulse response between first microphone and speaker position after impulse response shortening. Bottom right: Magnified

view of the rectangular area in the bottom left panel.
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Fig. 3. Frequency responses corresponding to the impulse responses of Fig. 2.

TABLE III
DIRECT-TO-REVERBERATION RATIOS FOR EACH ENVIRONMENTAL CONDITION WITH AND WITHOUT IMPULSE RESPONSE SHORTENING (IRS).
Teo 0.39 s 0.65 s
SNR 15 dB 10 dB 15 dB 10 dB
w/IRS | w/oIRS w/IRS [ w/oIRS w/IRS | w/oIRS w/IRS | w/oIRS
Microphone 1 1537 dB | 5.09 dB 1394 dB | 5.09 dB 11.57 dB 0.15 dB 10.39 dB 0.15 dB
Microphone 2 | 1533 dB | 5.24 dB 1391 dB | 524 dB 11.52 dB 0.05 dB 10.36 dB 0.05 dB
Microphone 3 | 1527 dB | 547 dB | 13.86dB | 547dB | 11483 dB | 0.09 dB 10.32dB | 0.09 dB
Microphone 4 | 1522 dB | 5.74 dB 13.82dB | 5.74 dB 1145 dB 0.15 dB 10.28 dB 0.15 dB
Microphone 5 | 15.16 dB | 5.94 dB 13.75dB | 594 dB 1145 dB 0.16 dB 10.30 dB 0.16 dB
Microphone 6 | 15.14dB | 6.12dB | 13.73dB | 6.12dB | 11.39dB | 0.13dB 10.23 dB | 0.13 dB
Microphone 7 | 15.15dB | 6.31 dB 13.76 dB | 6.31 dB 11.37 dB 0.03 dB 10.24 dB 0.03 dB
Microphone 8 | 15.08 dB | 6.51 dB 13.66 dB | 6.51 dB 11.30dB | -0.01 dB | 10.11 dB | -0.01 dB

1) Source Localization: We used the steered response
power-phase transform (SRP-PHAT) method, which itself is
known to be robust against reverberant distortion [ 1], to perform
the source localization. The SRP-PHAT method was applied to
each 25-ms-long frame, shifted by 10 ms. The accuracy of the
source localization was evaluated in terms of the localization
correctness rate calculated as Teorrect/Ttotal, Where Teorrect
is the number of time frames in which a source direction is
correctly identified, and Tiota) is the total number of frames.
Unvoiced and silent frames were excluded from the localization

correctness rate calculation. The source direction was regarded
as being correctly identified if the direction estimation error
was smaller than 10 degrees.

Table IV lists the localization correctness rates for each
environmental condition and processing condition. Here, we
considered three processing conditions: one did not perform
impulse response shortening and applied the SRP-PHAT
method to the microphone signals directly, the second used the
GWPE algorithm with the scaled identity matrix approximation
method before performing sound source localization, and the
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TABLE 1V
LOCALIZATION CORRECTNESS RATES FOR EACH ENVIRONMENTAL
CONDITION AND PROCESSING CONDITION. PROCESSING CONDITIONS
ARE AS FOLLOWS. W/0 IRS: IMPULSE RESPONSE SHORTENING WAS
DISABLED. W/IRS (IDENTITY): GWPE ALGORITHM WAS APPLIED BY
USING SPATIAL CORRELATION MATRIX ESTIMATOR BASED ON SCALED
IDENTITY MATRIX APPROXIMATION. W/IRS (FULL): GWPE ALGORITHM
WAS APPLIED BY USING SPATIAL CORRELATION MATRIX ESTIMATOR
BASED ON SCALED FULL-CORRELATION MATRIX APPROXIMATION.

Teo 039 s 0.65 s
SNR 15dB | 10dB 15dB | 10dB
w/o IRS 89.7% | 87.8% | 90.8 % | 89.9 %
w/ IRS (identity) | 949 % | 87.1 % | 95.1 % | 86.2 %
w/ IRS (full) 969 % | 889 % | 959 % | 89.9 %
30 T
w/o IRS
5t — w/ IRS

5 (identity)
z w/ IRS
g 20f (full)
3
g
2 15r
]
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§ 10+
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Fig. 4. SRP spectra for each processing condition for Tgo of 0.65 s and SNR
of 10 dB.

third used the scaled full-correlation matrix approximation
method. When the background noise level was at an SNR of
15 dB, the GWPE algorithm improved the localization cor-
rectness rate considerably regardless of the spatial correlation
matrix estimator. When the input SNR was 10 dB, the GWPE
algorithm combined with the scaled identity matrix approxima-
tion method slightly degraded the localization correctness rate.
The scaled full-correlation matrix approximation method did
not exhibit such a negative effect.

To visualize the effect of the GWPE algorithm on sound
source localization, the SRP spectra averaged over all frames
and all of the 1213 files are shown in Fig. 4 for a Tso of 0.65 s
and an SNR of 10 dB. We can clearly see that the GWPE algo-
rithm sharpened the peak in the SRP spectrum, which indicates
that the sound coming from the target direction was enhanced
while the sounds coming from all the other directions were
attenuated. This effect was prominent especially when we used
the scaled full-correlation matrix approximation method for
spatial correlation matrix estimation. This result may explain
why the noise reduction performance was improved by the
GWPE algorithm as described below.

2) Beamformer-Based Noise Reduction: We used a min-
imum variance distortionless response (MVDR) beamformer to
perform noise reduction. The MVDR beamformer was applied
to each of the frequency bins obtained by a short-time Fourier
transform (STFT) with a 25-ms-long and 10-ms-shift hamming
window. The noise reduction performance was evaluated by
the improvement in the signal-to-noise ratio (SNR).
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Fig. 5 shows the frequency-dependent (i.e., narrow band)
SNRs on a dB scale for two different environmental conditions:
one is with a T of 0.39 s and an input SNR of 15 dB; the
other is with a T of 0.65 s and an input SNR of 10 dB.
Comparing the thick (solid and dashed) lines with the thin solid
line, we can see that the SNR was significantly improved in the
mid-to-high frequency range regardless of the environmental
conditions by performing impulse response shortening with
the GWPE algorithm. With regard to spatial correlation matrix
estimation, the scaled full-correlation matrix approximation
method achieved slightly better SNRs than the scaled identify
matrix approximation method. These results show that the
GWPE algorithm successfully performed blind MIMO im-
pulse response shortening, which boosted the effectiveness of
the MVDR beamformer except in the low frequency region.
Similar results were obtained for the other two environmental
conditions.

The SNR degradation in the low frequency region was due
to noise amplification caused by blind MIMO impulse response
shortening. To confirm this, we show in Fig. 6 the dB-scale fre-
quency-dependent SNRs obtained before MVDR beamforming
for a Ty of 0.65 s and an input SNR of 10 dB. We can observe
that the signals obtained with the GWPE algorithm had lower
SNRs in the low frequency region than the microphone signals.
This means that the GWPE algorithm amplified the background
noise in the low frequency region, which explains why the com-
bination of the GWPE algorithm and the MVDR beamformer
underperformed the MVDR beamformer alone in that frequency
region. Fortunately, this problem is not very serious because the
GWPE method can be employed for each frequency band sepa-
rately. Therefore, we have an option of performing blind MIMO
impulse response shortening only in the mid-to-high frequency
region.

VII. CONCLUSION

In this paper, we generalized the dereverberation approach
based on subband-domain multi-channel prediction in order to
derive a MIMO impulse response shortening algorithm without
assuming specific acoustic conditions. This generalization was
achieved by using a novel cost function to estimate the predic-
tion filters and an efficient optimization algorithm based on the
auxiliary function approach. In summary, the proposed GWPE
algorithm provides a higher level framework from which the
previously proposed WPE and CSD methods can be derived as
special cases. This framework revealed that the difference be-
tween those two existing methods lies only in the way that we
approximate a sequence of spatial correlation matrices of dere-
verberated signals. The proposed GWPE algorithm will help
the future development of more advanced dereverberation tech-
niques. In fact, we presented two new methods for approxi-
mating the spatial correlation matrix sequence, and we con-
firmed the effectiveness of these two approximation methods
experimentally. Much more work is needed to assess the rela-
tive benefits of different approximation methods and to bring
out the full potential of the GWPE algorithm.

As we noted at the beginning of this paper, MIMO impulse re-
sponse shortening allows us to resolve the problem whereby typ-
ical microphone array processing techniques are seriously de-
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Fig. 5. Frequency-dependent SNRs on dB scale. Left: Input SNR was 15 dB and T was 0.39 s. Right: Input SNR was 10 dB and T, was 0.65 s. “NR” and “IRS”
mean noise reduction and impulse response shortening, respectively, and “identity”” and “full” mean scaled identity matrix approximation and scaled full-correlation

matrix approximation, respectively.
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Fig. 6. Frequency-dependent SNRs on dB scale before MVDR beamforming
for T of 0.65 s and SNR of 10 dB.

graded in reverberant environments. Thus, the proposed GWPE
algorithm, achieving MIMO impulse response shortening, can
be employed as a preprocessor for a variety of microphone array
systems. For some applications, it will be better to combine
the GWPE algorithm with other reverberation robustness tech-
niques than to use the proposed algorithm alone. This is another
direction that needs to be explored in the future.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we use the Hadamard-Fischer inequality
[17], [18]. This inequality states the following.

Theorem 4: Let A = [a; j]1<i j<n be an N-by-N positive
semidefinite Hermitian matrix. For any K with1 < K < N, let
us use A) and A o denote the K -by-K principal subma-
trix of A and the corresponding complementary principal sub-
matrix, respectively, i.e., AR — [@i j]1<i j<Kk and AT —
[a; ;] Kk +1<i,j<n. If neither AED nor AU g singular, we have

det A < det A" det AU (45)

with equality if and only if a; ; = O for all combinations of ¢
and j values satisfying 1 <7 < Kand K+1 < 357 < Nor
K+1<i<Nandl < j<K.
By applying the Hadamard-Fischer inequality recursively in
det E(UU™), we obtain
N
det B(UU™) < [] det E(U,UY,).

n=1

The condition for the equality is E (U,,U}) = O forall 1 <
m # n < N. Theorem 1 is obtained by taking the log of (46).

(46)

APPENDIX B
PROOF OF LEMMA 2

We prove that (22) holds for all natural numbers N by math-
matical induction.

First, we show that this inequality holds when N = 1. Since
the logarithmic function is concave, the following inequality
holds:

x

A
with equality if and only if x = A. Thus, (22) is true when
N = 1.

Let us hypothesize that (22) is true when N = k — 1. The
next step is to show that this inequality also holds for N = &k
under this hypothesis. To this end, we decompose k-dimensional
random vector U and k-by-k positive definite Hermitian matrix

A as

log(z) < 1+ log(\) 47)

_[o _[A A
U= {U} and A = [/\ /\}, (48)

respectively, where U is the (k — 1)-dimensional vector that
consists of the first k& — 1 entries of U while A is the (k —
1)-by-(k — 1) principal submatrix of A. We have an expression
of A=1 as

[\_1 + o0t _ ¢

Al = © ®

) (49)
%)
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where ¢ = 1~\_15\ and o = A - ;\*11_1;\. Moreover, det A can
be expressed by using ¢ and A as
det A = pdet A. (50)

Plugging (49) and (50) into the right hand side of (22), we obtain

(RHS of (22)) = U'A™ U + log(det A)
+ = (4 BOT ) - BT

— ¢"B(OT*) + B(U)

+ log(p) — k. (51)

Invoking the induction hypothesis and (47), the following in-
equality can be deduced:

(RHS of (22)) > log(det E(TT")) + 1og(¢*E(fJfJ*)¢
_E(UU")¢ — ¢* E[UT*) + E(|U|2)). (52)

The equality holds if and only if {\ E(UU") and ¢ =
¢*E(UU )p—E(UU )p—¢* E(UU*)+E(|U|?). Concerning
the second term of the right hand side of (52), we find that

¢*E(UU ) (Uff )p — ¢*E(UT*)
( U )BT E(UU")
)

x (¢ - ~*( 7o)~ ( %)
— E(UU)E(UU*)~' E(UU)
> —E(UU")E(UU*) 'EUU*) (53)

with equality if and only if ¢ = E(f]f]*)_lE'(f]f]*) Consid-
ering (52) and (53), we see that

(RHS of (22)) > log(det E(UU ")) + 10g(E(|U| )

~B(UU )E(UU*)T'E(UU")). (54)

In particular, the equality holds if and only if A=EU U ),
A= E(UU~),and A = E(|U]?). It is easy to see that the right
hand side of (54) is equal to that of (22), which completes the
proof.
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